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Abstract. We consider the dynamics of bidirectionally coupled identical Kuramoto oscil-
lators in a ring, where each oscillator is influenced sinusoidally by two neighboring oscilla-
tor. Our purpose is to understand its dynamics in the following aspects: 1. identify all the
phase-locked states (or equilibria) with stability or instability; 2. estimate the basins for
stable phase-locked states; 3. identify the convergence rate towards phase-locked states.
The crucial tool in this work is the celebrated theory of  Lojasiewicz inequality.

1. Introduction

Collective behaviors in coupled nonlinear oscillators have attracted numerous attentions
owing to its significance in both dynamical theory and various applications. Among coupled
nonlinear systems, we concern the sinusoidally coupled oscillators which was pioneered by
Kuramoto [12], and recently it has been a hot topic in many scientific disciplines such
as neuroscience, nonlinear dynamics, statistical physics, engineering and network theory
[1, 18]. In this work, we study dynamical behavior of a finite group of Kuramoto oscillators
bidirectionally coupled in a ring by performing nonlinear stability analysis.

The classic Kuramoto model was set as a population of sinusoidally coupled oscillators
with all-to-all coupling. A lot of studies have been done for this model, see [4, 5, 6, 7, 9]
for example, and a nice property that is useful in analysis is the mean-filed property. For
identical Kuramoto oscillators with all-to-all coupling, it is well known that the phase syn-
chronization (in short, sync) is the only stable phase-locked state, which denotes the collapse
of all phases into a single phase, see [17]. Hence, almost all initial configurations of phases
converge to the phase sync asymptotically. It is reasonable to guess that different asymptot-
ic patterns for Kuramoto oscillators can emerge depending on different network topologies.
For example, the literature [17] studies stability properties of the Kuramoto model with i-
dentical oscillators by linear stability analysis and the authors presented a six-node example
to point out that a stable non-sync equilibrium arises for oscillators bidirectionally coupled
in a ring. Recently, Wiley, Strogatz, and Girvan [20] addressed the problem of “the size of
the sync basin” for the Kuramoto model with k-neighbor coupling

θ̇i = ω +

i+k∑
j=i−k

sin(θj − θi), i = 1, 2, . . . , N,
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by setting θN+j := θj and investigated the size of the sync basin. They found that when k/N
is greater than a critical value, then the phase sync is the only stable phase-locked state;
as k/N passes below this critical value, other stable phase-locked states are born which
takes the form of twisted waves (or splay-state). They also numerically investigate how
the size of basin of phase sync or splay-state depends on the winding number of the state.
In [11, 19], the stability of phase-locking was considered for identical Kuramoto oscillators
unidirectionally coupled in a ring, which takes the form of a system on an asymmetric
network:

θ̇i = ω + sin(θi+1 − θi), i = 1, 2, . . . , N.

In particular, in [19], Rogge and Aeyels used an extended Gershgorin disc theorem to derive
the linear stability/instability of phase locking when the phase difference of neighboring os-
cillators is in either (−π

2 ,
π
2 ) or (π2 ,

3π
2 ); however, when phase differences equal to π

2 or 3π
2 ,

the system is not hyperbolic and zero eigenvalues arise so that the linearization approach
does not work well. In [11], Ha and Kang performed nonlinear stability analysis and p-
resented nontrivial proper subsets of synchronization and splay-state basins with positive
Lebesgue measure in N -phase space. In this paper, we will concern the identical Kuramoto
oscillators bidirectionally coupled in a ring, which is given by the following system

(1.1) θ̇i = sin(θi+1 − θi) + sin(θi−1 − θi), i = 1, 2, . . . , N.

The main tool is the theory of  Lojasiewicz inequality of analytic potential, by which we
can determine the stability/instability of all possible phase locked states of (1.1), including
those with phase differences equal to π

2 or 3π
2 .

The main contributions of this paper are as follows. First, we will identify the formation
and stability/instability of all phase-locked states for system (1.1) (see Theorems 3.1 and
3.2). This also enables us to determine the exact number of (asymptotically) stable phase-
locked states (see Remark 3.2). Second, for the stable phase-locked states, we present their
basins with positive Lebesgue measure in N -phase space (see Theorem 4.2). Third, we
calculate the  Lojasiewicz exponent for the stable equilibriums of (1.1) and clarify that the
convergence towards the stable phase-locked states is exponentially fast (see Theorems 3.3
and 4.2).

Organization of paper.- In Section 2, we give some preliminaries. In Section 3, we
identify the formation and stability/instability of all phase-locked states. The  Lojasiewicz
exponent of stable phase-locked states is also presented. In Section 4, we prove the conver-
gence of (1.1) and give an estimate on the basin of stable phase-locked state. Section 5 is
devoted to be a brief summary of this paper.

