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Abstract. In this paper we are concerned with a coupled system of Kuramoto oscillators
for power grids with dynamic voltages. Among various models describing the dynamics of
synchronous generators, analytic results are available mainly for the second-order model
with constant voltages which describes only the dynamics of rotor angles. It is known
that two of the most important forms for power system stability are rotor angle stability
and voltage stability. In [Eur. Phys. J., 223 (2014) 2577-2592], Schmietendorf, Peinke,
Friedrich, and Kamps derived a model of adaptive Kuramoto oscillators for the power grids
with dynamic voltages and carried out some numerical studies. In this model, the transient
dynamics of voltages is incorporated and the voltage dynamics could be considered together
with rotor angle dynamics. In this article, we will consider this model and derive some
analytic results for the synchronization of phase angles and stabilization of voltages. We
will find a region of attraction for a class of steady states which is explicitly expressed in
the parameters of system.

1. Introduction

Synchronization processes appear in various natural systems such as synchronous firing
of swarms of fireflies or clapping audiences, synchronous pacing of heart cells or neurons,
synchronization of Josephson junctions arrays [1, 3, 15, 30]. There is a notable relation
between power system stability and synchronization phenomena in coupled systems as the
synchronous motors’ dynamics can be modelled by a modified version of the prominent
Kuramoto model (KM) [16]. As a complex and large-scale system, the power grid has
rich nonlinear dynamics, and its synchronization and transient stability are very important
issues in relation to the power grid safety. It is believed that the future power will rely
increasingly on renewables such as wind and solar power which bring an increasing number of
transient disturbances. This poses an increasing interest and challenge for us to investigate
its synchronous behaviours with large disturbance.

The dynamics of classic Kuramoto model is governed by the following first-order system
of all-to-all coupled oscillators:

θ̇i = Ωi +
K

N

N∑
j=1

sin(θj − θi),
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where θi(t) is the phase of i-th oscillator, K and Ωi are constants denoting the coupling
strength and natural frequency of i-th oscillator, respectively. This model has been studied
in many literature and a central problem is to find conditions on the parameters and/or
initial configurations leading to the existence or emergence of synchronization or phase-
locking, see for example, [6, 10, 14, 17, 24, 34]. There are also literature on the Kuramoto
model with a network structure, for example, [13, 19, 22, 26]. For the existence of stable
synchronized solutions to Kuramoto model on networks, Jafarpour and Bullo [22] used the
cutset projection operator to obtain sufficient conditions, which are the sharpest bounds
to the best of our knowledge. In [15] Ermentrout introduced the second-order Kuramoto
model with inertia effect

mθ̈i + θ̇i = Ωi +
K

N

N∑
j=1

sin(θj − θi), m > 0

to explain the slow synchronization of certain biological systems. The inertia can lead to
rich dynamics as noticed in literature, see [7, 9, 32] for example.

It is well-known that the power network systems are closely related to the nonuniform
second-order Kuramoto model

(1.1) miθ̈i + γiθ̇i = Pm,i −
N∑
j=1

aij sin(θi − θj),

where θi and θ̇i are the rotor angle and frequency of the i-th generator, respectively. The
parameter Pm,i,mi > 0 and γi > 0 are the effective power input, inertia constant and
damping coefficient of the i-th generator, respectively. The coefficient aij > 0 represents
the coupling between generators which is given by aij = BijEiEj where Bij denotes the
susceptance of the transmission line between i and j and Ei is the voltage level of ith
generator. There have been many studies on this model by assuming a constant voltage
level, i.e., the coupling strength aij is constant. For example, some earlier surveys on
transient stability can be found in literature [4, 5]. The transient stability, in terms of
power grids, is concerned with the system’s ability to reach an acceptable synchronism
after a major disturbance such as short circuit caused by lightning, large noises in power
injections to network, or abrupt changes in environment. Therefore, a fundamental problem
for transient stability is to determine whether the post-fault state is located in the region
of attraction of synchronism. Recently, this model attracts more and more attention, for
example, the relation between the synchronization and network topologies was studied in
[13] and the sync basin estimate was considered in [8, 25]. The connection between first-
and second-order models was considered by homotopy arguments in [11] and by singular
perturbation analysis in [12].

In the above literature, the voltage is set as constant and regarded as a system parameter.
However, the power system is a complex dynamical system in which the voltage varies
in time. Therefore, it is more realistic to regard the voltage as a state variable rather
than a constant parameter. In fact, the stability of power systems can be categorized into
several forms and two of the most important ones are rotor angle stability and voltage
stability [21, 23, 31]: the former refers to the ability of synchronous machines to remain in
synchronism and the second one refers to the ability of a power system to maintain steady
voltages at all buses after being subjected to a disturbance. In [29], a model for the power
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system with converter coupled power generation describing the first-order phase dynamics
and voltage dynamics was derived and the stability with contraction analysis was considered.
As a future problem, they suggested to consider this type of power system with second-order
rotor angle dynamics. To the best of our knowledge, for a power system with second-order
phase dynamics, most consideration on system (1.1) focuses on the rotor angle stability
by assuming constant voltages, see for example [5, 8, 13, 25]. In [31] Schmietendorf et. al
introduced an extended model for networks of synchronous machines and they incorporated
voltage dynamics into the phase dynamics of power grid. A normalized N -machine system
[31] can be defined by the following equations:

(1.2)


miθ̈i + γiθ̇i = Pm,i −

N∑
j=1

BijEiEj sin(θi − θj)

αiĖi = Ef,i − Ei +Xi

N∑
j=1

BijEj cos(θi − θj), i = 1, 2, . . . , N.

Here, Ei is the voltage level of ith generator and Ef,i > 0 is the rotor field voltage. The
parameters αi and Xi are positive constants. For B = (Bij) we denote the symmetric nodal
admittance matrix satisfying Bij ≤ 0 for i = j, and Bij ≥ 0 for i 6= j. The above model is
based on a more detailed synchronous machine representation that takes into account the
machine’s electro-dynamical behaviour to a certain extent. For a detailed derivation of the
model we may refer to [28, 31]. Compared to the model (1.1) with constant voltages, the
fundamental problem for transient stability of (1.2) is then to determine whether the post-
fault state can evolve towards a phase synchronism and voltage stabilization. To the best of
our knowledge, there is no rigorous study for the dynamical behavior on this model with
dynamic voltages. In this paper, we will consider the dynamics of system (1.2) and derive
sufficient conditions on parameters and transient state for asymptotic phase synchronism
and voltage stabilization.

Contribution-. In this paper, we consider two frameworks for the power system. First,
we simplify the system (1.2) and consider the first-order dynamics of the phase angles; the
reason of this consideration is the connection between the first- and second-order dynamics,
which was laid out in [12] for the model with constant voltage. Second, we directly study
the system (1.2) with second-order phase dynamics. For these models we derive sufficient
conditions leading to asymptotic phase-locking and voltage stabilization, which gives the
estimates for the region of attraction of steady states.

We use the gradient system and energy estimate approaches in this paper. For the
first-order model, we discuss identical oscillators on a connected graph (Theorem 2.2) and
nonidentical oscillators on a network with restricted connectivity that the underlying graph
has a diameter d(G) ≤ 2 (Theorem 2.3). For the second-order model, we study the network
with connected underlying graph (Theorem 2.4) and construct a virtual energy function
involving the dynamic voltages to obtain the boundedness of phases and voltages which
implies the convergence by gradient approach. To our best knowledge, this is the first
analytic study on the coupled dynamics of rotor angles and voltages in power grid with
Kuramoto-type model.
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Organization-. The rest of this paper is organized as follows. In Section 2, we present
the models with gradient formulation and our main results. In Section 3, we study the syn-
chronization of first-order system and prove the two main results for identical and noniden-
tical oscillators respectively. In Section 4, we give a proof for the main result of second-order
system. Section 5 is devoted to a concluding summary.

Notation.
`∞(R+,RN ) =

{
f : R+ → RN | f is bounded

}
, R+ := {t ∈ R : t ≥ 0},

`1,∞(R+,RN ) =
{
f : R+ → RN | f is differentiable, f, f ′ ∈ `∞(R+,RN )

}
.

2. Preliminaries

In this section, we present the model of power grids and some elementary estimates.
The main results for synchronization are also presented. Let us recall (1.2) and denote
Ωi = Pm,i, qi = Ef,i. Since sin(θi − θi) = 0 and cos(θi − θi) = 1, (1.2) can be rewritten as

(2.1)


miθ̈i + γiθ̇i = Ωi −

N∑
j=1

B̃ijEiEj sin(θi − θj)

αiĖi = qi − βiEi +Xi

N∑
j=1

B̃ijEj cos(θi − θj),

where

βi := 1−XiBii ≥ 1, qi > 0, B̃ij =

{
0, i = j;

≥ 0, i 6= j.

We introduce micro-variables

θ̃i = θi − Ωst, with Ωs :=

∑N
i=1 Ωi∑N
i=1 γi

,

then we find
¨̃
θi = θ̈i,

˙̃
θi = θ̇i − Ωs, and

(2.2)


mi

¨̃
θi + γi

˙̃
θi = Ω̃i −

N∑
j=1

B̃ijEiEj sin(θ̃i − θ̃j)

αiĖi = qi − βiEi +Xi

N∑
j=1

B̃ijEj cos(θ̃i − θ̃j),

where Ω̃i := Ωi − γiΩs and the micro natural frequencies sum to zero:
∑N

i=1 Ω̃i = 0. In

particular, if Ωi
γi

=
Ωj
γj

for all i, j = 1, 2, . . . , N, then we have Ω̃i = 0 for each i, that is, it

is a system of coupled oscillators with identical natural frequencies. For simplification, we
remove the tilde in (2.2) and we obtain the model

(2.3)


miθ̈i + γiθ̇i = Ωi −

N∑
j=1

BijEiEj sin(θi − θj),

αiĖi = qi − βiEi +Xi

N∑
j=1

BijEj cos(θi − θj),
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subject to initial data

θi(0) = θ0
i , ωi(0) := θ̇i(0) = ω0

i , Ei(0) = E0
i ,

and parameters

N∑
i=1

Ωi = 0, αi > 0, qi > 0, βi ≥ 1, Xi > 0, Bij =

{
0, i = j;

≥ 0, i 6= j.

Throughout this paper, we will consider this model instead of (2.1). We next present the
definitions of a few concepts for synchronization.

