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Abstract: We propose a difference-based nonparametric methodology for
the estimation and inference of the time-varying auto-covariance functions
of a locally stationary time series when it is contaminated by a com-
plex trend with both abrupt and smooth changes. Simultaneous confidence
bands (SCB) with asymptotically correct coverage probabilities are con-
structed for the auto-covariance functions under complex trend. A simulation-
assisted bootstrapping method is proposed for the practical construction of
the SCB. Detailed simulation and a real data example round out our pre-
sentation.
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1. Introduction

Our discussion begins with a heteroscedastic nonparametric regression model

Yi = μ(ti) +
√
V (ti)εi , i = 1, . . . , n, (1)

where Yi are the observations, μ is an unknown mean function, ti = i/n are the
design points, i = 1, . . . , n, εi are the errors with mean zero and variance 1,

∗Zhou Zhou’s research has been partially supported by NSERC grant 489079.
†Corresponding author.

4264

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/21-EJS1893
mailto:cui@utstat.toronto.edu
mailto: mlevins@purdue.edu
mailto:zhou@utstat.toronto.edu


Estimation and inference of time-varying auto-covariance 4265

and V is the variance function. Historically, it has been assumed that the errors
εi are independent. Variance estimation in regression models with the unknown
mean has traditionally been a rather important problem. Accurate variance
estimation is required for the purpose of, for example, construction of confidence
bands for the mean function, testing the goodness of fit of a model, and also in
order to choose the amount of smoothing needed to estimate the mean function;
see e.g. [29], [13], [15], and [18]. An extensive survey of the difference sequence
approach to estimate the variance in the nonparametric regression setting when
the variance function is only a constant can be found in [7].

The situation when the variance is not constant is more complicated. One
of the first attempts to estimate the variance function in a regression model
was made in [20] who proposed the basic idea of kernel smoothing of squared
differences of observations. This idea has been further developed in [22]. [2] in-
troduced a class of difference-based local polynomial regression-based estimators
of the variance function V (x) and obtained optimal convergence rates for this
class of estimators that are uniform over broad functional classes. [31] obtained
the minimax rate of convergence for estimators of the variance function in the
model (1) and characterized the effect of not knowing the mean function on the
estimation of variance function in detail. Similar approach was used to construct
a class of difference-based estimators in [3] when the covariate X ∈ R

d for d > 1.
All of the above mentioned papers only considered the case where the data

are independent. However, difference-based methods have also been used to es-
timate variance and/or autocovariance in nonparametric regression where the
errors are generated by a stationary process. The pioneering approach here was
probably that of [21] who proposed estimators based on the first-order differ-
ences to estimate (invertible) linear transformations of the variance-covariance
matrix of stationary m-dependent errors. Here, by m-dependent errors we mean
the errors generated by a stationary process whose autocovariance is equal to
zero for any lag greater than some m > 0. [19] suggested second order dif-
ferences to estimate the zero frequency of the spectral density of stationary
processes with short-range dependence. In the case of autoregressive errors, [16]
proposed

√
n-root consistent and, under the assumption of normality of errors,

efficient estimators of the autocovariance that are also based on differences of
observations. Under certain mixing conditions, [26] proposed estimating the au-
tocovariance function by applying difference-based estimators of the first order
to the residuals of a kernel-based fit of the signal. [34] provided an optimal
difference-based estimator of the variance for smooth nonparametric regression
when the errors are correlated. Finally, the closest to us in spirit is, probably,
[30] that proposed a class of difference-based estimators for the autocovariance
in nonparametric regression when the signal is discontinuous and the errors form
a stationary m-dependent sequence. To the best of our knowledge, the problem
of autocovariance estimation in a nonparametric regression where the errors
form a nonstationary sequence while the signal is discontinuous has not been
considered before.

The purpose of this article is to estimate and make inference of the time-
varying covariance structure of a locally stationary time series when it is con-
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taminated by a complex trend function with both smooth and abrupt changes.
Here local stationarity refers to the slowly or smoothly evolving data generating
mechanism of a temporal system ([6], [24], [37]). In time series analysis, the
estimation and modelling of the autocovariance structure is of fundamental im-
portance in, for example, the optimal forecasting of the series [1], the efficient
estimation of time series regression models [17] and the inference of time series
regression parameters [1]. When the trend function is discontinuous, removing
the trend from the time series and then estimating the autocovariances from
the residuals is not a good idea since it is very difficult to estimate the trend
function near the points of discontinuity accurately. In this case, the aforemen-
tioned difference-based methods offer a good alternative. In this paper, we adopt
a difference-based local linear regression method for the aforementioned time-
varying autocovariance estimation problem. The method can be viewed as a
nonparametric and nonstationary extension to [30]. It is shown that the uniform
convergence rate of autocovariance function estimation for the difference-based
method under complex trend is the same as that of autocovariance function es-
timation of a zero-mean time series when the number of points of discontinuity
as well as the jump sizes diverge to infinity at a sufficiently slow rate. Therefore,
asymptotically, the accuracy of autocovariance function estimation will not be
affected by the complex trend when the difference-based nonparametric method
is used.

Making inference of the autocovariance functions is an important task in
practice as practitioners and researchers frequently test whether certain para-
metric or semi-parametric models are adequate to characterize the time series
covariance structure. For instance, one may be interested in testing whether
the autocovariance functions are constant over time so that a weakly stationary
time series model is sufficient to forecast the future observations. There is a
rich statistical literature on the inference of autocovariance structure of locally
stationary time series, particularly on the testing of weak stationarity of such
series. See for instance [25], [12], [8], [23], [9] and [11]. To our knowledge, only
constant or smoothly time-varying trend were considered in the aforementioned
literature of covariance inference. In this paper, simultaneous confidence bands
(SCB) with asymptotically correct coverage probabilities are constructed for
the time-varying autocovariance functions when estimated by the difference-
based local linear method. The SCB serves as an asymptotically correct tool for
various hypothesis testing problems of the autocovariance structure under dis-
continuous mean functions. A general way to perform such hypothesis tests is to
estimate the autocovariance functions under the parametric or semi-parametric
null hypothesis and then check whether the fitted functions can be fully em-
bedded into the SCB. As the autocovariance functions can be estimated with
faster convergence rates under the parametric or semi-parametric null hypoth-
esis, the aforementioned way to perform the test achieves correct Type-I error
rate asymptotically. The tests are of asymptotic power 1 for local alternatives
whose uniform distances from the null are of the order greater than that of
the width of the SCB, see Theorem 2 in [35] for instance. We also propose a
simulation-assisted bootstrapping method for the practical construction of the
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SCB.
The paper is organized as follows. In Section 2, we introduce the model for-

mulation and some assumptions on xi and εki . Section 3 presents the asymptotic
theory for local estimate βk(·). Practical implementation including a suitable dif-
ference lag and tuning parameters selection procedure, estimation of covariance
matrices as well as an assisted bootstrapping method are discussed in Section 4.
In Section 5, we conduct some simulation experiments on the performance of
our SCBs. A real data application is provided in Section 6. Technical proofs of
the main results are deferred to the Section 7.