2. Preliminaries

We consider N(N ≥ 3) coupled oscillators. The dynamics of the i-th phase θi is governed
by the following system:

θ̇i = sin(θi+1 − θi) + sin(θi−1 − θi),
θi(0) = θi0, i = 1, 2, . . . , N.

(2.1)
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where we set θN+1 := θ1. It is easy to see that
∑N

i=1 θ̇i = 0, so the phase-locked solutions
of the system (2.1) are its equilibrium points. Let

(2.2) f(θ) =
N∑
i=1

[
1− cos(θi+1 − θi)

]
,

then system (2.1) can be written as a gradient system

(2.3) θ̇ = −∇f(θ).

Next, we present some results for gradient systems with analytic potential. Consider the
following system

(2.4) ẋ(t) = −∇f(x(t)).

A crucial tool in this study is the nice theory for gradient inequality which was first developed
by  Lojasiewicz [16]. In his earlier work he proved the following result.

Proposition 2.1. Let f : RN → R be a real analytic function.

(1) For any x∗ ∈ RN , there exist a neighborhood N (x∗) of x∗ and some constants c > 0
and r ∈ (0, 12 ] such that

(2.5) |f(x)− f(x∗)|1−r ≤ c‖∇f(x)‖, ∀ x ∈ N (x∗).

(2) Let x(·) be a solution of (2.4). If {x(t)}∞t=0 is bounded, then there exists an equilib-
rium x∞ such that x(t)→ x∞.

The inequality (2.5) is referred as the celebrated  Lojasiewicz’s inequality and the constant
r ∈

(
0, 12
]

is called the  Lojasiewicz exponent of f at x0. We note that for a non-equilibrium,
i.e., ∇f(x) 6= 0, the inequality (2.5) certainly holds. However, when an equilibrium is
concerned, the above inequality reveals a fundamental relation between the potential and
its gradient near the equilibrium. Owing to this inequality, he could prove the second
assertion in Proposition 2.1. Thus, the  Lojasiewicz inequality provides a powerful tool to
analyze the convergence of a trajectory towards a single equilibrium. To catch some idea
from  Lojasiewicz inequality to convergence, we refer to [3] for the so-called finite-length
argument.

Furthermore, the value of  Lojasiewicz exponent gives some information on the conver-
gence rate; more precisely, the convergence is at least algebraically slow if r ∈

(
0, 12
)
, and

exponentially fast if r = 1
2 (see [3]). Using similar argument as in [3] with  Lojasiewicz

inequality, the following result can be obtained.

Proposition 2.2. [3, 14] Let f : RN → R be a real analytic function and x(·) be a bounded
trajectory of (2.4) which converges to an equilibrium x∞. Let r∗ ∈ (0, 12 ] be the  Lojasiewicz
exponent of f at x∞. Then we have:

(1) If r∗ = 1
2 , then there exist constants C, T, λ > 0 such that

‖x(t)− x∞‖ ≤ Ce−λt, t ≥ T.
(2) If r∗ <

1
2 , then there exist constants C, T > 0 such that

‖x(t)− x∞‖ ≤ Ct−
r∗

1−2r∗ , t ≥ T.

Based on  Lojasiewicz inequality, Absil and Kurdyka [2] gave a sufficient and necessary
condition for the stability of equilibrium of gradient system. We restate it here and this
will be the main tool to identify the stability/instability for each equilibrium of (2.1).
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Lemma 2.1. [2] Let f be real analytic in a neighbourhood of z∗ ∈ Rn. Then, z∗ is a
stable equilibrium of (2.4) if and only if z∗ is a local minimum of f . Furthermore, it is
asymptotically stable if and only if it is a strict local minimum.

Before we close this section, we present an inequality which will be useful in this paper.
Let us consider a symmetric and connected network G = (V, E) where V = {1, 2, . . . , N}
and E ⊂ V × V are vertex and edge sets, respectively. For a given network or graph
G, we assume that Kuramoto oscillators are located at the nodes of the network, and
they interact symmetrically through the interacting channels registered by the interaction
topology E . We say G = (V, E) is connected if for any two nodes i and j, there exists a path
i → k1 → k2 → · · · → ks → j with (i, k1), (k1, k2), (k2, k3), . . . , (ks, j) ∈ E . The distance
between i and j is the number of arcs in a shortest path connecting i and j. We now state
a lemma from [10] as follows.

Lemma 2.2. [10] Suppose that the graph G = (V, E) is connected and the set {γi : i =
1, 2, . . . , N} has zero mean:

N∑
i=1

γi = 0.

Then, we have

2N

1 + diam(G)|Ec|

N∑
i=1

|γi|2 ≤
∑

(i,j)∈E

|γi − γj |2 ≤ 2N
N∑
i=1

|γi|2.

where diam(G) denotes the diameter of a graph which is the shortest distance between any
pair of nodes in G.

3. Formation and stability of phase locking

Let

(3.1) φi = (θi+1 − θi) mod 2π, i = 1, 2, . . . , N.