Definition 2.1. Let (θ,E) = (θ1, θ2, . . . , θN , E1, E2, . . . , EN )T be a dynamical solution to
the system (2.3).

(1) The dynamical solution asymptotically exhibits phase synchronization if

lim
t→∞

(θi(t)− θj(t)) = 0, ∀ i 6= j.

(2) The dynamical solution asymptotically exhibits frequency synchronization if

lim
t→∞

(θ̇i(t)− θ̇j(t)) = 0, ∀ i 6= j.

(3) The dynamical solution asymptotically exhibits phase-locking if for any pair (i, j)
there exists a constant θij such that

lim
t→∞

(θi(t)− θj(t)) = θij .

(4) The dynamical solution asymptotically exhibits voltage stabilization if there exist
E∞i ’s such that

lim
t→∞

Ei(t) = E∞i , and lim
t→∞

Ėi(t) = 0, i = 1, 2, . . . , N.

In this paper, we will consider the synchronization problem in two categories. The first
one is to consider a simplified first-order dynamics of the phase angles for which the rele-
vance relies on the singular perturbation analysis. In [12], by singular perturbation analysis
the authors showed that the second-order dynamics can be approximated by first-order dy-
namics. Therefore, we believe that studying the first-order dynamics of the phase angles in
(2.3) is of interest. The second one is to analyze the second-order phase dynamics directly
involving the voltage dynamics.

2.1. Models. The singular perturbation theory by Tikhonov [33] gives an insight to under-
stand the dynamical systems with different time scales as a fast-slow system. Note that the
dynamical equations in system (2.3) can be written as the first-order dynamics of (θi, ωi, Ei):

θ̇i = ωi, miω̇i = −γiωi + Ωi −
N∑
j=1

BijEiEj sin(θi − θj),

αiĖi = qi − βiEi +Xi

N∑
j=1

BijEj cos(θj − θi),

When mi is sufficiently small, we can regard the dynamics of (θi, Ei) as a slow part and
ωi as a fast part. In [12], this idea was exploited to build a connection between the first-
and second-order dynamics of phases. Therefore, we believe that it makes sense to consider
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the first-order dynamics of phase angles. As a simple situation, we consider the first-order
dynamics with Xi = γi = αi = 1, that is,

(2.4) Model A :


θ̇i = Ωi −

N∑
j=1

BijEiEj sin(θi − θj),

Ėi = qi − βiEi +
N∑
j=1

BijEj cos(θi − θj),

subject to

(2.5) θi(0) = θ0
i , Ei(0) = E0

i ,

N∑
i=1

Ωi = 0, βi ≥ 1, qi > 0, Bij =

{
0, i = j;

≥ 0, i 6= j.

Thanks to the symmetry of coupling strength (BijEiEj = BjiEjEi) in the dynamics of
phases, we have

(2.6) θc(t) =
1

N

N∑
i=1

θi(t) =
1

N

N∑
i=1

θ0
i , ∀ t > 0.

Other than the simplified first-order model, in this paper we also consider the second-
order dynamics with Xi = 1,

(2.7) Model B :


miθ̈i + γiθ̇i = Ωi −

N∑
j=1

BijEiEj sin(θi − θj)

αiĖi = qi − βiEi +
N∑
j=1

BijEj cos(θi − θj),

subject to initial data

(2.8) θi(0) = θ0
i , ωi(0) := θ̇i(0) = ω0

i , Ei(0) = E0
i ,

and parameters

(2.9)
N∑
i=1

Ωi = 0, αi > 0, qi > 0, βi ≥ 1, Bij =

{
0, i = j;

≥ 0, i 6= j.

Model A and Model B actually fall into the category of generalized Kuramoto model with
adaptive coupling. In [18, 20], several types of adaptive Kuramoto models were rigorously
studied. However, to our best knowledge, the adaptive Kuramoto models in power grids
has never been touched rigorously; in particular, this is the first rigorous study for a second-
order Kuramoto model with adaptive couplings.

The ability of system to remain in synchronism (synchronization or phase-locking) is
regarded as rotor angle stability, and the ability to maintain steady voltages (voltage sta-
bilization) is regarded as voltage stability. The system (2.3) without dynamic voltages was
considered in literature such as [8, 11, 12, 13, 25] where some conditions for the so-called
“rotor angle stability” was found. However, the rigorous study of the system with dynamic
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voltages has not been touched. The following simulation illustrates that the voltages can
be “unstable”. We consider Model A with three oscillators where the parameters are set as

q = (1, 2, 3)T, β = (3, 6, 9)T, Ω = (1.4, 1.8,−3.2)T, B =

0 1 2
1 0 4
2 4 0

 ,

and the initial data is θ0 = (0.6125, 0.9282, 0.7216)T, E0 = (0.0791, 0.3592, 1.3103)T. The
following Figure 1 illustrates that the system fails to realize the synchronization and voltage
stabilization.

Figure 1. The phases are out of sync and voltages are unstable.

2.2. Gradient formulation. It is well-known that the first- or second-order Kuramoto
model on a symmetric network is a gradient flow [9, 19]. Therefore, the power grid with
constant coupling strength (i.e., constant voltage level) can be studied by the gradient
approach, for example, [8, 25]. In this section, we point out that the coupled oscillators in
power grid with dynamic voltages can be reformed as a gradient flow as well. We note that
the topology of network is now varying in time, however, the underlying graph G = (V,W)
depends only on the matrix B = (Bij) if the voltage levels are all positive. In this sense,
we say the network topology is registered by the matrix B.

Lemma 2.1. The system (2.4) or (2.7) is a gradient-like system with a real analytical
potential V : R2N → R, i.e., there exists such a function V such that (2.4) or (2.7) is
reformulated as

ẋ = −∇V (x) or Mẍ+Dẋ = −∇V (x),

if and only if the matrix B = (Bij) is symmetric. Here, x := (θ1, . . . , θN , E1, . . . , EN )T, M =
diag(m1,m2, . . . ,mN , 0, 0, . . . , 0) and D = diag(γ1, γ2, . . . , γN , α1, α2, . . . , αN ).
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Proof. (1) Suppose that the system (2.4) or (2.7) is a gradient-like system with a real
analytic potential V , i.e.,

∂V

∂θi
= −Ωi +

N∑
j=1

BijEiEj sin(θi − θj),

∂V

∂Ei
= −qi + βiEi −

N∑
j=1

BijEj cos(θi − θj), i = 1, 2, . . . , N.

Then, the analytic potential V must satisfy

∂2V

∂Ei∂Ej
=

∂2V

∂Ej∂Ei
, i 6= j,

i.e.,

Bij cos(θi − θj) = Bji cos(θj − θi), i 6= j.

This yields Bij = Bji, i 6= j, i.e., B is symmetric.

(2) Suppose that the matrix B is symmetric. We define V : R2N → R as

V (x) := −
N∑
i=1

Ωiθi −
N∑
i=1

qiEi +
1

2

N∑
i=1

βiE
2
i −

1

2

N∑
i=1

N∑
j=1

BijEiEj cos(θj − θi).

Note that the function V is real analytic in (θ,E), and it is easy to see that

∂V

∂θi
= −Ωi +

N∑
j=1

BijEiEj sin(θi − θj),

∂V

∂Ei
= −qi + βiEi −

N∑
j=1

BijEj cos(θi − θj).

Therefore, system (2.4) or (2.7) is a gradient-like system:

ẋ = −∇V (x) or Mẍ+Dẋ = −∇V (x).

�

For the first-order gradient system, we have the following result.

Lemma 2.2. [9, 19] Let x(·) be a solution to the gradient-like system

ẋ = −∇V (x),

where V : R2N → R is a real analytic function. If x(·) ∈ `∞(R+,R2N ), then there exists an
equilibrium xe ∈ {x : ∇V (x) = 0} such that

lim
t→∞

(‖ẋ(t)‖+‖x(t)− xe‖) = 0.

For second-order gradient-like system with positive definite diagonal matrix M , the con-
vergence result can be found in [25]. However, to deal with the model (2.7), we have to
consider a degenerate second-order gradient-like system

(2.10) Mẍ+Dẋ = −∇V (x)
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with a degenerate diagonal matrix M . The following theorem gives a convergence result for
degenerate second-order gradient system. The proof relies on the quasi-gradient approach
[26] and will be presented in Appendix.

Theorem 2.1. Let x = (θ,E) : R+ → R2N be a solution to the gradient-like system (2.10)
with analytic potential V : R2N → R. If

(2.11) θ(·) ∈ `1,∞(R+,RN ) and E(·) ∈ `∞(R+,RN ),

then there exists an equilibrium xe = (θe, Ee) ∈ {x | ∇V (x) = 0} such that

lim
t→∞

(‖ẋ(t)‖+‖x(t)− xe‖) = 0.

Proof. See Appendix. �

Remark 2.1. Due to the periodicity of the sine function, the phase variables of (2.4) or
(2.7) may be considered as living on a torus. However, in order to apply the gradient
approach in the analysis of (2.4) or (2.7), we need to consider these variables as living on
a Euclidean space, i.e., (θ(t), E(t)) ∈ RN × RN . The reason is that the potential function
becomes discontinuous if we consider the phase variables as living on a torus.

2.3. Elementary estimates. In this part we give an estimate for the positivity of voltages
Ei’s.

Lemma 2.3. Let (θ(t), E(t)) be a solution to the coupled system (2.4) or (2.7) satisfying

(2.12) min
1≤i≤N

E0
i > 0, sup

t∈[0,T ∗)
max

1≤i,j≤N
|θi(t)− θj(t)|<

π

2
.

Then, we have

min
1≤i≤N

Ei(t) > 0, ∀ t ∈ [0, T ∗).

Proof. We define the set T :

T :=

{
t ∈ [0, T ∗)

∣∣∣ min
1≤i≤N

Ei(t) = 0

}
.

We now claim that T = ∅. Suppose to the contrary that T 6= ∅, and we define T ∗ := inf T .
Note that since min

1≤i≤N
E0
i > 0 and min

1≤i≤N
Ei(t) is a continuous function of t, then we have

min
1≤i≤N

Ei(t) > 0, t ∈ [0, T ∗), min
1≤i≤N

Ei(T ∗) = 0.

Thus, there exists i0 ∈ {1, 2, . . . , N} such that Ei0(T ∗) = min
1≤i≤N

Ei(T ∗) = 0 and

(2.13) Ej(T ∗) ≥ Ei0(T ∗) = 0, j = 1, 2, . . . , N.