2. Model formulation

Consider model:
yi,n = μi,n + xi,n (2)

where μi,n := μ(ti) is a mean function or signal with unknown change points,
yi,n = y(ti) and xi,n = x(ti) := G( i

n ,Fi) is a zero-mean locally stationary
process with ti = i/n, i = 1, ..., n. Eq. (2) covers a wide range of nonstationary
linear and nonlinear processes, see [37] for more discussion. We shall omit the
subscript n in the sequel if no confusion arises. Let ζi, i ∈ Z, be independent and
identically distributed (i.i.d.) random variables, and define Fi = (..., ζi−1, ζi).
Then, the process {xi} can be written as

xi = G(ti,Fi),

where G(·, ·) is a measurable function such that G(t,Fi) is well defined for all
t ∈ [0, 1]. In this paper, we focus on the case that there exists 0 = a0 < a1 <
· · · < ad < ad+1 = 1 such that

μ(t) =
d∑

j=0

μj(t)1{aj≤t<aj+1},

where μj(t) is a Lipschitz continuous function over [aj , aj+1) and d is the total
number of change points. Till the end of this paper, we will always assume
d = dn = O(nα) and the maximal jump size Δn = max1≤j≤d |μj(aj)−μj(a

−
j )| =

O(nβ) with 0 ≤ α, β < 1.
To estimate the second order structure of the process Eq. (2), we introduce

the approach based on the difference sequence of a finite order applied to the ob-
servations yi. Assuming that the number of observations is n+k, this difference-
based covariance estimation approach would define simple squared differences
of the observations, i.e., ρki := ρk(ti−k) = (yi− yi−k)

2, i = k+1, k+2, ..., k+n.
Notice that for any fixed t, {ξi(t) := G(t,Fi)}i∈Z is a stationary process. For
convenience, let us denote si = ti−k = i−k

n . Then, γk(si) is the kth order au-
tocovariance function of the process {xi} at the fixed time si; in other words,
γk(si) := Cov(xi, xi−k), k = 0, 1, .... If k = 0, then γ0(si) turns out to be the
variance of xi at fixed time si.
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We first introduce some notation that will be used throughout this paper. For
any vector v = (v1, v2, ..., vp) ∈ R

p, we let |v| = (
∑p

i=1 v
2
i )

1/2. For any random
vector V , write V ∈ Lp (p > 0) if ‖V ‖p := E(|V |p)1/p < ∞. Denote Cp([0, 1]) as
the function space on [0,1] of functions that have continuous first p derivatives
with integer p > 0. Now, we need the following definition and assumptions:

Definition 1 (Physical dependence measure). For all t ∈ [0, 1], assume a
stochastic system L(t,Fj) ∈ Lp, q > 0. Let (ζ ′j)j∈Z be an i.i.d. copy of (ζj)j∈Z.
Then, for any j ≥ 0, we denote F ′

j = (F−1, ζ
′
0, ζ1, ..., ζj). The physical depen-

dence measure for L(t,Fj) is defined as

δq(L, j) = sup
t∈[0,1]

‖L(t,Fj)− L(t,F ′
j)‖q. (3)

If j < 0, let δq(L, j) = 0. Thus, δq(L, j) measures the dependence of the
output L(t,Fj) on the single input ζ0; see [32] for more details.

Assumption 1. δ8(G, l) = O(l−4) for l ≥ 1.

Assumption 2 (Stochastic Lipschitz continuity). There exists a constant C >
0, such that ‖G(t,Fi) − G(s,Fi)‖4 ≤ C|t − s| holds for all t, s ∈ [0, 1] and
supt∈[0,1] ‖G(t,Fi)‖8 < ∞.

Assumption 1 shows that the dependence measure of time series {xi} decays
at a polynomial rate, thus indicating short-range dependence. Assumption 2
means that G changes smoothly over time and ensures local stationarity. Here,
we show some examples of the locally stationary linear and nonlinear time series
that satisfy these assumptions.

Example 1 (Nonstationary linear processes). Let ζi be i.i.d. random variables
with ζi ∈ Lq, q ≥ 1; let aj(·), j = 0, 1, ..., be C1([0, 1]) functions such that

G(t,Fi) =
∞∑
j=0

aj(t)ζi−j (4)

is well defined for all t ∈ [0, 1]. Clearly by Proposition 2 of [37], we know that
Assumption 1 will be satisfied if supt∈[0,1]{|al(t)|2} = O(l−4). Furthermore, if∑∞

j=0{supt∈[0,1] |a′j(t)|2} < ∞, the stochastic Lipschitz continuity condition in
Assumption 2 also holds true.

Example 2 (Nonstationary nonlinear processes). Let ζi be i.i.d. random vari-
ables and consider the nonlinear time series framework

ξi(t) = R(t, ξi−1(t), ζi), (5)

where R is a measurable function and t ∈ [0, 1]. This form has been introduced by
[37] and [36]. Suppose that for some x0, we have supt∈[0,1] ‖R(t, x0, ζi)‖q < ∞
for q > 0. Denote

χ := sup
t∈[0,1]

L(t), where L(t) = sup
x �=y

‖R(t, x, ζ0)−R(t, y, ζ0)‖q
|x− y| .
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It is known from Theorem 6 of [37] that if χ < 1, then Eq. (5) admits a unique lo-
cally stationary solution with ξi(t) = G(t,Fi) and the physical dependence mea-
sure satisfies that δq(G, j) ≤ Cχj, which shows geometric moment contraction.
Hence, the temporal dependence with exponentially decay indicates Assumption 1
holds with q = 8. Further by Proposition 4 of [37], we conclude that Assumption
2 holds for q = 4 if

sup
t∈[0,1]

‖M(G(t,F0))‖q < ∞, where M(x) = sup
0≤t<s≤1

‖R(t, x, ζ0)−R(s, x, ζ0)‖q
|t− s| .

Due to the local stationarity of the process {xi}, we have the following lemma
which shows that, under mild assumptions, the autocovariance of {xi} also
exhibits polynomial decay.

Lemma 1. Suppose Assumptions 1 and 2 hold, then we have supt∈[0,1] |γk(t)| =
O(k−4) for k ≥ 1.