Without loss of generality, we may set φi ∈
(
−π

2 ,
3π
2

]
for all i ∈ {1, 2, . . . , N}. By (2.1), the

variable (φ1, φ2, . . . , φN ) satisfies the following equations:

φ̇i = sinφi+1 − 2 sinφi + sinφi−1,

φi(0) = φi0 := θi+1,0 − θi0, i = 1, 2, . . . , N.
(3.2)

Next we identify the equilibriums of (3.2) which also gives the formation of phase-locked
states for system (2.1).

Theorem 3.1. Every equilibrium φ = (φ1, φ2, . . . , φN ) to system (3.2) corresponds to a
permutation of the vector

(3.3) (α, . . . , α︸ ︷︷ ︸
m

, π − α, . . . , π − α︸ ︷︷ ︸
N−m

),

where α ∈ (−π
2 ,

3π
2 ] and m ∈ {0, 1, . . . , N} satisfy mα + (N −m)(π − α) = 2πk for some

k ∈ Z.
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Proof. Let φ = (φ1, φ2, . . . , φN ) be an equilibrium of (3.2), that is,

sinφi+1 − 2 sinφi + sinφi−1 = 0, i = 1, 2, . . . , N.

Let φ1 = α, φ2 = β, then we have

(3.4)



sinφ3 = 2 sinβ − sinα

sinφ4 = 3 sinβ − 2 sinα

sinφ5 = 4 sinβ − 3 sinα

. . .

sinφN = (N − 1) sinβ − (N − 2) sinα

sinφ1 = N sinβ − (N − 1) sinα

sinφ2 = (N + 1) sinβ −N sinα.

Using sinφ2 = sinβ, sinφ1 = sinα, we can get sinβ = (N + 1) sinβ − N sinα. Thus,
sinα = sinβ. We plug this relation to (3.4) to find that

sinφ1 = sinφ2 = · · · = sinφN .

In view of the setting (3.1) and φi ∈
(
−π

2 ,
3π
2

]
, the equilibrium of equation (3.2) is a

permutation of the following configuration

(3.5) (α, . . . , α︸ ︷︷ ︸
m

, π − α, . . . , π − α︸ ︷︷ ︸
N−m

),

where m ∈ {0, 1, . . . , N}. As (θ2 − θ1) + (θ3 − θ2) + · · · + (θN − θN−1) + (θN+1 − θN ) = 0,
we have

mα+ (N −m)(π − α) = 2πk

for some k ∈ Z with −Nπ
2 < 2πl ≤ 3Nπ

2 . �

Next we prove that the equilibrium of the form

(3.6) φα = (α, α, . . . , α︸ ︷︷ ︸
N

), with α ∈
(
−π

2
,
π

2

)
, Nα = 2πk, k ∈ Z.

is the only stable equilibrium for (3.2) or equivalently (2.1).

Theorem 3.2. The equilibrium in (3.6) is the only stable equilibrium of (3.2). Moreover,
The equilibrium in (3.6) is asymptotically stable.

Proof. First, we use Lemma 2.1 to show that the equilibrium of this type is the only stable
equilibrium for (2.1). Let

(3.7) f(θ) =

N∑
i=1

[
1− cos(θi+1 − θi)

]
,

then system (2.1) can be written as a gradient system

(3.8) θ̇ = −∇f(θ).

Let θ∗ = (θ∗1, θ
∗
2, . . . , θ

∗
N ) be an equilibrium of system (2.1). By Theorem 3.1 it corresponds

to an equilibrium φ∗ = (φ∗1, φ
∗
2, . . . , φ

∗
N ) of (3.2) which is given by a permutation of

(3.9) (α, . . . , α︸ ︷︷ ︸
m

, π − α, . . . , π − α︸ ︷︷ ︸
N−m

).
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We denote the index set G1 = {i : φ∗i = α} and G2 = {i : φ∗i = π − α} so that G1 ∪ G2 =
{1, 2, . . . , N}. Let N (θ∗) be a neighborhood of θ∗. For convenience we set

xi = θi − θ∗i , γi = xi+1 − xi, i = 1, 2, . . . , N.

For any θ ∈ N (θ∗), we have
∑N

i=1 γi = 0 and

cos(θi+1 − θi)− cos(θ∗i+1 − θ∗i )
= cos(θi+1 − θi − θ∗i+1 + θ∗i + θ∗i+1 − θ∗i )− cos(θ∗i+1 − θ∗i )
= cos(xi+1 − xi) cos(θ∗i+1 − θ∗i )− sin(xi+1 − xi) sin(θ∗i+1 − θ∗i )− cos(θ∗i+1 − θ∗i ).