Then we have

αi0
d

dt
Ei0(T ∗) = qi0 − βi0Ei0(T ∗) +

N∑
j=1

Bi0jEj(T ∗) cos(θi0(T ∗)− θj(T ∗)) ≥ qi0 > 0.

where we used (2.13) and (2.12). This implies that there exists δ > 0 such that

Ei0(t) < Ei0(T ∗) = 0, t ∈ (T ∗ − δ, T ∗),
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which is contradictory to Ei0(t) ≥ min
1≤i≤N

Ei(t) > 0, t ∈ [0, T ∗). Therefore, we have T = ∅.

Again, we use (2.12) to obtain

min
1≤i≤N

Ei(t) > 0, ∀ t ∈ [0, T ∗).

�

We denote the underlying graph of system (2.4) or (2.7) by G = (V,W). We note that
the underlying network is undirected, i.e., the matrix B = (Bij) is symmetric. We say a
graph G is connected if for any pair of nodes i, j ∈ V, there exists a shortest path from i to
j, say

i = p1 → p2 → p3 → · · · → pdij = j, (pk, pk+1) ∈ W, k = 1, 2, . . . , dij − 1.

Here, dij denotes the distance between i and j, i.e., the minimum length of paths connecting i
and j. We also denote the diameter of graph G by d(G), i.e., d(G) := max{dij |1 ≤ i, j ≤ N}.
In order for the complete synchronization, we assume that the underlying graph G is con-
nected. The following result, which connects the total deviations and the partial deviations
along the edges in a connected graph, will be useful in the energy estimate.

Lemma 2.4. [9] Suppose that the graph G = (V,W) is connected and let θi be the phase of
the i-th oscillators. Then, for any ensemble of phases (θ1, θ2, . . . , θN ), we have

L∗

N∑
l=1

N∑
k=1

|θl − θk|2≤
∑

(l,k)∈W

|θl − θk|2≤
N∑
l=1

N∑
k=1

|θl − θk|2, with L∗ :=
1

1 + d(G)|Wc|
.

Here Wc is the complement of edge set W in V × V and |Wc| denotes its cardinality.

2.4. Main results. In this subsection, we present the main results of this paper. Before
the statement we lay out some notation used in the following context:

Bl := min
(i,j)∈W

Bij , Bu := max
(i,j)∈W

Bij , αl := min
1≤i≤N

αi,

ml := min
1≤i≤N

mi, mu := max
1≤i≤N

mi, γl := min
1≤i≤N

γi, γu := max
1≤i≤N

γi,

γ̂i := γi −
1

N

N∑
j=1

γj , m̂i := mi −
1

N

N∑
j=1

mj , θc(t) =
1

N

N∑
i=1

θi(t),

D(θ(t)) := max
1≤i,j≤N

|θi(t)− θj(t)|, D(Ω) := max
1≤i,j≤N

|Ωi − Ωj |, E∗ := min
1≤i≤N

{
E0
i ,
qi
βi

}
,

K := − max
1≤i≤N

{
− βi +

N∑
j=1

Bij

}
, E∗ := max

{∑N
i=1 qi
K

,
N∑
i=1

E0
i

}
,

Kα := − max
1≤i≤N

{−βi +
∑N

j=1Bij

αi

}
, E∗α := max

{∑N
i=1 qi
αlKα

,

∑N
i=1 αiE

0
i

αl

}
.

2.4.1. First-order model. For identical oscillators, we consider the system (2.4) on a con-
nected network, i.e., the underlying graph G registered by the matrix B = (Bij) is connected.
We have the following result.

Theorem 2.2. (Identical oscillators) Let (θ(t), E(t)) be a solution to the system (2.4)-(2.5).
If
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(1) Ωi = 0, i = 1, 2, . . . , N ,
(2) min

1≤i≤N
E0
i > 0, D(θ0) < π

2 ,

(3) max
1≤i≤N

{
−βi +

∑N
j=1Bij

}
< 0.

Then we have asymptotic phase synchronization

‖θ0 − θ0
c1‖e−NBuE

∗2t ≤ ‖θ(t)− θ0
c1‖≤ ‖θ0 − θ0

c1‖e
−NL∗BlE

2
∗ sinD(θ0)

D(θ0)
t
, t > 0.

Furthermore, there exists E∞ ∈ RN+ such that

lim
t→∞

(
‖Ė(t)‖+‖E(t)− E∞‖

)
= 0.

Here, θ0
c = 1

N

∑N
i=1 θ

0
i , 1 := (1, 1, . . . , 1)T.

For nonidentical oscillators, we introduce a parameter

B∗ := min
1≤i 6=j≤N

{
2Bij +

∑
k 6=i,j

min{Bik, Bjk}
}
.

Note that

d(G) ≤ 2 ⇐⇒ ∀i, j, Bij 6= 0 or ∃k 6= i, j, s.t.min{Bik, Bjk} > 0

⇐⇒ ∀i, j, 2Bij +
∑
k 6=i,j

min{Bik, Bjk} > 0

⇐⇒ min
1≤i 6=j≤N

{
2Bij +

∑
k 6=i,j

min{Bik, Bjk}
}

=: B∗ > 0.

In the following theorem, we need to suppose B∗ > 0. Therefore, we consider the system
(2.4) with restricted connectivity that d(G) ≤ 2 in the following theorem.

Theorem 2.3. (Nonidentical oscillators) Let (θ(t), E(t)) be a solution to the system (2.4)-
(2.5). If

(1) D(Ω) > 0, d(G) ≤ 2, and D(Ω) < B∗E
2
∗ ,

(2) min
1≤i≤N

E0
i > 0, D(θ0) < π

2 ,

(3) max
1≤i≤N

{
−βi +

∑N
j=1Bij

}
< 0.

Then, there exist (θ∞, E∞) ∈
{
x ∈ R2N

∣∣∣ ∇V (x) = 0
}

such that

lim
t→∞

(
‖θ̇(t)‖+‖θ(t)− θ∞‖

)
= 0, lim

t→∞

(
‖Ė(t)‖+‖E(t)− E∞‖

)
= 0.

2.4.2. Second-order model. We first introduce our main hypotheses on the parameters and
initial configurations below.
(H1) the underlying graph G is connected.
(H2) Let D0 ∈ (0, π2 ) be given. The initial voltages and parameters satisfy

min
1≤i≤N

E0
i > 0, max

1≤i≤N

{
− βi +

N∑
j=1

Bij

}
< 0,

2NBlL∗E
2
∗ sinD0

D0
> λ,

and
2κNE∗αBuD0

2NBlL∗E2
∗ sinD0 − λD0

<
γl

2mu + λ
,
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where Γ̂ := diag{γ̂1, γ̂2, . . . , γ̂N}, M̂ := diag{m̂1, m̂2, . . . , m̂N}, and λ :=

√
tr(Γ̂2)+2

√
tr(M̂2)√

N

with tr(·) denoting the trace of a matrix.
(H3) For some ε, µ > 0 with

ε

µ
∈
(

2κNE∗αBuD0

2NBlL∗E2
∗ sinD0 − λD0

,
γl

2mu + λ

)
, and

2
√

2C2 max{ε, µ}‖Ω‖
C1CL

<
1

2
D0,

the initial data θ0 = (θ0
i , . . . , θ

0
N ) and ω0 = (ω0

i , . . . , ω
0
N ) satisfy√

E [θ0, ω0]

C1
<

1

2
D0.

Here

C1 := min

{
εγl −

2ε2mu

µ
+

2µNBlL∗E
2
∗(1− cosD0)

D2
0

,
µml

2

}
,

C2 := max

{
εγu +

2ε2muγu
µγl

+ µNBuE
∗
α

2,
3µmu

2

}
, κ :=

max
1≤i≤N

{qi − βiE∗}+NBuE
∗
α

αl
,

CL := min

{
2(µγl − εmu),

2εNBlL∗E
2
∗ sinD0

D0
− 2κµNE∗αBu

}
− ελ,

and

E [θ, ω] := ε
N∑
i=1

γi(θi−θc)2+2ε
N∑
i=1

mi(θi−θc)ωi+µ
N∑
i=1

miω
2
i +µ

∑
(i,j)∈W

BijEiEj (1− cos(θi − θj)) .

The main result in this part is as follows.

Theorem 2.4. Let (θ(t), E(t)) be a solution to the coupled system (2.7)-(2.9) satisfying

hypotheses (H1)-(H3). Then, there exists (θ∞, E∞) ∈
{
x ∈ R2N

∣∣∣ ∇V (x) = 0
}

such that

lim
t→∞

(
‖θ̇(t)‖+‖θ(t)− θ∞‖

)
= 0, lim

t→∞

(
‖Ė(t)‖+‖E(t)− E∞‖

)
= 0.

3. Synchronization of first-order power grids

In this section, we study an emergent dynamics of model (2.4)-(2.5) which has been mo-
tivated by recent observations in the power system. Below, we give the dynamic properties
of synchronization estimates for identical and nonidentical oscillators.

3.1. Synchronization: Identical oscillators. We consider the synchronization of the
ensemble of identical oscillators. For identical oscillators, the system (2.4)-(2.5) becomes

(3.1)


θ̇i = −

N∑
j=1

BijEiEj sin(θi − θj)

Ėi = qi − βiEi +

N∑
j=1

BijEj cos(θi − θj), i = 1, 2, . . . , N,
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subject to

(3.2) θi(0) = θ0
i , Ei(0) = E0

i , qi > 0, βi ≥ 1, Bij =

{
0, i = j;

≥ 0, i 6= j.

We introduce simplified notations:

θM (t) := max
1≤i≤N

θi(t), θm(t) := min
1≤i≤N

θi(t).

Lemma 3.1. Let (θ(t), E(t)) be a solution to the coupled system (3.1)-(3.2) with

min
1≤i≤N

E0
i > 0, D(θ0) <

π

2
.

Then, for any t ≥ 0 we have

min
1≤i≤N

Ei(t) > 0, D(θ(t)) ≤ D(θ0).

Proof. We define the set T and its supremum:

T :=
{
T ∈ [0,+∞)

∣∣∣D(θ(t)) <
π

2
, ∀ t ∈ [0, T )

}
, T ∗ := sup T .