With the above result, we can choose h large enough such that γk(t) ≈ 0 for
k ≥ h. Next we focus on the difference series ρki for k = 1, ..., h and we always
assume h = hn = O(n1/8 logn). By Eq. (2), we know that

ρki = (xi − xi−k)
2 + (μi − μi−k)

2 + 2(xi − xi−k)(μi − μi−k)

: = αk
i + λk

i + θki . (6)

Recall si = (i−k)/n for i = k+1, ..., k+n and notice that αk
i := αk(si) = (xi−

xi−k)
2 is the squared difference of two locally stationary processes. Therefore,

it is also a locally stationary process. As a result, we can define

αk
i = (xi − xi−k)

2 = βk(si) + εki , k = 1, ..., h, (7)

where βk(·) is the unknown trend function and εki := εk(si) is a zero-mean
process. Then εki can be written as

εki = Hk(si,Fi), (8)

where Hk is a measurable function similar to G. With Eq. (7), if the trend func-
tion is smooth, one can easily obtain the estimator of βk(·). Now, we introduce
the following conditions.

Assumption 3. For each k = 0, ..., h− 1, we assume that the kth order auto-
covariance function γk(t) ∈ C3([0, 1]).

Assumption 4. The smallest eigenvalue of σk(t) is bounded away from 0 on
[0, 1] for k = 1, ..., h, where

σk(t) =

⎧⎨⎩
∞∑

j=−∞
Cov(Hk(t,F0), Hk(t,Fj))

⎫⎬⎭
1/2

, (9)

and σ2
k(t) represents the long-run variance of εk(t) for each fixed t ∈ [0, 1].
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Assumption 5. A kernel K(·) is a symmetric, bounded density function with
the compact support [−1, 1].

Assumption 3 guarantees that the trend function βk(·) changes smoothly for
each k = 1, ..., h and is three-times continuously differentiable over [0, 1]. As-
sumption 4 prevents the asymptotic multicollinearity of regressors. Assumption
5 allows popular kernel functions such as Epanechnikov kernel. Now substituting
Eq. (7) to Eq. (6), we have

ρki = βk(si) + εki + λk
i + θki . (10)

Since the length of the series {ρki }k+n
i=k+1 is n, we reset the subscript with

respect to i as {ρki }ni=1 and therefore the time point turns out to be ti = i/n
for i = 1, ..., n. Similar notations are used for series {εki }, {λk

i } and {θki }. By
Assumption 3 and the Taylor’s expansion on βk(·), it is natural to estimate βk(t)
using the local linear estimator as follows:

(β̂k,b(t), β̂
′
k,b(t)) = argmin

c0,c1∈R

[
n∑

i=1

[ρki − c0 − c1(ti − t)]2Kb(ti − t)

]
, (11)

where ti = i/n with i = 1, ..., n and Kb(·) = K(·/b) is a kernel function, b = bn
is the bandwidth satisfying b → 0 and nb → ∞. Since Eq. (11) is essentially a
weighted least squares estimate, we can write the solution of Eq. (11) as

β̂k,b(t) =

n∑
i=1

ωb
n(t, i)ρ

k
i , (12)

where ωb
n(t, i) = Kb(ti−t)

Sb
2(t)−(ti−t)Sb

1(t)

Sb
2(t)S

b
0(t)−[Sb

1(t)]
2 with Sb

j (t) =
∑n

i=1(ti−t)jKb(ti−t),

j = 0, 1, 2. The time domain of t is fixed over [0, 1] and ωb
n(t, i), n(t− b) ≤ i ≤

n(t+ b) is the weight given to each observation ρki .
Next, we will establish the following two lemmas that are useful in establish-

ing asymptotic properties of proposed estimators. Their proofs are given in the
Section 7.2.

Lemma 2. Suppose Assumptions 1–2 hold, then we have δ4(Hk, l) = O(l−4) for
0 < l < k and δ4(Hk, l) = O(l−4)+O((l−k+1)−4) for l ≥ k, where k = 1, .., h.

Lemma 3. Suppose Assumptions 1–3 hold, then we have ‖Hk(t,Fi)−Hk(s,Fi)‖2
≤ C|t− s| and supt∈[0,1] ‖Hk(t,Fi)‖4 < ∞.

3. Main results

3.1. Asymptotic theory

By Assumption 3 and for l = 0, 1, ..., define

Qk
n,l(t) =

1

nb

n∑
i=1

(
ti − t

b

)l

K

(
ti − t

b

)
, (13)
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Rk
n,l(t) =

1

nb

n∑
i=1

ρki

(
ti − t

b

)l

K

(
ti − t

b

)
. (14)

Then Eq. (11) can be expressed as(
β̂k,b(t)

bβ̂′
k,b(t)

)
=

(
Qk

n,0(t) Qk
n,1(t)

Qk
n,1(t) Qk

n,2(t)

)−1(
Rk

n,0(t)
Rk

n,1(t)

)
:= [Qk

n(t)]
−1Rk

n(t).

(15)
Let

μl =

∫
R

xlK(x)dx and φl =

∫
R

xlK2(x)dx, l = 0, 1, ....

Now, we will construct SCBs for βk(·), k = 1, ..., h.

Theorem 1. Suppose that Assumptions 1–5 hold and further assume that
(1) σk(t) is Lipschitz continuous on [0, 1].
(2) log(n)/(n1/4−β

√
b) + log(n)/(n3/8−2β

√
b) + nb5 → 0.

(3) 2b < ι := min1≤j≤d(aj − aj−1).
Then, for each k = 1, ..., h, we have

P

[√
nb

φ0
sup
t∈T

∣∣∣σ−1
k (t)

{
β̂k,b(t)− βk(t)

}∣∣∣−BK(m∗) ≤ u√
2 log(m∗)

]
= exp{−2 exp(−u)},

as n → ∞, where T = [b, 1− b], m∗ = 1/b and

BK(m∗) =
√

2 log(m∗) +
1√

2 log(m∗)
log

⎛⎝ 1

π

√
1

4φ0

∫ 1

−1

|K ′(u)|2du

⎞⎠ .

Let us comment on the conditions listed in Theorem 1. Condition (1) shows
the smoothness of σk(t). Condition (2) is an undersmoothing requirement that
reduces the bias of the estimators to the second order. Condition (3) guarantees
there exists at most one change point in the b-neighborhood of any time t.
Furthermore, if the change points {aj}dj=1 are uniformly distributed on the

interval [0, 1], it suffices to control α ≤ 1/5 such that n−α > 2b using nb5 → 0
in condition (2).

Notice that E(ρki ) = βk(ti) + E(λk
i ) = 2γ0(ti) − 2γk(ti) + Δ̃2

i , where Δ̃2
i =

O(1/n2) when there is no change point between observations yi and yi−k, Δ̃
2
i ≤

Δ2
n = O(n2β) when there exists at least a change point on μ(·). However, the

estimate of λk
i can be viewed as a negligible term (refer to the proof of Theorem 2

in the 7.2). With the previous discussion in mind, we can define

γ̂0(t) =
1

2
β̂h,bh(t),

γ̂k(t) =
1

2

[
β̂h,bk(t)− β̂k,bk(t)

]
, k = 1, ..., h− 1,
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where bh and bk are the bandwidths for estimators γ̂0(t) and γ̂k(t), respectively.
Making it easy to distinguish, here we use the different notations for the band-
widths which will be selected by some criterion (see Section 4.4). Notice that
we require the same bandwidth bk to compute the estimator of γk(t). With the
above results, the SCB for γ0(·) is straightforward.