Then we have

f(θ∗)− f(θ)

=

N∑
i=1

cos(θi+1 − θi)−
N∑
i=1

cos(θ∗i+1 − θ∗i )

=

N∑
i=1

[
cos(θi+1 − θi)− cos(θ∗i+1 − θ∗i )

]
=

N∑
i=1

[
cos(xi+1 − xi) cos(θ∗i+1 − θ∗i )− sin(xi+1 − xi) sin(θ∗i+1 − θ∗i )− cos(θ∗i+1 − θ∗i )

]
=
∑
i∈G1

[
cos(xi+1 − xi) cosα− sin(xi+1 − xi) sinα− cosα

]
+
∑
i∈G2

[
(1− cos(xi+1 − xi)) cosα− sin(xi+1 − xi) sinα

]
= cosα

∑
i∈G1

(cos(xi+1 − xi)− 1)− sinα
∑
i∈G1

sin(xi+1 − xi)

+ cosα
∑
i∈G2

(1− cos(xi+1 − xi))− sinα
∑
i∈G2

sin(xi+1 − xi)

= cosα

∑
i∈G2

(1− cos(xi+1 − xi))−
∑
i∈G1

(1− cos(xi+1 − xi))

− sinα
∑
i∈G1

sin(xi+1 − xi)

=
cosα

2

∑
i∈G2

(
(xi+1 − xi)2 + o((xi+1 − xi)4)

)
−
∑
i∈G1

(
(xi+1 − xi)2 + o((xi+1 − xi)4)

)
− sinα

N∑
i=1

[
(xi+1 − xi) + o

(
(xi+1 − xi)3

)]
=

cosα

2

∑
i∈G2

(
γ2i + o

(
γ4i
))
−
∑
i∈G1

(
γ2i + o

(
γ4i
))− sinα

(
N∑
i=1

γi

)
+

N∑
i=1

o
(
γ3i
)

=
cosα

2

∑
i∈G2

(
γ2i + o

(
γ4i
))
−
∑
i∈G1

(
γ2i + o

(
γ4i
))− sinα

N∑
i=1

o
(
γ3i
)
.
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We now consider several cases depending on α and the configurations of G1 and G2.
(1) If α ∈

(
−π

2 ,
π
2

)
and G2 = ∅, we can get that f(θ∗) ≤ f(θ), i.e., θ∗ is a local minimum

of f(θ) in N (θ∗). By Lemma 2.1, it is stable.
(2) If α ∈

(
−π

2 ,
π
2

)
and G1 = ∅, then f(θ∗) ≥ f(θ) and f(θ∗) is a local maximum of f(θ)

in N (θ∗). Hence, it is unstable.
(3) If α ∈

(
π
2 ,

3π
2

)
, this is equivalent to π − α ∈

(
−π

2 ,
π
2

)
. By cases (1) and (2), we see

that the equilibrium is stable if G1 = ∅ and it is unstable if G2 = ∅.
(4) If α ∈ (−π

2 ,
3π
2 ] and both of G1 and G2 are not empty, we will show that θ∗ is not a

local minimum of f . Since N ≥ 3 and both of G1 and G2 are not empty, we find at least one
of G1 and G2 contains two nodes. without loss of generality we assume 1 ∈ G1 and 2, 3 ∈ G2.
Let θ1ε ∈ N (θ∗) be corresponding to

φ1ε = (φ∗1 + 2ε, φ∗2 − ε, φ∗3 − ε, φ∗4, φ∗5, . . . , φ∗N ) , with 0 < |ε| � 1.

This means γ1 = 2ε, γ2 = γ3 = −ε and γ4 = · · · = γN = 0. On the other hand, we let
θ2ε ∈ N (θ∗) be corresponding to

φ2ε = (φ∗1, φ
∗
2 + ε, φ∗3 − ε, φ∗4, φ∗5, . . . , φ∗N ) , with 0 < |ε| � 1,

which means γ1 = 0, γ2 = −γ3 = ε and γ4 = · · · = γN = 0. Note that these two choices
make f(θ∗) − f(θ1) and f(θ∗) − f(θ2) produce different signs. So θ∗ cannot be a local
minimum of f and this equilibria is unstable.

(5) If α = π
2 , that is, θ∗ is corresponding to φ∗ =

(
π
2 ,

π
2 , . . . ,

π
2

)
. Let θε ∈ N (θ∗) be

corresponding to

φε =
(π

2
+ 2ε,

π

2
− ε, π

2
− ε, π

2
,
π

2
, . . . ,

π

2

)
, with 0 < |ε| � 1.

We use (3.7) to find that

f(θε)− f(θ∗) =

N∑
i=1

cosφ∗i −
N∑
i=1

cosφε,i = − cos
(π

2
+ 2ε

)
− 2 cos

(π
2
− ε
)

= sin 2ε− 2 sin ε = 2 sin ε(cos ε− 1).

The sign of f(θε) − f(θ∗) depends on the sign of ε. This means that θ∗ is not a minimum
of f in N (θ∗). Therefore, it is unstable.