Owing to the initial condition D(θ0) < π
2 , and the continuity of D(θ(t)) with respect to t,

the set T is not empty and T ∗ is well-defined. We now claim that

T ∗ =∞.
Suppose to the contrary that T ∗ <∞. Then we have

D(θ(t)) <
π

2
, t ∈ [0, T ∗), and D(θ(T ∗)) =

π

2
.(3.3)

By Lemma 2.3 and (3.2), we obtain

d

dt
D(θ(t)) = θ̇M (t)− θ̇m(t)

= −
N∑
j=1

BMjE
M
i (t)Ej(t) sin(θM (t)− θj(t)) +

N∑
j=1

BmjE
m
i (t)Ej(t) sin(θm(t)− θj(t))

≤ 0, t ∈ [0, T ∗),

which implies thatp D(θ(t)) ≤ D(θ0) < π
2 , t ∈ [0, T ∗). Let t→ T ∗− and we obtain

D(θ(T ∗)) <
π

2
,

which is contradictory to (3.3). This proves the claim that T ∗ =∞. Repeating Lemma 2.3
and the above steps again, we get

D(θ(t)) ≤ D(θ0), min
1≤i≤N

Ei(t) > 0, ∀ t ≥ 0.

�

Lemma 3.2. Let (θ(t), E(t)) be a solution to the coupled system (3.1)-(3.2) with

min
1≤i≤N

E0
i > 0, D(θ0) <

π

2
.

Then, we have
min

1≤i≤N
Ei(t) ≥ E∗, ∀ t ≥ 0.
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Proof. It follows from Lemma 3.1 that

d

dt
Ei(t) = qi − βiEi(t) +

N∑
j=1

BijEj(t) cos(θi(t)− θj(t)) ≥ qi − βiEi(t), t ≥ 0.

By the comparison principle, we obtain

min
1≤i≤N

Ei(t) ≥ E∗, ∀t ≥ 0.

�

Lemma 3.3. Let (θ(t), E(t)) be a solution to the coupled system (3.1)-(3.2). If

(1) min
1≤i≤N

E0
i > 0, D(θ0) < π

2 ,

(2) max
1≤i≤N

{
−βi +

∑N
j=1Bij

}
< 0.

Then, we have
N∑
i=1

Ei(t) ≤ E∗, t ≥ 0.

Proof. It follows from Lemma 3.1 that

sup
t≥0

D(θ(t)) ≤ D(θ0), min
1≤i≤N

Ei(t) > 0, ∀t ≥ 0.

We consider the temporal evolution of Ei(t):

d

dt
Ei(t) = qi − βiEi(t) +

N∑
j=1

BijEj(t) cos(θi(t)− θj(t)) ≤ qi − βiEi(t) +

N∑
j=1

BijEj(t), t ≥ 0.

Hence,

d

dt

N∑
i=1

Ei(t) ≤
N∑
i=1

qi −
N∑
i=1

βiEi(t) +

N∑
i=1

N∑
j=1

BijEj(t)

=

N∑
i=1

qi +

N∑
i=1

−βi +

N∑
j=1

Bij

Ei(t)

≤
N∑
i=1

qi −K
N∑
i=1

Ei(t), t ≥ 0,

here, K is defined in Theorem 2.2 and we use the symmetry of B = (Bij) and

N∑
i=1

N∑
j=1

BijEj(t) =
N∑
j=1

N∑
i=1

BjiEi(t) =
N∑
i=1

N∑
j=1

BijEi(t).

By the comparison principle,

N∑
i=1

Ei(t) ≤ E∗, t ≥ 0.

�
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Remark 3.1. By Lemmas 3.2 and 3.3, under the conditions of Lemma 3.3, Ei’s are bounded
by E∗ and E∗:

E∗ ≤ Ei(t) ≤ E∗, t ≥ 0.

For simplicity in the estimate, we assume that
∑N

i=1 θ
0
i = 0 in the following lemma.

Lemma 3.4. Let (θ(t), E(t)) be a solution to the system (3.1)-(3.2). If

(1) min
1≤i≤N

E0
i > 0, D(θ0) < π

2 ,
∑N

i=1 θ
0
i = 0,

(2) max
1≤i≤N

{
−βi +

∑N
j=1Bij

}
< 0.

Then, we have

−NBuE∗2‖θ(t)‖≤
d

dt
‖θ(t)‖≤ −NL∗BlE

2
∗ sinD(θ0)

D(θ0)
‖θ(t)‖, t ≥ 0.

Proof. A straightforward computation yields

d

dt
‖θ(t)‖2 = 2‖θ(t)‖ d

dt
‖θ(t)‖= 2

N∑
i=1

θi(t)θ̇i(t)

= 2

N∑
i=1

θi(t)

(
−

N∑
j=1

BijEi(t)Ej(t) sin(θi(t)− θj(t))
)

= −2
∑

(i,j)∈W

BijEi(t)Ej(t)θi(t) sin(θi(t)− θj(t))

= −
∑

(i,j)∈W

BijEi(t)Ej(t)(θi(t)− θj(t)) sin(θi(t)− θj(t)).

• Step A (Lower bound): We use the relation

N∑
i=1

θ0
i = 0, (θi(t)−θj(t)) sin(θi(t)−θj(t)) ≤ |(θi(t)−θj(t)) sin(θi(t)−θj(t))|≤ |θi(t)−θj(t)|2

and Lemma 2.4, Remark 3.1 to obtain

2‖θ(t)‖ d
dt
‖θ(t)‖ ≥ −

∑
(i,j)∈W

BijEi(t)Ej(t)|θi(t)− θj(t)|2≥ −BuE∗2
∑

(i,j)∈W

|θi(t)− θj(t)|2

≥ −BuE∗2
N∑
i=1

N∑
j=1

|θi(t)− θj(t)|2= −2NBuE
∗2‖θ(t)‖2, t ≥ 0.

Thus,

d

dt
‖θ(t)‖≥ −NBuE∗2‖θ(t)‖, t ≥ 0.

• Step B (Upper bound): We use the relation

N∑
i=1

θ0
i = 0, (θi(t)− θj(t)) sin(θi(t)− θj(t)) ≥

sinD(θ0)

D(θ0)
(θi(t)− θj(t))2
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and Lemma 2.4, Remark 3.1 to obtain

2‖θ(t)‖ d
dt
‖θ(t)‖≤ −sinD(θ0)

D(θ0)

∑
(i,j)∈W

BijEi(t)Ej(t)|θi(t)− θj(t)|2≤ −
BlE

2
∗ sinD(θ0)

D(θ0)

∑
(i,j)∈W

|θi(t)− θj(t)|2

≤ −L∗BlE
2
∗ sinD(θ0)

D(θ0)

N∑
i=1

N∑
j=1

|θi(t)− θj(t)|2= −2NL∗BlE
2
∗ sinD(θ0)

D(θ0)
‖θ(t)‖2, t ≥ 0.

Thus,
d

dt
‖θ(t)‖≤ −NL∗BlE

2
∗ sinD(θ0)

D(θ0)
‖θ(t)‖, t ≥ 0.

The proof is completed. �

Now we give a proof for Theorem 2.2.

Proof of Theorem 2.2. If θ0
c = 1

N

∑N
i=1 θ

0
i = 0, we use Lemma 3.4 and Gronwall’s inequality

to find that

‖θ0‖e−NBuE∗2t ≤ ‖θ(t)‖≤ ‖θ0‖e−
NL∗Bl sinD(θ0)E2

∗
D(θ0)

t
, t ≥ 0.

If θ0
c = 1

N

∑N
i=1 θ

0
i 6= 0, we make a variable change

θ̂i(t) = θi(t)− θc(t) = θi(t)− θ0
c

and use new variables θ̂i(t) to replace θi(t). Then we find that Lemma 3.4 is available for

θ̂ = (θ̂1, . . . , θ̂N ), i.e.,

−NBuE∗2‖θ̂(t)‖≤
d

dt
‖θ̂(t)‖≤ −NL∗BlE

2
∗ sinD(θ̂0)

D(θ̂0)
‖θ̂(t)‖, t ≥ 0.

This is the first assertion in Theorem 2.2. For the second assertion we use the gradient
flow approach. Note that the boundedness of θ(t) and E(t) simply follows from the first
assertion and Remark 3.1, then we obtain the desired result by Lemma 2.1 and Lemma
2.2. �

3.2. Nonidentical oscillators. We now consider the ensemble of nonidentical oscillators,
i.e., (2.4)-(2.5).

Lemma 3.5. Let (θ(t), E(t)) be a solution to the coupled system (2.4)-(2.5). If

(1) D(Ω) > 0, B∗ > 0, D(Ω) < B∗E
2
∗ ,

(2) min
1≤i≤N

E0
i > 0, D(θ0) < π

2 .

Then, for all t > 0 we have

min
1≤i≤N

Ei(t) ≥ E∗, and D(θ(t)) <
π

2
.

Proof. We define the set T and its supremum:

T :=
{
T ∈ [0,+∞)

∣∣∣D(θ(t)) <
π

2
, ∀ t ∈ [0, T )

}
, T ∗ := sup T .

Note that since D(θ0) < π
2 , and D(θ(t)) is a continuous function of t, there exists η > 0

such that

D(θ(t)) <
π

2
, t ∈ [0, η).
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Therefore, the set T is not empty, and T ∗ is well-defined. We now claim that

T ∗ =∞.

Suppose to the contrary that T ∗ <∞. Then from the continuity of D(θ(t)),

D(θ(t)) <
π

2
, t ∈ [0, T ∗), D(θ(T ∗)) =

π

2
.(3.4)

We use (2.5), (3.4) and Lemma 2.3 to obtain

d

dt
Ei(t) = qi − βiEi(t) +

N∑
j=1

BijEj(t) cos(θi(t)− θj(t)) ≥ qi − βiEi(t), t ∈ [0, T ∗).

By the comparison principle, we obtain for any i ∈ {1, 2, . . . , N}

Ei(t) ≥ E∗, t ∈ [0, T ∗).