Corollary 1. With the conditions in Theorem 1, we have

P

[√
4nbh
φ0

sup
t∈T

∣∣σ−1
h (t) {γ̂0(t)− γ0(t)}

∣∣−BK(m∗) ≤ u√
2 log(m∗)

]
= exp{−2 exp(−u)}.

Furthermore, to facilitate the SCBs for γk(·), k = 1, ..., h−1, we will consider

a linear combination of βk(·). First, define H̃k = (Hh(t,Fi), Hk(t,Fi))
� and a

2 by 2 matrix

Σ2
k(t) =

∞∑
j=−∞

Cov(H̃k(t,F0), H̃k(t,Fj)). (16)

We also denote β̃k(t) = (βh(t), βk(t))
� as a two-dimensional vector, C = (1,−1)�

and βC,k(t) = C�β̃k(t). The natural estimators for β̃k(t) and βC,k(t) are β̂k(t) =

(β̂h,bk , β̂k,bk)
� and β̂C,k(t) = C�β̂k(t) = β̂h,bk−β̂k,bk , respectively. Furthermore,

let σ2
C,k(t) = C�Σ2

k(t)C, similar to Theorem 3 in [38]. At this point, we can ob-
tain the following result.

Corollary 2. Suppose that the smallest eigenvalue of σC,k(t) is bounded away
from 0 on [0, 1] for k = 1, ..., h−1. Moreover, we assume that all of the conditions
of Theorem 1 are valid. Then, we have (i)

P

[√
nbk
φ0

sup
t∈T

∣∣∣σ−1
C,k(t)

{
β̂C,k(t)− βC,k(t)

}∣∣∣−BK(m∗) ≤ u√
2 log(m∗)

]
= exp{−2 exp(−u)},

as n → ∞. (ii) Furthermore, one can easily deduce the SCB for γk(·), k =
1, ..., h− 1,

P

[√
4nbk
φ0

sup
t∈T

∣∣∣σ−1
C,k(t) {γ̂k(t)− γk(t)}

∣∣∣−BK(m∗) ≤ u√
2 log(m∗)

]
= exp{−2 exp(−u)}.

Remark 1. It is noteworthy mentioning that for estimating βC,k(t), we use the

same bandwidth bk; therefore, the entire estimator β̂C,k(t) = β̂h,bk(t) − β̂k,bk(t)
depends on only a single tuning parameter (bandwidth bk). This enables us to
achieve the conclusion of Corollary 2 (i) based on the result of Theorem 1. As
a result, Corollary 2 (ii) also holds true due to this fact.
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After constructing SCBs for the second order structure γk(·), the following
theorem states that γ̂k(t) are consistent estimators for γk(t) uniformly in t for
all k = 0, ..., h− 1.

Theorem 2. Under Assumptions 1–5 and suppose condition

log(n)/(n3/5b) + log(n)/(n7/8−2βb) + log(n)/(n3/4−βb) → 0, ι > 2b

holds true. Then, we have

sup
t∈T

∣∣∣β̂k,b(t)− βk(t)
∣∣∣ = OP(χn), k = 1, ..., h,

where χn = b2 +
√

log(n)
nb + log(n)

n3/5b
+ log(n)

n7/8−2βb
+ log(n)

n3/4−βb
.

This theorem implies the uniform consistency of β̂k,b(·). Additionally, due
to the relationship between βk and γk, we can also easily obtain the following
consistency result for γ̂k(·).
Corollary 3. With the conditions in Theorem 2, we have

sup
t∈T

|γ̂k(t)− γk(t)| = OP(χn), k = 0, ..., h− 1.

4. Practical implementation

4.1. Selection of the difference lag

Note that for any fixed time t, β̂k,bk(t) = 2γ̂0(t)−2γ̂k(t) and recall that γk(t) ≈ 0
when k ≥ h, where h is a large value that has been chosen in advance. Hence,
we know that if k ≥ h, β̂k,bk(t) ≈ 2γ̂0(t) is practically invariant with respect to
t as k increases. This fact suggests the following bandwidth selection procedure.

First, for any fixed t, we choose a large enough value h0(t) and select k =

h0(t). Next, we calculate β̂k,bk(t). Then, by successively decreasing the value of k
and considering k = h0(t)−1, h0(t)−2, ..., we calculate the corresponding quan-

tities β̂k,bk(t) until β̂k,bk(t) shows an abrupt change. At this point, the optimal
difference lag for time t can be selected as the current k plus 1. Intuitively, we
can interpret this through the scatterplot of (k, β̂k,bk(t)). When the slope of the

function β̂k,bk(t) shows an obvious change, then we can choose h∗(t) = k + 1.
Following the above procedure for each time point ti = i/n, i = 1, ..., n, we
finally choose the optimal lag as h =

∑n
i=1 h

∗(ti)/n.

4.2. Covariance matrix estimation

To apply Corollaries 1 and 2 (ii), we need to estimate the long-run variance
Σ2

k(·) in Eq. (16) first. This problem is complicated but has been extensively
studied by many researchers. Here we adopt the technique considered by [38].
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Let Qk
i =

∑m
j=−m ε̃i+j , i = 1, ..., n, where ε̃i = (εhi , ε

k
i )

� for i = 1, ..., n.

Notice that E(ε̃i) = 0 and denote Nk
i := Qk

iQ
k�
i /(2m + 1). In the locally

stationary case, we can make use of the fact that a block of {ε̃i} is approximately
stationary when its length is small compared with n. Hence, E(Nk

i ) ≈ Σ2
k(ti) as

m → ∞ and m/n → 0. Let τ = τn be the bandwidth and define the covariance
matrix estimator as

Σ̃2
k(t) =

n∑
i=1

ω̃τ
n(t, i)N

k
i , ω̃τ

n(t, i) =
Kτ (ti − t)∑n

k=1 Kτ (tk − t)
,

with τ being the bandwidth. Therefore, the estimate Σ̃2
k(t) is guaranteed to be

positive semidefinite. The following theorems provide consistency of our covari-
ance matrix estimate.

Theorem 3. Assume that Σ2
k(t) ∈ C2[0, 1], δ4(H̃k, j) = O({j log(j)}−2), m =

mn → ∞, m = O(n1/3), τ → 0 and nτ → ∞. Then, (i) for each k, k =
1, ..., h− 1 and any fixed t ∈ (0, 1),∥∥∥Σ̃2

k(t)− Σ2
k(t)
∥∥∥ = O

(√
m

nτ
+

1

m
+ τ2

)
,

(ii) for I = [τ, 1− τ ],∥∥∥∥sup
t∈I

∣∣∣Σ̃2
k(t)− Σ2

k(t)
∣∣∣∥∥∥∥ = O

(√
m

nτ2
+

1

m
+ τ2
)
.