(6) If α = 3π
2 , we note that π − α = −π

2 ∼
3π
2 , so θ∗ is corresponding to φ∗ =(

3π
2 ,

3π
2 , . . . ,

3π
2

)
. In this case, we consider θε ∈ N (θ∗) corresponding to

φε =

(
3π

2
+ 2ε,

3π

2
− ε, 3π

2
− ε, 3π

2
,
3π

2
, . . . ,

3π

2

)
, with 0 < |ε| � 1.

Similar to Case (5), we find the equilibrium is unstable.
We now summarize the above cases (1)-(6) to conclude that the only stable equilibrium

is the state φ = (α, α, . . . , α) with α ∈
(
−π

2 ,
π
2

)
. Furthermore, we can easily see from Case

(1) that θ∗ is a strict local minimum. Therefore, by Lemma 2.1 we conclude that it is
asymptotically stable.

�

Remark 3.1. A classic method for stability/instability analysis is based on the linearization
and eigenvalues. In [19], Rogge and Aeyels applied Gershgorin disc theorem to perform
the linear stability analysis for phase locking with phase differences in (−π

2 ,
π
2 ) or (π2 ,

3π
2 ),

when the oscillators are unidirectionally coupled in a ring. However, this approach based
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on linearization does not work when the phase difference is π
2 or 3π

2 which produces zero
eigenvalue (system (3.2) is not hyperbolic). In contrast, our analysis in Theorem 3.2 does
not rely on any information on the algebraic spectrum of linearization, and we can determine
the stability/instability for all possible phase locked states.

Remark 3.2. In [8], the authors considered the number of different, linearly stable phase-
locked solutions for Kuramoto oscillators on a single-circle graph (unidirectionally coupled
in a ring) and gave an upper bound 2[N4 ] + 1. Here, [ · ] denotes the integer part of a given
positive number. For Kuramoto model (2.1), by Theorem 3.2 we can see that the number of
stable phase-locked states is exactly

2

[
N − 1

4

]
+ 1.

Actually, the number of the stable non-phase-sync equilibriums of (2.1) is exactly the number
of integer k’s with

2kπ = Nα, α ∈
(
−π

2
,
π

2

)
, α 6= 0,

which is given by 2
[
N−1
4

]
. Therefore, the total number of stable phase-locked states is given

by 2
[
N−1
4

]
+ 1.

Remark 3.3. In the proof of Theorem 3.2, we can find that for the stable equilibrium given
by φα = (α, α, . . . , α) with α ∈

(
−π

2 ,
π
2

)
and θ ∈ N (θ∗), the following relation holds:

|f(θ∗)− f(θ)| =

∣∣∣∣∣−cosα

2

N∑
i=1

(
γ2i + o(γ4i )

)
− sinα

N∑
i=1

o
(
γ3i
)∣∣∣∣∣ ≤ C

N∑
i=1

γ2i ,

where C is a positive constant.

Next,we will clarify that the  Lojasiewicz exponent of the equilibrium (α, α, . . . , α) with
α ∈ (−π

2 ,
π
2 ) is exactly 1

2 .

Theorem 3.3. The  Lojasiewicz exponent of f at equilibrium θ∗ corresponding to φα =
(α, α, . . . , α) with α ∈

(
−π

2 ,
π
2

)
is 1

2 .

Proof. For θ ∈ N (θ∗), we have

cos
θi+1 − θi + θ∗i+1 − θ∗i

2
≈ cosα > 0, cos

θi−1 − θi + θ∗i−1 − θ∗i
2

≈ cosα > 0.

We now estimate the gradient of f at θ ∈ N (θ∗) as follows:

‖∇f(θ)‖22

=

N∑
i=1

[sin(θi+1 − θi) + sin(θi−1 − θi)]2

=
N∑
i=1

[
sin(θi+1 − θi) + sin(θi−1 − θi)− sin(θ∗i+1 − θ∗i )− sin(θ∗i−1 − θ∗i )

]2
=

N∑
i=1

[
2 cos

θi+1 − θi + θ∗i+1 − θ∗i
2

sin
θi+1 − θi − θ∗i+1 + θ∗i

2

+ 2 cos
θi−1 − θi + θ∗i−1 − θ∗i

2
sin

θi−1 − θi − θ∗i−1 + θ∗i
2

]2
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=
N∑
i=1

[
2 cos

θi+1 − θi + θ∗i+1 − θ∗i
2

sin
xi+1 − xi

2
+ 2 cos

θi−1 − θi + θ∗i−1 − θ∗i
2

sin
xi−1 − xi

2

]2

=

N∑
i=1

[
2 cos

θi+1 − θi + θ∗i+1 − θ∗i
2

sin
γi
2
− 2 cos

θi−1 − θi + θ∗i−1 − θ∗i
2

sin
γi−1

2

]2

=
N∑
i=1

[
2 cos

θi+1 − θi + θ∗i+1 − θ∗i
2

(γi
2

+ o(γ3i )
)
− 2 cos

θi−1 − θi + θ∗i−1 − θ∗i
2

(γi−1
2

+ o(γ3i−1)
)]2

≥ C1

N∑
i=1

[
γi − γi−1 + o(γ3i )− o(γ3i−1)

]2
≥ C2

N∑
i=1

γ2i .