We now consider the temporal evolution of D(θ(t)):

d

dt
D(θ(t)) = θ̇M (t)− θ̇m(t)

= ΩM −
N∑
j=1

BMjE
M
i (t)Ej(t) sin(θM (t)− θj(t))− Ωm +

N∑
j=1

BmjE
m
i (t)Ej(t) sin(θm(t)− θj(t))

≤ D(Ω)− E2
∗

 N∑
j=1

BMj sin(θM (t)− θj(t))−
N∑
j=1

Bmj sin(θm(t)− θj(t))


= D(Ω)− E2

∗

2BMm sinD(θ(t)) +
∑

j 6=M,m

min{BMj , Bmj} (sin(θM (t)− θj(t)) + sin(θj(t)− θm(t)))


= D(Ω)− E2

∗

2BMm sinD(θ(t)) + 2 sin
D(θ(t))

2

∑
j 6=M,m

min{BMj , Bmj} cos(
θM (t) + θm(t)

2
− θj(t))


≤ D(Ω)− E2

∗

2BMm +
∑

j 6=M,m

min{BMj , Bmj}

 sinD(θ(t))

≤ D(Ω)− E2
∗ min

1≤i 6=k≤N

2Bik +
∑
j 6=i,k

min {Bij , Bkj}

 sinD(θ(t))

≤ D(Ω)− 2B∗E
2
∗

π
D(θ(t)), t ∈ [0, T ∗).

Here EMi ∈ {Ei|θi = θM}, Emi ∈ {Ei|θi = θm} and we used

−D(θ(t))

2
≤ θm(t)− θj(t)

2
≤ 0 ≤ θM (t)− θj(t)

2
≤ D(θ(t))

2
, t ∈ [0, T ∗),

and

sin y ≥ 2

π
y, y ∈ [0,

π

2
].
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Hence, we obtain

D(θ(t)) ≤ max

{
πD(Ω)

2B∗E2
∗
, D(θ0)

}
<
π

2
, t ∈ [0, T ∗).

Let t → T ∗− and we have D(θ(T ∗)) < π
2 , which is contradictory to (3.4). Therefore, we

have

T ∗ =∞.

We now repeat the above steps again for t ∈ [0,+∞) to find that

min
1≤i≤N

Ei(t) ≥ E∗, D(θ(t)) < π
2 .

�

Lemma 3.6. Let (θ(t), E(t)) be a solution to the coupled system (2.4)-(2.5).. If

(1) D(Ω) > 0, B∗ > 0, D(Ω) < B∗E
2
∗ ,

(2) min
1≤i≤N

E0
i > 0, D(θ0) < π

2 ,

(3) max
1≤i≤N

{
−βi +

∑N
j=1Bij

}
< 0.

then we have
N∑
i=1

Ei(t) ≤ E∗, t ≥ 0.

Proof. It follows from Lemma 3.5 and (2.5) that for any i ∈ {1, 2, . . . , N}

d

dt
Ei(t) = qi − βiEi(t) +

N∑
j=1

BijEj(t) cos(θi(t)− θj(t))

≤ qi − βiEi(t) +
N∑
j=1

BijEj(t), t ≥ 0.

We have

d

dt

N∑
i=1

Ei(t) ≤
N∑
i=1

qi −
N∑
i=1

βiEi(t) +
N∑
i=1

N∑
j=1

BijEj(t)

=
N∑
i=1

qi +

N∑
i=1

−βi +

N∑
j=1

Bij

Ei(t)

≤
N∑
i=1

qi −K
N∑
i=1

Ei(t), t ≥ 0.

By the comparison principle, we obtain

N∑
i=1

Ei(t) ≤ E∗, t ≥ 0.

�

Proposition 3.1. Let (θ(t), E(t)) be a solution to the coupled system (2.4)-(2.5). If
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(1) D(Ω) > 0, B∗ > 0, D(Ω) < B∗E
2
∗ ,

(2) min
1≤i≤N

E0
i > 0, D(θ0) < π

2 ,

(3) max
1≤i≤N

{
−βi +

∑N
j=1Bij

}
< 0.

then we have

E(·) ∈ `∞(R+,RN ), θ(·) ∈ `∞(R+,RN ).

Proof. It follows from Lemma 3.5 and Lemma 3.6 that

sup
t≥0

D(θ(t)) ≤ π

2
, E∗ ≤ Ei(t) ≤ E∗, ∀t ≥ 0.

Thus, E(·) ∈ `∞(R+,RN ). We recall (2.6) that θc(t) = 1
N

∑N
i=1 θ

0
i . Hence, for any i =

1, 2, . . . , N

|θi(t)|≤ |θi(t)− θc(t)|+|θc(t)|≤ D(θ(t)) + |θc(t)|≤
π

2
+

1

N

∣∣∣∣∣
N∑
i=1

θ0
i

∣∣∣∣∣ ,
so θ(·) ∈ `∞(R+,RN ). �

Proof of Theorem 2.3. The result is a direct consequence of Lemma 2.1, Lemma 2.2 and
Proposition 3.1. �

4. Synchronization of second-order model

In this section, we study the emergent dynamics of (2.7)-(2.9). In order to show the
boundness of phases we introduce an energy functional E as follows:

E [θ, ω] := ε
N∑
i=1

γi(θi − θc)2 + 2ε
N∑
i=1

mi(θi − θc)ωi + µ
N∑
i=1

miω
2
i︸ ︷︷ ︸

E1[θ,ω]

+µ
∑

(i,j)∈W

BijEiEj (1− cos(θi − θj))︸ ︷︷ ︸
E2[θ]

.

where ε and µ are positive constants. We derive some basic properties for E [θ, ω] and some
estimates on the evolution of E [θ, ω] along the flow (2.7).

Lemma 4.1. Let (θ(t), E(t)) be a solution of (2.7)-(2.9) satisfying the following conditions:

(1) ε
µ <

γl
2mu

,

(2) min
1≤i≤N

E0
i > 0, sup

t∈[0,T ∗)
D(θ(t)) < D0, D0 ∈ (0, π2 ),

(3) max
1≤i≤N

{
−βi +

∑N
j=1Bij

}
< 0.

Then we have that for any i ∈ {1, 2, . . . , N}
E∗ ≤ Ei(t) ≤ E∗α, ∀t ∈ [0, T ∗)

and

C1D(t) ≤ E [θ, ω] ≤ C2D(t), t ∈ [0, T ∗).

Here

D(t) = D[θ, ω] := ‖ω‖22+‖θ − θc1‖22, 1 := (1, 1, . . . , 1)T ∈ RN ,

and C1, C2, E∗, E
∗
α are specified as in Subsection 2.4.
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Proof. We derive the results by two steps.
• Step 1. We derive the equivalence between E1[θ, ω] and D(t). The cross term (θi − θc)ωi
can be estimated by Young’s inequality:

|(θi − θc)ωi|≤
ε

µ
(θi − θc)2 +

µ

4ε
ω2
i .

Then, we have

−2ε2mu

µγl
γi(θi − θc)2 − µ

2
miω

2
i ≤ 2εmi(θi − θc)ωi ≤

2ε2mu

µγl
γi(θi − θc)2 +

µ

2
miω

2
i .

Therefore,(
εγl −

2ε2mu

µ

) N∑
i=1

(θi−θc)2+
µml

2

N∑
i=1

ω2
i ≤ E1[θ, ω] ≤

(
εγu +

2ε2muγu
µγl

) N∑
i=1

(θi−θc)2+
3µmu

2

N∑
i=1

ω2
i ,

i.e.,(
εγl −

2ε2mu

µ

)
‖θ−θc1‖2+

µml

2
‖ω‖2≤ E1[θ, ω] ≤

(
εγu +

2ε2muγu
µγl

)
‖θ−θc1‖2+

3µmu

2
‖ω‖2.

• Step 2: We derive the equivalence between E2[θ] and D(t). As E2[θ] depends on the
variable Ei, we need to derive a lower and upper bound for Ei. We claim that for any
i ∈ {1, 2, . . . , N}

(4.1) E∗ ≤ Ei(t) ≤ E∗α, ∀t ∈ [0, T ∗).

Proof of Claim (4.1): It follows from lemma 2.3 and (2.8)-(2.9) that

αiĖi(t) = qi − βiEi(t) +

N∑
j=1

BijEj(t) cos(θi(t)− θj(t)) ≥ qi − βiEi(t), ∀t ∈ [0, T ∗).

By the comparison principle, we obtain for any i ∈ {1, 2, . . . , N},

(4.2) Ei(t) ≥ E∗, ∀t ∈ [0, T ∗).

On the other hand, We note that

αiĖi(t) = qi−βiEi(t)+
N∑
j=1

BijEj(t) cos(θi(t)−θj(t)) ≤ qi−βiEi(t)+
N∑
j=1

BijEj(t), ∀t ∈ [0, T ∗).

Hence,

N∑
i=1

αiĖi(t) ≤
N∑
i=1

qi −
N∑
i=1

βiEi(t) +
N∑
i=1

N∑
j=1

BijEj(t)

=
N∑
i=1

qi +
N∑
i=1

(
−βi +

N∑
i=1

Bij

)
Ei(t)

≤
N∑
i=1

qi −Kα

N∑
i=1

αiEi(t), ∀t ∈ [0, T ∗).
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By the comparison principle, we have

N∑
i=1

αiEi(t) ≤ max

{∑N
i=1 qi
Kα

,
N∑
i=1

αiE
0
i

}
, ∀t ∈ [0, T ∗),

then for any i ∈ {1, 2, . . . , N},

(4.3) Ei(t) ≤ max

{∑N
i=1 qi
αlKα

,

∑N
i=1 αiE

0
i

αl

}
= E∗α, ∀t ∈ [0, T ∗).

We combine (4.2) and (4.3) to obtain the estimate in (4.1).
We now derive an estimate for E2[θ]. Since θi − θj ∈ [−D0, D0], we have

1− cosD0

D2
0

|θi(t)− θj(t)|2 ≤ 1− cos(θi(t)− θj(t)) ≤
1

2
|θi(t)− θj(t)|2, ∀t ∈ [0, T ∗).

Here, the left inequality relies on the fact that y → 1−cos y
y2

is an even function which is

monotonically decreasing on (0, π). Therefore, we can derive

E2[θ](t) = µ
∑

(i,j)∈W

BijEi(t)Ej(t) (1− cos(θi(t)− θj(t)))

≤ µBuE∗α
2
∑

(i,j)∈W

(1− cos(θi(t)− θj(t)))

≤ µBuE
∗
α

2

2

∑
(i,j)∈W

|θi(t)− θj(t)|2

≤ µBuE
∗
α

2

2

N∑
i=1

N∑
j=1

|θi(t)− θj(t)|2

= µNBuE
∗
α

2‖θ(t)− θc1(t)‖2, t ∈ [0, T ∗),

and

E2[θ](t) = µ
∑

(i,j)∈W

BijEi(t)Ej(t) (1− cos(θi(t)− θj(t)))

≥ µBlE2
∗
∑

(i,j)∈W

(1− cos(θi(t)− θj(t)))

≥ µBlE
2
∗(1− cosD0)

D2
0

∑
(i,j)∈W

|θi(t)− θj(t)|2

≥ µBlE
2
∗L∗(1− cosD0)

D2
0

N∑
i=1

N∑
j=1

|θi(t)− θj(t)|2

=
2µNBlE

2
∗L∗(1− cosD0)

D2
0

‖θ(t)− θc1(t)‖2, t ∈ [0, T ∗).