In practice, the errors ε̃j cannot be observed, thus we use Σ̂
2
k(t)=

∑n
i=1 ω̃

τ
n(t, i)

×N̂k
i , where N̂k

i is defined as Nk
i with ε̃j therein replaced by its estimator ε̂j .

Theorem 4. Assume that conditions of Theorem 2 and conditions of Theorem 3
hold. Denote νn =

√
m log(n)χn, where χn is defined in Theorem 2 and further

assume νn → 0. Then

sup
t∈I

∣∣∣Σ̂2
k(t)− Σ2

k(t)
∣∣∣ = OP

(
νn +

√
m

nτ2
+

1

m
+ τ2

)
.

Note that σ2
h(t) is the first diagonal element of Σ2

k(t) and σ2
C,k(t) = C�Σ2

k(t)C.
Thus, the covariance estimates in Corollaries 1 and 2 (ii) can be easily calculated

via plugging in the long-run covariance matrix estimate Σ̂2
k(t).

4.3. Simulation assisted bootstrapping method

Now we aim to apply Corollary 1 and Corollary 2 (ii) to construct the SCBs.
Let γ̂′′

0 (t) and γ̂′′
k (t) be uniformly consistent estimators of γ′′

0 (t) and γ′′
k (t) for

k = 1, ..., h − 1, respectively. Then the corresponding (1 − α)th SCB with α ∈
(0, 1) for γ0(t) and γk(t) are[

γ̂0(t)± σ̂h(t)

√
φ0

4nb

(
BK(m∗)− log[log(1− α)−1/2]√

2 log(m∗)

)]
,
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γ̂k(t)± σ̂C,k(t)

√
φ0

4nb

(
BK(m∗)− log[log(1− α)−1/2]√

2 log(m∗)

)]
, k = 1, ..., h− 1.

Due to the slow rate of convergence to Gumbel distribution, in practice, the
UCB from Corollaries 1 and 2 (ii) may not have good finite-sample performances.
To circumvent this problem, we shall adopt a simulation assisted bootstrapping
approach.

Proposition 1. Suppose conditions in Theorem 1 hold and also assume that
σk(t) is Lipschitz continuous for k = 1, ..., h. Then, on a richer probability space,
there are i.i.d. standard normal distributed random variables ui such that

sup
t∈T

|γ̂0(t)− γ0(t)− Z0(t)| = OP(ψn),

sup
t∈T

|γ̂k(t)− γk(t)− ZC,k(t)| = OP(ψn), k = 1, ..., h− 1,

where ψn = n1/2b7/2+
√

1
n1−2α−4βb

+
√

log(n)
n1−2α−2βb

+
√

b log(n)
n , Z0(t) = σh(t)μ

†
bh
(t)

and ZC,k(t) = σC,k(t)μ
†
bk
(t) with μ†

b(t) =
∑n

i=1 ω
b
n(t, i)ui/2.

The proposition implies that the distribution of supt∈T |σ−1
h (t)[γ̂0(t)−γ0(t)]|

(supt∈T |σ−1
C,k(t)[γ̂k(t)−γk(t)]|) can be well approximated by that of supt∈T |μ†

bh
(t)|

(supt∈T |μ†
bk
(t)|), which can be obtained by generating a large number of i.i.d.

copies via bootstrapping. Therefore, the above proposition provides us with an
alternative way to construct the SCB of the autocovariance function without
using the asymptotic Gumbel distribution.

For ease of application, we combine procedures mentioned above into a con-
venient sequence of steps below.

• Choose the difference lag order h by using method that is proposed in
Section 4.1.

• Find appropriate bandwidths bh and bk for estimating βh(·), βh(·)−βk(·)
respectively, and the bandwidth τ for estimating Σ2

k(·).
• Generate i.i.d. random variables u1, u2, ... ∼ N(0, 1) and calculate

supt∈[bk,1−bk]
|μ†

bk
(t)| for k = 1, ..., h.

• Repeat the last step for a large number of times (e.g. 104) and obtain the

estimated (1− α)th quantile q̂k1−α of supt∈[bk,1−bk]
|μ†

bk
(t)|.

• Calculate Σ̂2
k(t) by using the method in Section 4.2. Then, obtaining σ̂h(t)

together with σ̂C,k(t) is straightforward.
• Construct the (1−α)th SCB of the autocovariance function γ0(t) as γ̂0(t)±

q̂h1−ασ̂h(t), and γ̂k(t)± q̂k1−ασ̂C,k(t) for γk(t), k = 1, ..., h− 1.

4.4. Selection of tuning parameters

In this subsection, we briefly discuss the practical choices of tuning parameters
b, m and τ . Here, we consider the generalized cross-validation (GCV) method by
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[5] to choose the bandwidth b. Specifically, we consider two cases of bandwidth
selection for γ0(t) and γk(t), k = 1, ..., h− 1, respectively. For estimating γ0(t),

let Ph = (ρh1 , ..., ρ
h
n)

� and P̂h(b) = (ρ̂h1 (b), ..., ρ̂
h
n(b))

� be the corresponding fitted

values. One can write P̂h(b) = H(b)Ph, where H(b) is an n by n square hat
matrix that depends on b. Then, we choose the optimal bandwidth (say bh)
that minimizes

GCVh(b) =
n−1
∑n

i=1[ρ
h
i − ρ̂hi (b)]

2

[1− trace(H(b))/n]2
.

On the other hand, when estimating γk(t) for k = 1, ..., h − 1, we treat
γ̂k(t) as a whole term and choose a joint bandwidth for it. Similarly, denote

Pk = (ρh1 − ρk1 , ..., ρ
h
n − ρkn)

� and let P̂k(b) = (ρ̂h1 (b) − ρ̂k1(b), ..., ρ̂
h
n(b)− ρ̂kn(b))

�

be the corresponding fitted values. As before, one can write P̂k(b) = H(b)Pk.
With this in mind, we select as optimal the bandwidth (say bk) that minimizes
the following quantity:

GCVk(b) =
n−1
∑n

i=1[(ρ
h
i − ρki )− (ρ̂hi (b)− ρ̂ki (b))]

2

[1− trace(H(b))/n]2
.