Here, C1 and C2 denote some positive constants, and we used Lemma 2.2 for the last
inequality. Then we combine the above relation and Remark 3.3 to find that

|f(θ)− f(θ∗)|
1
2 ≤ C̄‖∇f(θ)‖, θ ∈ N (θ∗),

for some constant C̄ > 0. �

Remark 3.4. Theorem 3.3 gives the first result for  Lojasiewicz exponent of Kuramoto
model when the phases of equilibrium are distributed a arc which is larger than a quarter
of circle. Actually, in [14, 15] it was proved that the exponent is 1

2 when the phases are
distributed inside a quarter of circle. On the other hand, an example in [14] also shows that
the exponent can be less that 1

2 when they are distributed on the boundary of the quarter of
circle, which implies the algebraic convergence shown in [11]. In this paper, we show that for
Kuramoto model (2.1) the exponent is still 1

2 which enables us to conclude the exponential
rate by Proposition 2.2 once we can show the convergence.

4. Convergence and a basin for stable phase locking

In this section, we will concern the global dynamics of system (2.1). We will show that
any trajectory of (2.1) must converge and we present a non-trivial subset of the basin for
the stable phase-locked state in (3.6).

4.1. Convergence. A general form of the following theorem was presented in [13] for
gradient system with analytic and periodic potential. For readers’ convenience, we state it
for system (2.1) and give a proof here.

Theorem 4.1. For any initial data, the solution of system (2.1) converges to some equi-
librium.

Proof. First of all, system (2.1) is equivalent to the gradient form (2.3), where the potential f
is real analytic and 2π−periodic, i.e., f(θ+2πK) = f(θ) for anyK ∈ Zn. Let θ : R+ → Rn be
any solution of (2.1) or (2.3). By (2.3) we see that f(θ(t)) is bounded and non-increasing in
time, then it must converge and without loss of any generality let’s say limt→∞ f(θ(t)) = 0.

We now choose θ̂(t) ∈ [0, 2π)n such that

θ̂(t) = θ(t) mod 2π.
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Since θ̂(·) is bounded, there exists a sequence {tk} with tk → ∞ such that θ̂(tk) → θ̂∗ as

k →∞ for some θ̂∗ ∈ [0, 2π]n. We denote the index sets

J1 = {j : θ̂∗j = 0}, J2 = {j : θ̂∗j = 2π}.
Obviously, we have

f(θ(tk)) = f(θ̂(tk))→ f(θ̂∗) = 0.

For this θ̂∗ ∈ [0, 2π]n ⊂ Rn, by Proposition 2.1 (1) there exist σ > 0, C > 0 and r ∈
(
0, 12
]

such that

|f(θ)− f(θ̂∗)|1−r ≤ C‖∇f(θ)‖, ∀ θ ∈ Bσ(θ̂∗),(4.1)

where Bσ(θ̂∗) denotes the ball in Rn centered at θ̂∗ with radius σ. We can choose σ suffi-

ciently small with σ < mini∈{1,2,...,n}\(J1∪J2){θ̂∗i , 2π − θ̂∗i }. This implies that

(4.2)
θ = (θ1, θ2, . . . , θn) ∈ Bσ(θ̂∗)

i ∈ {1, 2, . . . , n} \ (J1 ∪ J2)

}
⇒ θi ∈ (0, 2π).

According to the settings of θ̂ and θ̂∗, we can choose tN ∈ {tk}∞k=1 such that

‖θ̂(tN )− θ̂∗‖ < σ

3
and f r(θ̂(tN )) <

rσ

3C
.(4.3)

Since θ(tN ) = θ̂(tN ) mod 2π, we can denote θ(tN ) = 2πK0 + θ̂(tN ) where K0 ∈ Zn. We

then let θ∗ = 2πK0 + θ̂∗, so by (4.3) we have ‖θ(tN )− θ∗‖ < σ
3 . Let

T = inf{t > tN : ‖θ(s)− θ∗‖ < σ, ∀ s ∈ (tN , t)}.
We claim that T =∞. Otherwise, we have T <∞ and

‖θ(t)− θ∗‖ < σ, ∀t ∈ [tN , T ), and ‖θ(T )− θ∗‖ = σ.(4.4)

For t ∈ [tN , T ), we define θ̃(t) = (θ̃1(t), θ̃2(t), . . . , θ̃n(t)) ∈ [0, 2π]n as follows:

θ̃i(t) =



θ̂i(t), i ∈ {1, 2, . . . , n} \ (J1 ∪ J2),

θ̂i(t), i ∈ J1 and θi(t)− θ∗i ≥ 0,

θ̂i(t)− 2π, i ∈ J1 and θi(t)− θ∗i < 0,

θ̂i(t) + 2π, i ∈ J2 and θi(t)− θ∗i ≥ 0,

θ̂i(t), i ∈ J2 and θi(t)− θ∗i < 0.