Here we used Lemma 2.4 and the relation
N∑
i=1

N∑
j=1

|θi(t)− θj(t)|2= 2N‖θ(t)− θc1(t)‖2.(4.4)
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Finally, we combine Step1 and Step2 to obtain

C1D(t) ≤ E [θ, ω] ≤ C2D(t), t ∈ [0, T ∗).

�

We recall that the system (2.7) can be rewritten as

θ̇i = ωi,
N∑
i=1

Ωi = 0,

miω̇i = −γiωi + Ωi +

N∑
j=1

BijEiEj sin(θj − θi),

αiĖi = qi − βiEi +
N∑
j=1

BijEj cos(θj − θi),

(4.5)

For notational simplicity, let’s denote

E(t) := E [θ(t), ω(t)],

where (θ(t), ω(t)) is a solution to the system (2.7) or (4.5). Next we will derive a differential
inequality for the virtual energy E(t). We begin with two lemmas.

Lemma 4.2. Let (θ(t), E(t)) be a solution of (2.7)-(2.9) satisfying the following conditions:

(1) ε
µ <

γl
2mu

,

(2) min
1≤i≤N

E0
i > 0, sup

t∈[0,T ∗)
D(θ(t)) < D0, D0 ∈ (0, π2 ),

(3) max
1≤i≤N

{
−βi +

∑N
j=1Bij

}
< 0.

Then we have the following relation:∑
(i,j)∈W

BijEi(t)Ej(t) sin(θj(t)−θi(t))(θj(t)−θi(t)) ≥
2NBlL∗E

2
∗ sinD0

D0
‖θ(t)−θc1(t)‖2, ∀t ∈ [0, T ∗).

Proof. Using Lemma 4.1, Lemma 2.4, (2.8), (2.9), (4.4) and

(θj(t)− θi(t)) sin(θj(t)− θi(t)) ≥
sinD0

D0
(θj(t)− θi(t))2, ∀t ∈ [0, T ∗),

we obtain∑
(i,j)∈W

BijEi(t)Ej(t) sin(θj(t)− θi(t))(θj(t)− θi(t)) ≥ BlE2
∗
∑

(i,j)∈W

sin(θj(t)− θi(t))(θj(t)− θi(t))

≥ BlE
2
∗ sinD0

D0

∑
(i,j)∈W

|θj(t)− θi(t)|2≥
BlE

2
∗L∗ sinD0

D0

N∑
i=1

N∑
j=1

|θj(t)− θi(t)|2

=
2NBlL∗E

2
∗ sinD0

D0
‖θ(t)− θc1(t)‖2, ∀t ∈ [0, T ∗).

�

Lemma 4.3. Let (θ(t), E(t)) be a solution to the coupled system (2.7)-(2.9), then

(1) θ̇s + ω̇s = 0,
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(2) θs =
∑N

i=1 γi(θi − θc) + tr(Γ)θc.

where θs :=
∑N

i=1 γiθi, ωs :=
∑N

i=1miωi, Γ := diag{γ1, γ2, . . . , γN}.

Proof.

θ̇s + ω̇s =

N∑
i=1

γiθ̇i +

N∑
i=1

miθ̈i =

N∑
i=1

Ωi −
N∑
i=1

N∑
j=1

BijEiEj sin(θi − θj) = 0,

and

N∑
i=1

γi(θi − θc) + tr(Γ)θc =
N∑
i=1

γiθi − θctr(Γ) + tr(Γ)θc = θs.

Here we used the restriction
∑N

i=1 Ωi = 0. �

Proposition 4.1. Let (θ(t), E(t)) be a solution of (2.7)-(2.9) satisfying the following con-
ditions:

(1) ε
µ ∈

(
2κNE∗

αBuD0

2NBlL∗E2
∗ sinD0−λD0

, γl
2mu+λ

)
,

(2) min
1≤i≤N

E0
i > 0, sup

t∈[0,T ∗)
D(θ(t)) < D0, D0 ∈ (0, π2 ),

(3) max
1≤i≤N

{
−βi +

∑N
j=1Bij

}
< 0.

Then we have

d

dt
E(t) +

CL
C2
E(t) ≤ 2

√
2 max{ε, µ}‖Ω‖√

C1

√
E(t), t ∈ [0, T ∗),

where C1, C2, CL and λ are given as in Subsection 2.4.2.

Proof. By the definition of E(t), we observe that

E(t) =

(
ε
N∑
i=1

γiθ
2
i + 2ε

N∑
i=1

miθiωi + µ
N∑
i=1

miω
2
i + E2[θ]

)
︸ ︷︷ ︸

I(t)

+
(
−2εθsθc + εtr(Γ)θ2

c − 2εωsθc
)︸ ︷︷ ︸

J(t)

.

Therefore, we derive the differential inequality by two steps.
• Step 1. We first estimate d

dtI(t). This is divided into there parts. First, we multiply 2θi
on both sides of the second equation in (4.5)

2miθiω̇i = −2γiθiωi + 2Ωiθi + 2
N∑
j=1

BijEiEj sin(θj − θi)θi.

Sum it over i, and then use the symmetry to obtain

2
N∑
i=1

miθiω̇i = −2
N∑
i=1

γiθiωi + 2

N∑
i=1

Ωiθi + 2
∑

(i,j)∈W

BijEiEj sin(θj − θi)θi

= − d

dt

N∑
i=1

γiθ
2
i + 2

N∑
i=1

Ωiθi −
∑

(i,j)∈W

BijEiEj sin(θj − θi)(θj − θi)
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= − d

dt

N∑
i=1

γiθ
2
i + 2

N∑
i=1

Ωi(θi − θc)−
∑

(i,j)∈W

BijEiEj sin(θj − θi)(θj − θi)

≤ − d

dt

N∑
i=1

γiθ
2
i + 2‖Ω‖‖θ − θc1‖−

2NBlL∗E
2
∗ sinD0

D0
‖θ − θc1‖2,

here, we used
∑N

i=1 Ωi = 0 and Lemma 4.2. Because of θiω̇i = d
dt(ωiθi)− ω

2
i , we have

d

dt

(
2

N∑
i=1

miωiθi +

N∑
i=1

γiθ
2
i

)

≤ 2

N∑
i=1

miω
2
i + 2‖Ω‖‖θ − θc1‖−

2NBlL∗E
2
∗ sinD0

D0
‖θ − θc1‖2

≤ 2mu‖ω‖2+2‖Ω‖‖θ − θc1‖−
2NBlL∗E

2
∗ sinD0

D0
‖θ − θc1‖2.

(4.6)

Second, we multiply 2ωi on both sides of the second equation in (4.5)

2miωiω̇i = −2γiω
2
i + 2Ωiωi + 2

N∑
j=1

BijEiEj sin(θj − θi)ωi.

Sum it over i, and then use the symmetry to obtain

d

dt

N∑
i=1

miω
2
i = −2

N∑
i=1

γiω
2
i + 2

N∑
i=1

Ωiωi + 2

N∑
i=1

N∑
j=1

BijEiEj sin(θj − θi)ωi

= −2
N∑
i=1

γiω
2
i + 2

N∑
i=1

Ωiωi −
∑

(i,j)∈W

BijEiEj sin(θj − θi)(ωj − ωi).

(4.7)

Thirdly, we estimate the term d
dtE2[θ]. It follows from Lemma 4.1 that

αiĖi = qi − βiEi +
N∑
j=1

BijEj cos(θi − θj) ≤ max
1≤i≤N

{qi − βiE∗}+NBuE
∗
α, t ∈ [0, T ∗),

which implies

Ėi ≤ κ, t ∈ [0, T ∗).

Then we obtain

d

dt
E2[θ] =

d

dt

µ ∑
(i,j)∈W

BijEiEj (1− cos(θi − θj))


= 2µ

∑
(i,j)∈W

BijĖiEj (1− cos(θi − θj)) + µ
∑

(i,j)∈W

BijEiEj sin(θi − θj)(ωi − ωj)

≤ 2κµE∗αBu
∑

(i,j)∈W

(1− cos(θi − θj)) + µ
∑

(i,j)∈W

BijEiEj sin(θi − θj)(ωi − ωj)

≤ µκE∗αBu
∑

(i,j)∈W

|θi − θj |2+µ
∑

(i,j)∈W

BijEiEj sin(θi − θj)(ωi − ωj)
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≤ µκE∗αBu
N∑
i=1

N∑
j=1

|θi − θj |2+µ
∑

(i,j)∈W

BijEiEj sin(θi − θj)(ωi − ωj).

Therefore, we have

(4.8)
d

dt
E2[θ] ≤ 2µκNE∗αBu‖θ − θc1‖2+µ

∑
(i,j)∈W

BijEiEj sin(θi − θj)(ωi − ωj).

We now combine (4.6)-(4.8) to obtain that

d

dt
I(t) ≤ 2εmu‖ω‖2+2ε‖Ω‖‖θ − θc1‖−

2εNBlL∗E
2
∗ sinD0

D0
‖θ − θc1‖2

− 2µ

N∑
i=1

γiω
2
i + 2µ

N∑
i=1

Ωiωi − µ
∑

(i,j)∈W

BijEiEj sin(θi − θj)(ωi − ωj)

+ 2κµNE∗αBu‖θ − θc1‖2+µ
∑

(i,j)∈W

BijEiEj sin(θi − θj)(ωi − ωj)

≤ 2ε‖Ω‖‖θ − θc1‖+2εmu‖ω‖2−2µγl‖ω‖2+2µ‖Ω‖‖ω‖

−
(

2εNBlL∗E
2
∗ sinD0

D0
− 2κµNE∗αBu

)
‖θ − θc1‖2, t ∈ [0, T ∗).