For the choice of m and τ , we now employ the extended minimum volatility
method (including two parameters) which was proposed in Chapter 9 of [10].
This method is based on the fact that if a pair of block size and bandwidth is in
an appropriate range, then confidence regions for the local mean constructed by
Σ̂2

k(t) should be stable. Therefore, we first consider a grid of possible block sizes
and bandwidths and then choose the optimal pair that minimizes the volatility
of the boundary points of the confidence regions in the neighborhood of this
pair. To be more specific, let the grid of possible block sizes and bandwidths be
{m1, ...,mM1} and {τ1, ..., τM2}, respectively. Then denote the estimated long-

run covariance matrices as {Σ̂2
k(mi, τj , t)} for i = 1, ...,M1, j = 1, ...,M2. For

each pair (mi, τj), we need to calculate

ISE
[
∪2
r=−2{Σ̂2

k(mi+r, τj , t)} ∪ ∪2
r=−2{Σ̂2

k(τj+r,mi, t)}
]
, k = 1, ..., h, (17)

where ISE denotes the integrated standard error

ISE[{Σ̂2
k(s, ·, t)}ls=1] =

∫ 1

0

{
1

l − 1

l∑
s=1

∣∣∣∣Σ̂2
k(s, ·, t)−

¯̂
Σ

2

k(·, t)
∣∣∣∣2
}1/2

dt

with
¯̂
Σ

2

k(·, t) =
∑l

s=1 Σ̂
2
k(s, ·, t)/l and s being the parameter m or τ . Finally, we

choose the pair (m∗
i , τ

∗
j ) that minimizes Eq. (17).

5. Simulations

To illustrate performance of the proposed estimator of autocovariance, we con-
sider several models. For each model, we obtain the uniform confidence interval
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coverage of the true variance function and the autocovariance function at lag 1
for three different sample sizes: n = 400, n = 600 and n = 800. In each case,
we use 500 replications. To select bandwidths bh and bk we use the grid from
0.15 to 0.45 with the step size 0.01. We also provide a graphical illustration
of a confidence interval enclosing the true variance and autocovariance lag 1
functions for each of the models considered.

The first model considered has the errors that are generated by a locally

stationary linear process (4) with aj(t) =
(
t
2

)j
, j = 1, 2, . . . while the sequence

(ζi) consists of i.i.d. normal random variables with mean zero and variance 1.
In this case the coefficients start with j = 1 since otherwise a0(t) is undefined

at t = 0. The Assumption 1 is satisfied since supt∈[0,1] a
2
j (t) ≤

(
1
4

)j
which is, of

course, O(j−4). Assumption 2 is also satisfied because
∑∞

j=1 supt∈[0,1] |a′j(t)|2 =∑∞
j=1

j2

4j < ∞. Next, the mean function μ(t) is taken to be a piecewise constant

function with six change-points located at fractions 1
6±

1
36 ,

3
36±

2
36 , and

5
6±

3
36 of

the sample size n. In the first segment, μ1 ≡ μ(t1) = 0, in the second it is equal
to 1, and in the remaining segments μ(t) alternates between 0 and 1, starting
with 0 in the third segment. This mean function is very similar to the one that
has been considered earlier in several other publications; see e.g. [4] and [30].

The second model we consider has exactly the same error structure as Model
1 but the mean function is a slightly different one. In particular, we make the
value of the function in the second segment 2 instead of 1 while the remaining
segments of μ(t) alternate between 0 and 1, starting with 0 in the third segment.
Since the error process remains the same as before in Model 1, Assumptions 1
and 2 are satisfied.

The third model we consider is where the errors are generated by a locally
stationary MA(2) process

xi =
2∑

j=0

aj(t)ζi−j

with coefficients being equal to aj(t) =
(t+0.05)j

2j , j = 0, 1, 2. The sequence (ζi)
consists of i.i.d. N(0, 0.3) random variables. The locally stationary MA pro-
cess considered is a special case of the general locally stationary linear process.
Since the process consists of the finite number of terms, the stochastic Lipschitz
continuity condition in the Assumption 2 is satisfied automatically. Because
supt∈[0,1] a

2
j (t) ≤ (0.525)2j , the Assumption 1 will also be satisfied. Finally, the

mean function stays the same as in the Model 1.

In Table 1, we illustrate coverage probabilities of uniform confidence intervals
of the variance function and lag 1 covariance function for all three of the models
considered with three sample sizes, n = 400, n = 600 and n = 800. Note that
even a relatively small sample size of 400 gives excellent coverage probabilities.
It is also worthwhile noting that the coverage probabilities are generally higher
for lag 1 autocovariance function than for the variance function.

To investigate a possible breakdown threshold in terms of sample size, we
also considered the Model 1 from our simulation setting for two smaller sample
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Table 1

Empirical coverage probabilities for all three models.

Sample size Model 1 Model 2 Model 3

n = 400
Variance 0.968 0.994 0.962

Lag 1 autocovariance 0.994 0.998 0.998

n = 600
Variance 0.980 0.996 0.962

Lag 1 autocovariance 0.996 1.000 0.998

n = 800
Variance 0.996 0.970 0.972

Lag 1 autocovariance 0.996 0.996 0.998

sizes n = 300 and n = 100, with 500 replications in either case. The bandwidth
was selected on a grid from 0.15 to 0.45 with the step of 0.01. When the sample
size n = 300, the resulting empirical coverages were 0.936 for the variance and
0.978 for the lag 1 autocovariance. For the sample size n = 100, however, the
resulting coverages became completely unsatisfactory; more specifically, they
turned out to be 0.312 for the variance γ0 and 0.51 for the lag 1 autocovariance.
These results seem to imply that the sample size threshold necessary for such a
breakdown is rather low.

To illustrate the behavior of uniform confidence intervals for each of the three
models considered, we also include sample plots of fitted variance/autocovariance
curves with corresponding confidence intervals in Figures 1–3. For each model,
two plots are given: one with the true variance function, its estimate, and a
uniform confidence interval for the estimated variance curve, while the other
one contains the true lag 1 autocovariance function, its estimate, and the cor-
responding uniform confidence interval for the estimated autocovariance curve.
In each of the plots, a solid line is used for the true variance/autocovariance
curve, a dashed line for the corresponding estimated curve, and red dotted lines
for uniform confidence intervals.

Fig 1. Estimated variance (left) and lag 1 autocovariance functions (right) for Model 1

To illustrate the reasonableness of our method, we also provide a quick com-
parison of our approach to a very straightforward “naive” method. Such a
method would start with a rough estimate of the mean function μ(t) using
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Fig 2. Estimated variance (left) and lag 1 autocovariance functions (right) for Model 2

Fig 3. Estimated variance (left) and lag 1 autocovariance functions (right) for Model 3

a local smoother, for example, a local linear regression. The resulting rough es-
timate of the mean function can then be subtracted from observations to form
a series of residuals ei, i = 1, . . . , n. Using this series, a naive approach would
estimate the variance function γ0(t) by applying a smoother, e.g. yet again the
local linear regression, to squared residuals e2i , i = 1, . . . , n. In much the same
way, applying the local linear regression to a series eiei−1, i = 2, . . . , n will re-
sult in a “naive” estimate of the lag 1 autocovariance function γ1(t). In both
situations, we used a simple generalized cross-validation to obtain the optimal
smoothing bandwidth.