Then with (4.2) we can see that

(4.5) θ̃(t) = θ̂(t) mod 2π, and ‖θ̃(t)− θ̂∗‖ < σ, ∀ t ∈ [tN , T ).

Now for t ∈ (tN , T ), we combine (2.3), (4.1) and (4.5) to derive

− d

dt
f r(θ(t)) = −rf r−1(θ(t)) d

dt
f(θ(t))

= rf r−1(θ̃(t))‖∇f(θ̃(t))‖2

≥ r

C
‖∇f(θ̃(t))‖

=
r

C
‖∇f(θ(t))‖,
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where we used the 2π-periodicity of f and ∇f , and the relation θ(t) = θ̂(t) = θ̃(t) mod 2π,

to see that f(θ(t)) = f(θ̃(t)) and ∇f(θ(t)) = ∇f(θ̃(t)). By integrating the above relation
we obtain

f r(θ(tN ))− f r(θ(t)) ≥ r

C

∫ t

tN

‖∇f(θ(s))ds‖, ∀ t ∈ (tN , T ).

This, together with (4.3), implies that∫ T

tN

‖∇f(θ(s))‖ds < σ

3
.

Therefore, we have

‖θ(T )− θ∗‖ ≤ ‖θ(T )− θ(tN )‖+ ‖θ(tN )− θ∗‖

≤
∫ T

tN

‖θ̇(s)‖ds+ ‖θ(tN )− θ∗‖

<
2

3
σ.

This contradicts (4.4). So we conclude that T = ∞, that is, ‖θ(t) − θ∗‖ < σ for all
t ∈ [tN ,∞). This proves the boundedness of the trajectory θ(·), and we recall Proposition
2.1 (2) to see it converges. By the choice of θ∗, we easily find that θ(t)→ θ∗. Furthermore,
we insert T =∞ to the above relations and obtain∫ ∞

tN

‖∇f(θ(s))‖ds < σ

3
<∞.

This implies that limt→∞ ‖∇f(θ(t))‖ = 0. Recalling that θ̂(tk)→ θ̂∗, so we have

‖∇f(θ̂∗)‖ = lim
k→∞

‖∇f(θ(tk))‖ = 0.

Hence, θ∗ is an equilibrium. �

4.2. Basin. For a given configuration φ = (φ1, φ2, . . . , φN ),we introduce the indices

M ∈ argmin
i
φi and m ∈ argmax

i
φi,

then we have φM = max1≤i≤N φi and φm := min1≤i≤N φi. Let φ(t) be the solution of (3.2).
For time-varying configuration φ(t), the indices M and m depend on t and the extremal
phase differences φM − φm is Lipschitz continuous and piecewise differentiable. We will
show that the set:

Bcon =
{
φ ∈ Rn : −π

2
< φm ≤ φM <

π

2

}
.

Lemma 4.1. Let φ be the smooth solution to system (3.2) with initial condition φ0 ∈ Bcon.
Then φM is noninceasing and φm is nondecreasing for all t ∈ [0,+∞).

Proof. • Step 1: Suppose for some T ∈ (0,∞] we have

−π
2
< φm(t) ≤ φM (t) <

π

2
, t ∈ [0, T ).

Then for t ∈ [0, T ), we have

− π

2
<
φM+1 − φM

2
≤ 0, 0 ≤ φm+1 − φm

2
<
π

2
,

0 ≤ φM − φM−1
2

<
π

2
, −π

2
<
φm − φm−1

2
≤ 0,



12 X. ZHAO, Z. LI, AND X. XUE

and for any 1 ≤ i ≤ N ,

−π
2
<
φi+1 + φi

2
<
π

2
.

For a.e. t ∈ [0, T ) we can derive

φ̇M (t) = (sinφM+1 − sinφM )− (sinφM − sinφM−1)

= 2 cos

(
φM+1 + φM

2

)
sin

(
φM+1 − φM

2

)
− 2 cos

(
φM + φM−1

2

)
sin

(
φM − φM−1

2

)
≤ 0,

and

φ̇m(t) = (sinφm+1 − sinφm)− (sinφm − sinφm−1)

= 2 cos

(
φm+1 + φm

2

)
sin

(
φm+1 − φm

2

)
− 2 cos

(
φm + φm−1

2

)
sin

(
φm − φm−1

2

)
≥ 0.

Therefore the continuous function φM is nonincreasing and φm is nondecreasing in the time
interval [0, T ).
• Step 2: We define a set T

T :=
{
T > 0

∣∣∣ − π

2
< φm(t) ≤ φM (t) <

π

2
, ∀ t ∈ [0, T )

}
.