Then we have

d

dt
I(t) + 2(µγl − εmu)‖ω‖2+

(
2εNBlL∗E

2
∗ sinD0

D0
− 2κµNE∗αBu

)
‖θ − θc1‖2

≤ 2 max{ε, µ}‖Ω‖(‖ω‖+‖θ − θc1‖) ≤ 2
√

2 max{ε, µ}‖Ω‖
√
‖θ − θc1‖2+‖ω‖2

= 2
√

2 max{ε, µ}‖Ω‖
√
D(t) ≤ 2

√
2 max{ε, µ}‖Ω‖√

C1

√
E(t), t ∈ [0, T ∗).

Hence,

d

dt
I(t) + C3D(t) ≤ 2

√
2 max{ε, µ}‖Ω‖√

C1

√
E(t), t ∈ [0, T ∗),

where C3 := min
{

2(µγl − εmu), 2εNBlL∗E2
∗ sinD0

D0
− 2κµNE∗αBu

}
.

• Step 2. We now estimate d
dtJ(t). Let ωc := 1

N

∑N
i=1 ωi and we use Lemma 4.3 to obtain

J = −2ε
(
θ̇sθc + θsθ̇c

)
+ 2εtr(Γ)θcθ̇c − 2ε

(
ω̇sθc + ωsθ̇c

)
= 2ε

(
−θsθ̇c + tr(Γ)θcθ̇c − ωsθ̇c

)
= −2εθ̇c

N∑
i=1

γi(θi − θc)− 2εωsθ̇c

= −2εωc

N∑
i=1

γi(θi − θc)− 2εωsωc.
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Note that
N∑
i=1

γi(θi − θc) =

N∑
i=1

γ̂i(θi − θc) and ωs =

N∑
i=1

m̂iωi + tr(M1)ωc,

where M1 := diag{m1,m2, . . . ,mN}. This yields

J = −2εωc

N∑
i=1

γ̂i(θi − θc)− 2ε

(
N∑
i=1

m̂iωi + tr(M1)ωc

)
ωc

≤ −2εωc

N∑
i=1

γ̂i(θi − θc)− 2εωc

N∑
i=1

m̂iωi

≤ 2ε

N

∣∣∣ N∑
i=1

ωi

∣∣∣∣∣∣ N∑
i=1

γ̂i(θi − θc)
∣∣∣+

2ε

N

∣∣∣ N∑
i=1

ωi

∣∣∣∣∣∣ N∑
i=1

m̂iωi

∣∣∣
≤ 2ε

N

√
N‖ω‖

√
tr(Γ̂2)‖θ − θc1‖+

2ε

N

√
N‖ω‖

√
tr(M̂2)‖ω‖

=
2ε√
N

√
tr(Γ̂2)‖ω‖‖θ − θc1‖+

2ε√
N

√
tr(M̂2)‖ω‖2

≤
ε

√
tr(Γ̂2)
√
N

(‖ω‖2+‖θ − θc1‖2) +
2ε

√
tr(M̂2)
√
N

‖ω‖2

≤
ε

(√
tr(Γ̂2) + 2

√
tr(M̂2)

)
√
N

D(t)

= ελD(t).

We now combine the above estimates in Step 1 and Step 2 to see that, for t ∈ [0, T ∗),

d

dt
E(t) + C3D(t) ≤ ελD(t) +

2
√

2 max{ε, µ}‖Ω‖√
C1

√
E(t).

We note that CL = C3 − ελ and use Lemma 4.1 to see

d

dt
E(t) +

CL
C2
E(t) ≤ 2

√
2 max{ε, µ}‖Ω‖√

C1

√
E(t), t ∈ [0, T ∗).

�

Proposition 4.2. Let (θ(t), E(t)) be a solution to the coupled system (2.7)-(2.9) satisfying
hypotheses (H1)-(H3). Then we have

sup
t≥0

D(θ(t)) ≤ D0.

Proof. For the sake of notational simplicity, we set

y(t) :=
√
E(t), t ≥ 0.

We define the set T and its supremum:

T :=

{
T ∈ [0,+∞)

∣∣∣ y(t) <

√
C1

2
D0, ∀ t ∈ [0, T )

}
, T ∗ := sup T .
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Note that by the assumption,

y(0) <

√
C1

2
D0.

Due to the continuity of y(t), there exists a positive constant T > 0 such that T ∈ T . We
now claim that

T ∗ =∞.

Suppose the opposite, i.e., T ∗ is finite. Then we should have

y(t) <

√
C1

2
D0, t ∈ [0, T ∗), y(T ∗) =

√
C1

2
D0.

Note that on the interval [0, T ∗), we can derive that

max
1≤i,j≤N

|θi(t)− θj(t)|2 ≤ 4 max
1≤i,j≤N

|θi(t)− θc(t)|2≤ 4

N∑
i=1

|θi(t)− θc(t)|2

= 4‖θ − θc1‖2≤ 4D(t) ≤ 4

C1
E(t) =

4

C1
(y(t))2

<
4

C1

(√
C1

2
D0

)2

= D2
0.

We use Proposition 4.1 to obtain

d

dt
y(t) ≤

√
2 max{ε, µ}‖Ω‖√

C1
− CL

2C2
y(t), t ∈ [0, T ∗).

By the comparison principle, we have

y(t) ≤ max

{
y(0),

2
√

2C2 max{ε, µ}‖Ω‖√
C1CL

}
, t ∈ [0, T ∗).

Letting t→ T ∗− yields

y(T ∗) ≤ max

{
y(0),

2
√

2C2 max{ε, µ}‖Ω‖√
C1CL

}
<

√
C1

2
D0,

which contradicts

y(T ∗) =

√
C1

2
D0,

i.e., T ∗ =∞. Repeat the above steps, we have

sup
t≥0

D(θ(t)) ≤ D0.

�

Proposition 4.3. Let (θ(t), E(t)) be a solution to the coupled system (2.7)-(2.9) satisfying
hypotheses (H1)-(H3). Then, we have

E(·) ∈ `∞(R+,RN ), θ(·) ∈ `1,∞(R+,RN ).
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Proof. It follows from Lemma 4.1 and Proposition 4.2 that for any i ∈ {1, 2, . . . , N}
E∗ ≤ Ei(t) ≤ E∗α, ∀t ∈ [0,∞).

Thus, E(·) ∈ `∞(R+,RN ). For ωi := θ̇i, we have

mi
d

dt
ωi + γiωi = Ωi −

N∑
j=1

BijEiEj sin(θi − θj).

Note that ωi is an analytic function of t. This implies that the zero-set t : ωi = 0 is countable
and finite in any finite time-interval, i.e., |ωi| is piecewise differentiable and continuous. We
multiply the above relation by sgn(ωi) to get

d|ωi|
dt

+
γi
mi
|ωi|≤

1

mi

|Ωi|+E∗α
2
N∑
j=1

Bij

 , a.e.t ≥ 0.

We now use Gronwall inequality and continuity of |ωi| to obtain that for all t > 0,

|ωi(t)| ≤ |ωi(0)|e−
γi
mi
t
+

1

γi

|Ωi|+E∗α
2
N∑
j=1

Bij

(1− e−
γi
mi
t
)

≤ |ωi(0)|+ 1

γi

|Ωi|+E∗α
2
N∑
j=1

Bij

 ,
i.e.,

|θ̇i(t)|≤ |ωi(0)|+ 1

γi

|Ωi|+E∗α
2
N∑
j=1

Bij

 ,
which indicates θ̇(·) ∈ `∞(R+,RN ). On the other hand, we recall Lemma 4.3 to get

θs(t) + ωs(t) = θs(0) + ωs(0), ∀t ≥ 0.

This means that

|θs(t)|≤ |θs(t) + ωs(t)|+|ωs(t)|≤ |θs(0) + ωs(0)|+mu

N∑
i=1

|ωi(t)|, ∀t ≥ 0.

We now use θ̇(·) ∈ `∞(R+,RN ) to deduce

|θs(t)|≤ K0,∀t ≥ 0,(4.9)

for the positive constant

K0 = |θs(0) + ωs(0)|+mu

N∑
i=1

|ωi(0)|+mu

N∑
i=1

1

γi

|Ωi|+E∗α
2
N∑
j=1

Bij

 .
Combining (4.9) and Proposition 4.2 , we see that the trajectory θ(·) is bounded as a
function in time t. So θ(·) ∈ `1,∞(R+,RN ). �

Proof of Theorem 2.4. The result is a direct consequence of Lemma 2.1, Theorem 2.1 and
Proposition 4.3. �
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5. Conclusions

In this paper, we studied the synchronization of a coupled system of Kuramoto oscillators
which models the power grids with dynamic voltages. Two related models are considered in
this paper: a simplified model with first-order phase dynamics and the original model with
second-order phase dynamics. Thanks to the gradient formulation relying on the symmetric
network structure, we employed the energy method and gradient approach. We studied the
asymptotic synchronization and voltage stabilization emerging from initial configurations
and parameters, and our main results provide several estimates for the region of attraction of
steady states. We acknowledge that the sufficient conditions are conservative, and we believe
that obtaining sharp conditions is a meaningful problem. In [22], some sharp conditions were
obtained for the existence of synchronized solutions to Kuramoto model on networks with
constant coupling strengths. It is then an interesting problem to bridge the gap between
these sharp bounds for the existence of synchronized solutions and ours for the region of
attraction, even for the network with constant couplings.

Appendix: Proof of Theorem 2.1

For the proof of Theorem 2.1, we need the  Lojasiewicz gradient inequality and Barbalat
lemma as follows.

Lemma 5.1. [27] Let f : RN → R be real-analytic. Then for any x0 ∈ RN , there exist
constants δ = δ(x0) > 0, C = C(x0) > 0 and r = r(x0) ∈ (0, 1

2 ] such that

|f(x)− f(x0)|1−r≤ C‖∇f(x)‖, ∀x ∈ Bδ(x0).

Lemma 5.2. [2] Let g : [0,∞) → R+ be a uniformly continuous function such that

lim
t→∞

∫ t
0 g(s)ds exists. Then we have lim

t→∞
g(t) = 0.

Next we give a complete proof for Theorem 2.1.