It is probably sufficient to say that such a naive approach fails completely
in an attempt to estimate the second order structure when the mean is discon-
tinuous and has numerous change points. More specifically, we tried to obtain
the coverage of the true variance function γ0(t) by a uniform confidence interval
that is based on the “naive” estimate described above. To do so, we used our
Model 1 with the sample size n = 400 and 500 replications. We found that the
coverage is zero, that is, the true variance function γ0(t) is never completely
inside the uniform confidence interval. This can be explained properly by notic-
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ing that our mean estimate used to obtain residuals is extremely crude. More
specifically, in order for the local linear mean function estimator to be consistent
at a given point the mean function μ(t) has to have two continuous derivatives
at that point; see e.g. [14] p. 62 for a detailed discussion. This lack of consistency
results in a severe bias of the variance function estimator. Thus, such a direct
approach seems to be completely inappropriate for determination of the second
order structure.

A more sophisticated comparison to existing methods is also desirable but is
not easy to conceive of since our general model has not been considered in the
literature earlier. Here, we pursue the following approach. First, we generate
data from the nonparametric heteroscedastic regression model yi,n = μi,n+xi,n

with correlated errors. The piecewise-constant mean is taken as in the Model 2
but the error process is now stationary. For easy comparison, we selected the
1-dependent stationary error process described in Section 6 of [30]. Now, it is
necessary to estimate the (constant) variance and autocovariance at lag 1 γ0
and γ1 in such a model in two different ways.

• First, we apply the difference-based estimators of [30] and construct con-
fidence intervals based on these estimators. To obtain these confidence
intervals, we use the results from Theorem 1 of [30] where the bias and
variance of these estimators are computed. Let Bi and Vi, i = 0, 1 be the
bias and variance of γ̂i, i = 0, 1 obtained in the Theorem 1 [30] directly.
Note that, since the depth of dependence m = 1, we select as the optimal
difference coefficient d = 1 according to (2.14) in [30]. Whenever Bi and
Vi depend on the true values of γi, we plug in the estimated values γ̂i
instead. Then, assuming asymptotic normality of their estimators, we can
obtain 100(1−α)% intervals, 0 < α < 1, for both true variance γ0 and lag
1 autocovariance γ1 as γ̂i +Bi ± zα/2V (γ̂i), i = 0, 1.

• Second, we use the difference-based estimators proposed in our manuscript
to estimate the unknown γ0 and γ1. This would have been, of course, a
natural step if the stationarity of the data was not known in advance. Next,
the confidence bands obtained in Corollaries 1 and 2 of our manuscript
are used to compute the empirical coverage level of these estimators.

We proceed to compare the two approaches, choosing 500 replications for sample
sizes n = 400, 600 and 800. The value of the parameter defining the 1-dependent
stationary error process of [30] is set to 0.2. To select bandwidth bh and bk, we
use the grid from 0.1 to 0.3 with the step size 0.05 when the sample size n = 400,
from 0.1 to 0.2 with the step size 0.05 when the sample size n = 600, and from
0.1 to 0.15 with the step size 0.05 when the sample size n = 800. The results
are summarized in Tables 2 and 3.

The results suggest that using the method proposed for stationary data offers
better empirical coverage probabilities than our method when applied to sta-
tionary data. A possible exception is only observed for larger sample sizes (e.g.
n = 600 and n = 800) when estimating the variance function. Note also that,
for the variance γ0, our method can provide a better performance as the sample
size increases, while still remaining below the nominal level for both n = 400
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Table 2

Empirical coverage probabilities for the variance and lag 1 autocovariance in the stationary
model using our method

Sample size 400 600 800
Variance coverage 0.826 0.932 0.968

Lag 1 autocovariance 0.952 0.954 0.976

Table 3

Empirical coverage probabilities for the variance and lag 1 autocovariance in the stationary
model using [30] method

Sample size 400 600 800
Variance coverage 0.906 0.912 0.924

Lag 1 autocovariance 0.972 0.972 0.978

and n = 600. This does not happen for lag 1 autocovariance γ1 where even
the sample size n = 400 is enough for our method to guarantee the promised
coverage level.

Finally, it also seems desirable to see how the method performs if the mean
function is more complicated than just a simple piecewise constant pattern.
As a first step, we make the mean function more difficult to handle. Now,
the mean function μ(t) is taken to be a piecewise linear function with six
change-points located at fractions 1

6 ± 1
36 ,

3
36 ± 2

36 , and
5
6 ± 3

36 of the sam-
ple size n. Adding 0 and n to the above sequence, we have a sequence τl
where l = 0, 1, . . . , 8. We denote the mean function over a segment starting
at τ2k k = 0, 1, 2, 3 μ2k and mean function over a segment starting at τ2k+1,
k = 0, 1, 2 μ2k+1. In all of the even-numbered segments μ2k ≡ 0 while in all
of the odd numbered segments the mean function is a straight line with the
equation μ2k+1(x) =

x−τ2k+1

τ2k+2−τ2k+1
for any τ2k+1 ≤ x < τ2k+2. Second, we set up

the error process that would imitate the second order structure of the Northern
hemisphere anomalies dataset that is used in our manuscript. Since the autoco-
variances at lags greater than 1 seem to be effectively zero for this dataset, we
decided to make the variance and lag 1 autocovariance functions of the proposed
synthetic process similar to those of that dataset. To do so, we use the locally
linear MA (1) process xi,n =

∑1
j=0 aj(t)ζi−j where ζi are iid N(0, σ2) with

some variance σ2 as our error process. The coefficient functions are selected as
aj(t) = e−(j+1)(t+0.05) for j = 0, 1. This implies immediately that the variance
of this process is γ0(t) = σ2[e−2(t+0.05) + e−4(t+0.05)] and the lag 1 covariance
function is γ1 = e−3t−0.03−2/n. We select σ2 = 0.1. The resulting mean function
and the typical path of the resulting process xi,n are illustrated in the Fig. 4,
while its variance and covariance functions are illustrated below in Fig. 5. Note
that variance and covariance functions are, in particular, similar to those of the
Northern anomalies dataset in Section 6 of our manuscript.

We used our approach to estimate the variance and lag 1 autocovariance
functions of the resulting process for two different sample size: n = 400 and n =
600. First, let n = 400 and the number of replications equal to 500 replications.
We select the bandwidths bh and bk using the grid consisting of only two points,
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Fig 4. Mean function and the typical MA(1) error process path when n = 400

Fig 5. Variance function and lag 1 autocovariance function for the MA(1) error process when
n = 400

0.10 and 0.15. Then, the resulting coverage is 96.2% for the variance function and
99% for the lag 1 autocovariance function. Using the same setting but with the
sample size n = 600, we find the coverage 98.2% for the variance function and
99.4% for the lag 1 autocovariance function. Thus, our approach seems capable
of handling more complicated (not just piecewise constant) mean functions and
various second order structures.