Since −π
2 < φm(0) < φM (0) < π

2 , by continuity there exists δ > 0 such that

−π
2
< φm(t) ≤ φM (t) <

π

2
, t ∈ [0, δ).

That is T 6= ∅. Let T0 = sup T . We next claim that T0 = ∞. Suppose not, i.e., T0 < ∞.
Then by the definition of T0, this yields

either lim inf
t→T−

0

φM (t) =
π

2
or lim sup

t→T−
0

φm(t) = −π
2
,(4.6)

and
−π

2
< φm(t) ≤ φM (t) <

π

2
, ∀ t ∈ [0, T0).

By the analysis in Step 1 we get

φm(0) ≤ φm(t) ≤ φM (t) ≤ φM (0), t ∈ [0, T0).

This implies

lim
t→T−

0

φM (t) ≤ φM (0) <
π

2
and lim

t→T−
0

φm(t) ≥ φm(0) > −π
2
,

which contradicts (4.6). This proves that T0 =∞ and we conclude that φM is nonincreasing
and φm is nondecreasing for all t ≥ 0. �

Theorem 4.2. Let φ be the smooth solution to system (3.2) with initial condition φ0 ∈ Bcon
which satisfies

N∑
i=1

φi0 = 2kπ for some k with− N

4
< k <

N

4
.

Then we have

lim
t→∞

φ(t) =
2kπ

N
1N .

Furthermore, the convergence is exponentially fast.
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Proof. Step 1: We refine the estimate in Lemma 4.1 and claim that: (i) φm is strictly
increasing; (ii) φM is strictly decreasing. We will prove (i) and ignore the proof for (ii) since
they are similar. Note that

φ̇m(t) = (sinφm+1 − sinφm)− (sinφm − sinφm−1) ≥ 0.

If φm is not strictly increasing, then we can find some open interval I such that

(sinφm+1 − sinφm)− (sinφm − sinφm−1) = 0 on I.

Then it follows from the graph of sinusoidal function on
(
−π

2 ,
π
2

)
that we should have

either φm = φm−1 = φm+1 or φm+1 < φm < φm−1.

The second case certainly contradicts the definition of φm. So we should have

φm = φm−1 = φm+1 on I.

This implies that for t ∈ I
0 = φ̇m = φ̇m+1 = (sinφm+2 − sinφm+1)− (sinφm+1 − sinφm) = sinφm+2 − sinφm+1.

Using similar argument we can obtain

φl = φm, ∀ t ∈ I, ∀ 1 ≤ l,m ≤ N,
which implies that φ is an equilibrium. However, this contradicts the initial condition which
is not an equilibrium. Thus, φm is strictly increasing.

Step 2: Following the result in Step 1, we have

−π
2
< φm(0) < φm(t) ≤ φM (t) < φM (0) <

π

2
.

This implies that φm(t) and φM (t) converge as t→∞ and

−π
2
< φm(0) < lim

t→∞
φm(t) ≤ lim

t→∞
φM (t) < φM (0) <

π

2
.(4.7)

By Theorem 4.1 and Theorem 3.1 we see that the solution of (2.1) or (3.2) converges to
some phase-locking with φi being α or π − α for some α ∈

(
−π

2 ,
3π
2

]
. Therefore, we have

lim
t→∞

φm(t), lim
t→∞

φM (t) ∈ {α, π − α}.

Since

α ∈
(
−π

2
,
π

2

)
⇔ π − α ∈

(
π

2
,
3π

2

)
,

we invoke the relation (4.7) to find that for any 1 ≤ i ≤ N ,

lim
t→∞

φi(t) = α ∈
(
−π

2
,
π

2

)
.

On the other hand, we have a conservation law that

N∑
i=1

φi(t) =
N∑
i=1

φi(0) = 2kπ, t > 0.

Thus, we have

Nα = lim
t→∞

N∑
i=1

φi(t) = 2kπ, i.e., α =
2kπ

N
.
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That is, φ(t) converges to the splay-state 2kπ
N 1N as t→∞.

Finally, we use Theorem 3.3 and Proposition 2.2 to conclude the exponential rate (see
Remark 3.4). �

Remark 4.1. (1) If φ0 satisfies the framework in Theorem 4.2 with k 6= 0, then Theo-
rem 4.2 tells that the trajectory exponentially converges to a splay state.

(2) If the initial configuration satisfies

φ0i ∈
(
−π

2
,
π

2

)
,∀ i ∈ 1, 2, . . . , N, and

N∑
i=1

φ0i = 0

then the constant k in Theorem 4.2 equals 0 . As a consequence, we get the following
result

Nα = lim
t→∞

N∑
i=1

φi(t) = 0.

That is, α = 0. In other words, the trajectory exponentially converges to a phase
sync state.
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