Proof of Theorem 2.1. We use the quasi-gradient flow approach and finite length argument.
• Step 1: we show (2.10) is a quasi-gradient system. Note that

x(t) = (θ1(t), . . . , θN (t), E1(t), . . . , EN (t))T,

for notational simplification we omit the time-dependence and denote

θ = (θ1, θ2, . . . , θN )T, E = (E1, E2, . . . , EN )T, ω = (θ̇1, θ̇2, . . . , θ̇N )T,

and for parameters we denote

M1 = diag(m1,m2, . . . ,mN ), D1 = diag(γ1, γ2, . . . , γN ), D2 = diag(α1, α2, . . . , αN ).

Then the system (2.10) can be reformulated as a first-order system

(5.1)

 θ̇
ω̇

Ė

+ F (θ, ω,E) = 0

where

F (θ, ω,E) =

 −ω
M−1

1 D1ω +M−1
1 ∇θV (θ, E)

D−1
2 ∇EV (θ,E)

 .
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Let

Eη(θ, ω,E) =
1

2
〈M1ω, ω〉+ V (θ,E) + η〈∇θV,D1ω〉, η > 0,

then

∇Eη(θ, ω,E) =

∇θV + η∇2
θθV D1ω

M1ω + ηD1∇θV
∇EV + η∇2

θEV D1ω

 .

We claim that (5.1) is a quasi-gradient flow with energy Eη(θ, ω,E) for sufficiently small η,

i.e., there exists a constant C̃ > 0 such that for any (θ, ω,E) ∈ RN × RN × RN ,

(5.2) 〈∇Eη(θ, ω,E), F (θ, ω,E)〉 ≥ C̃‖∇Eη(θ, ω,E)‖‖F (θ, ω,E)‖.

Proof of claim (5.2). For any (θ, ω,E) ∈ RN × RN × RN and sufficiently small η, we have

〈∇Eη(θ, ω,E), F (θ, ω,E)〉
=〈∇θV,−ω〉+ η〈∇2

θθV D1ω,−ω〉+ 〈M1ω,M
−1
1 D1ω〉+ 〈M1ω,M

−1
1 ∇θV 〉+ 〈∇EV,D−1

2 ∇EV 〉
+ η〈D1∇θV,M−1

1 D1ω〉+ η〈D1∇θV,M−1
1 ∇θV 〉+ η〈∇2

θEV D1ω,D
−1
2 ∇EV 〉

=− η〈∇2
θθV D1ω, ω〉+ ‖

√
D1ω‖2+‖

√
D−1

2 ∇EV ‖
2+η〈D1∇θV,M−1

1 D1ω〉

+ ‖
√
M−1

1 D1∇θV ‖2+η〈∇2
θEV D1ω,D

−1
2 ∇EV 〉

≥‖
√
D1ω‖2+‖

√
D−1

2 ∇EV ‖
2+‖

√
M−1

1 D1∇θV ‖2−η‖∇2
θθV D1ω‖‖ω‖

− η‖D1∇θV ‖‖M−1
1 D1ω‖−η‖∇2

θEV D1ω‖‖D−1
2 ∇EV ‖

≥C̃
(
‖ω‖2+‖∇EV ‖2+‖∇θV ‖2

)
.

(5.3)

On the other hand, we can find a constant C̃2 > 0 such that

‖F (θ, ω,E)‖=
(
‖ω‖2+‖M−1

1 D1ω +M−1
1 ∇θV ‖

2+‖D−1
2 ∇EV ‖

2
) 1

2

≤C̃2 (‖ω‖+‖∇EV ‖+‖∇θV ‖) .
(5.4)

For ∇Eη(θ, ω,E) with sufficiently small η, we can find some constant C̃3 > 0 such that

‖∇Eη(θ, ω,E)‖

=
(
‖∇θV + η∇2

θθV D1ω‖2+‖M1ω + ηD1∇θV ‖2+‖∇EV + η∇2
θEV D1ω‖2

) 1
2

≤C̃3 (‖ω‖+‖∇EV ‖+‖∇θV ‖) .

(5.5)

The relations (5.4) and (5.5) imply that

‖∇Eη(θ, ω,E)‖‖F (θ, ω,E)‖ ≤ C̃4 (‖ω‖+‖∇EV ‖+‖∇θV ‖)2

≤ C̃5

(
‖ω‖2+‖∇EV ‖2+‖∇θV ‖2

)
.

(5.6)

We combine (5.3) and (5.6) to obtain the desired estimate in (5.2).
• Step 2: a bounded trajectory has a finite length and converges. Note that for any
(θ, ω,E) ∈ RN × RN × RN , we have

d

dt
Eη(θ, ω,E) = −〈∇Eη(θ, ω,E), F (θ, ω,E)〉 ≤ −C̃‖∇Eη(θ, ω,E)‖‖F (θ, ω,E)‖.
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This implies that Eη(θ, ω,E) is nonincreasing along the trajectory of (2.10). On the other
hand, the assumption (2.11) tells that the trajectory {θ(t), ω(t), E(t)} is bounded, so the
range of Eη(θ, ω,E) is also bounded. Thus, there exists a unique limit E∞ ∈ R such that

lim
t→∞
Eη(θ, ω,E) = E∞.

According to the Bolzano-Weierstrass theorem, there exists a sequence {tn}∞n=1 and (θ∞, ω∞, E∞) ∈
RN × RN × RN such that

(5.7) tn ↗ +∞, lim
t→∞

(θ(tn), ω(tn), E(tn)) = (θ∞, ω∞, E∞).

Therefore, Eη(θ∞, ω∞, E∞) = E∞. Without loss of any generality, we may assume that
E∞ = 0. As Eη(θ, ω,E) is an analytic function of (θ, ω,E), Lemma 5.1 tells that there exist

Č, δ > 0 and r ∈ (0, 1
2 ] such that

(5.8) E1−r
η (θ, ω,E) ≤ Č‖∇Eη(θ, ω,E)‖, ∀ (θ, ω,E) ∈ Bδ(θ∞)×Bδ(ω∞)×Bδ(E∞).

We now set

(5.9) h(t) = Erη (θ(t), ω(t), E(t)).

Then h is decreasing and converge to Er∞ as t → ∞. Therefore, for any small ε ∈ (0, δ),
there exists T0 > 0 such that

(5.10) 0 ≤ h(T0)− h(t) ≤ εrC̃

3Č
, ∀t ≥ T0.

Because of (5.7), we can select T0 to satisfy

(5.11)

∥∥∥∥∥∥
 θ(T0)
ω(T0)
E(T0)

−
θ∞ω∞
E∞

∥∥∥∥∥∥ ≤ ε

3
.

Next, we claim

(5.12)

 θ(t)
ω(t)
E(t)

 ∈ Bε
θ∞ω∞

E∞

 , t ≥ T0.

Proof of claim (5.12). Suppose that the opposite is true, i.e., there exists a finite time t̄ > T0

such that

(5.13)

 θ(t̄)
ω(t̄)
E(t̄)

 /∈ Bε

θ∞ω∞
E∞


Let T1 be the first exit time from the region

T1 := inf

t ∈ R+
∣∣∣t ≥ T0,

 θ(t)
ω(t)
E(t)

 /∈ Bε

θ∞ω∞
E∞

 .

The definition of T1 together with (5.13) imply that

(5.14) T1 <∞,

 θ(T1)
ω(T1)
E(T1)

 ∈ ∂Bε
θ∞ω∞

E∞
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and

(5.15)

∥∥∥∥∥∥
 θ(t)
ω(t)
E(t)

−
θ∞ω∞
E∞

∥∥∥∥∥∥ ≤ ε < δ, i.e.,

 θ(t)
ω(t)
E(t)

 ∈ Bδ
θ∞ω∞

E∞

 , t ∈ [T0, T1].

We now differentiate (5.9) and use (5.2), (5.8) and (5.15) to obtain

d

dt
h(t) = rEr−1

η (θ, ω,E)
d

dt
Eη(θ, ω,E)

= rEr−1
η (θ, ω,E)〈∇Eη(θ, ω,E),−F (θ, ω,E)〉

≤ −rC̃Er−1
η (θ, ω,E)‖∇Eη(θ, ω,E)‖‖F (θ, ω,E)‖

≤ −rC̃
Č
‖F (θ, ω,E)‖, ∀ t ∈ [T0, T1].

Then

(5.16)

∫ t

T0

‖F (θ, ω,E)‖dτ ≤ − Č

rC̃
(h(t)− h(T0)), t ∈ [T0, T1].

We combine (5.10) and (5.16) to get

(5.17)

∫ t

T0

∥∥∥∥∥∥
 θ̇(τ)
ω̇(τ)

Ė(τ)

∥∥∥∥∥∥ dτ =

∫ t

T0

‖F (θ, ω,E)‖dτ ≤ − Č

rC̃
(h(t)− h(T0)) ≤ ε

3
, t ∈ [T0, T1].

We now use (5.11) and (5.17) to obtain∥∥∥∥∥∥
 θ(T1)
ω(T1)
E(T1)

−
θ∞ω∞
E∞

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
 θ(T1)
ω(T1)
E(T1)

−
 θ(T0)
ω(T0)
E(T0)

∥∥∥∥∥∥+

∥∥∥∥∥∥
 θ(T0)
ω(T0)
E(T0)

−
θ∞ω∞
E∞

∥∥∥∥∥∥
≤
∫ T1

T0

∥∥∥∥∥∥
 θ̇(τ)
ω̇(τ)

Ė(τ)

∥∥∥∥∥∥ dτ +
ε

3
≤ 2ε

3
.

This contradicts (5.14). Therefore we have T1 =∞. This proves claim (5.12). By using the
same argument as above, we see that the statement (5.16) is true for all t ∈ [T0,∞). We
take t→∞ in (5.17) to get

(5.18)

∫ ∞
T0

∥∥∥∥∥∥
 θ̇(τ)
ω̇(τ)

Ė(τ)

∥∥∥∥∥∥ dτ ≤ ε

3
,

which means that the trajectory {θ(t), ω(t), E(t)} has a finite length and it converges:

lim
t→∞
{θ(t), ω(t), E(t)} = {θ∞, ω∞, E∞}.

• Step 3: the velocity vanishes. Using Lemma 5.2 and (5.18) we can find

lim
t→∞
{θ̇(t), ω̇(t), Ė(t)} = {0, 0, 0} ∈ RN × RN × RN .

Clearly, ω∞ = 0 ∈ RN and F (θ∞, ω∞, E∞) = 0 ∈ R3N . Therefore, we are done with

xe =

(
θ∞
E∞

)
and ∇V (xe) = 0. �
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