6. Real data application

In this section, we illustrate our approach using a real dataset. There is a rather
clear evidence that the global temperatures are nonstationary (see e.g. [28]) and
so we use the dataset that consists of monthly temperature anomalies observed
during the period from January 1856 to September 2019. A shorter subset of
the same series has been used earlier in [27]. The data used are publicly avail-
able from the Climate Research Unit of the University of East Anglia, UK at
https://www.cru.uea.ac.uk/. The anomalies are defined here as the difference

https://www.cru.uea.ac.uk/
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of temperatures from a reference value. The anomaly data are available for both
Northern and Southern hemisphere separately. Fig. 6 displays the temperature
anomaly data for both hemispheres.

Fig 6. Recorded temperature anomalies for Northern (left) and Southern (right) hemispheres

Our purpose is to estimate the variance and lag 1 autocovariance function
of these data as a function of time. For the Northern hemisphere data the ap-
proach suggested in our manuscript produces an almost monotonically decaying
variance curve that suggests that some nonstationarity is, indeed, present in the
data. This monotonic decay is probably due to the increasing number of weather
stations recording the data over time. The variance of the Southern hemisphere
data is also mostly decreasing although the decay is not as clearly monotonic as
for the Northern hemisphere data. Note that, for both sets of data, the lag 1 au-
tocovariance is very small in magnitude; however, the horizontal zero line added
to both autocovariance plots is clearly not fully inside the uniform confidence
interval, indicating that the temperature series are not white noises.

Now, we are interested in testing whether for these data there exist change
points in the mean function, namely,

H0 : μ1 = μ2 = · · · = μn = μ ←→ H1 : μi �= μj for some 1 ≤ i < j ≤ n.

To this end, we will use the robust bootstrap test for nonstationary time se-
ries proposed in Section 4 of [36]. For Northern Hemisphere data, the robust
bootstrap test yields a < 0.1% p-values with 10000 bootstrap samples, which
provides a very strong evidence against the null hypothesis of no structural
change in mean. On the other hand, we applied the robust bootstrap to the
Southern Hemisphere data. The corresponding p-value of the test with 10000
bootstrap samples is also < 0.1%, which also shows a strong evidence against
H0. As a result, the test further illustrates the usefulness of our method for con-
structing SCB with finite change points. Over some time periods, the data with
wild fluctuations indicates a change in mean and suggests the nonstationarity,
as pointed by [28].
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Fig 7. Variance (left) and lag 1 autocovariance function (right) of Northern hemisphere
anomalies

Fig 8. Variance (left) and lag 1 autocovariance function (right) of Southern hemisphere
anomalies

7. Appendix

7.1. Additional results

The following theorem provides the Gaussian approximation result for nonsta-
tionary multiple time series, which can be found in Theorem 2 of [38].

Theorem 5 (Theorem 2 in [38]). Suppose that Assumptions 1 and 2 hold. A

partial sum process can be defined as S̃k
i =

∑i
j=1 ε

k
j for k = 1, ..., h. Then, on

a richer probability space, there exist i.i.d. standard normal random variables

u1, u2, ..., and a process Ŝk
i such that {S̃k

i }ni=1
D
= {Ŝk

i }ni=1 and

max
i≤n

∣∣∣∣∣∣Ŝk
i −

i∑
j=1

σk(tj)uj

∣∣∣∣∣∣ = OP

(
n2/5 log(n)

)
,

where σk(·) is defined as σk(t) =
{∑∞

j=−∞ Cov(Hk(t,F0), Hk(t,Fj))
}1/2

.
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Theorem 5 implies the Gaussian approximation for a partial sum of a locally
stationary process. Note that, due to the result stated in Lemma 2 of the paper,
the physical dependence measure δ4(Hk, i) has different types of the polynomial
decay under two circumstances, which is more complicated than that of Corol-
lary 2 in [33]. But letting the order of the m-dependence sequence larger than
k and making a careful check of the proof of Corollary 2 in [33], we can obtain
the same argument. Owing to the non-stationarity, the approximated Gaus-
sian process {

∑i
j=1 σk(tj)uj}ni=1 has independent but possibly non-identically

distributed increments.

7.2. Technical details

Proof of Lemma 1. For j ∈ Z, define the projection operator Pj(·) = E(·|Fj)−
E(·|Fj−1), then we can write xi =

∑i
j=−∞ Pj(xi). Denote ti = i/n, we have

|γk(ti)| =

∣∣∣∣∣∣E
⎛⎝ i∑

j=−∞
Pj(xi)

i−k∑
j=−∞

Pj(xi−k)

⎞⎠∣∣∣∣∣∣
≤

∣∣∣∣∣∣E
⎛⎝ ∞∑

j=−∞
Pj(xi)Pj(xi−k)

⎞⎠∣∣∣∣∣∣
≤

∞∑
j=−∞

‖Pj(xi)‖2 · ‖Pj(xi−k)‖2

≤
i−k−1∑
j=−∞

δ2(G, i− j)δ2(G, i− k − j).

The first inequality follows by the orthogonality of Pj(·) and the second in-
equality is due to Fubini’s theorem and Cauchy-Schwartz inequality. The last
inequality follows from the argument in [32, Theorem 1]. Therefore, with As-
sumption 1, there exists a constant C > 0 such that |γk(ti)| ≤ Ck−4. This
concludes our proof.

Proof of Lemma 2. Now, we consider the locally stationary process (xl−xl−k)
2

and let x′
l be the coupled process of xl with ζ0 replaced by an i.i.d. copy ζ ′0.

Then for each k = 1, ..., h,

‖Hk(t,Fl)−Hk(t,F ′
l )‖4

=‖(xl − xl−k)
2 − (x′

l − x′
l−k)

2‖4
=‖(xl − xl−k + x′

l − x′
l−k)(xl − xl−k − x′

l + x′
l−k)‖4

≤‖xl − xl−k + x′
l − x′

l−k‖8 · ‖xl − xl−k − x′
l + x′

l−k‖8
≤4 sup

t∈[0,1]

‖xl‖8 · ( sup
t∈[0,1]

‖xl − x′
l‖8 + sup

t∈[0,1]

‖xl−k − x′
l−k‖8)
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=4 sup
t∈[0,1]

‖xl‖8

{
δ8(G, l), if 0 < l < k,

δ8(G, l) + δ8(G, l − k + 1), if l ≥ k.

=

{
O(l−4), if 0 < l < k,

O(l−4) +O((l − k + 1)−4), if l ≥ k.

Proof of Lemma 3. By Assumption 3, we know that βk(·) is also Lipschitz
continuous, thus with Eq. (7),

‖Hk(t,Fi)−Hk(s,Fi)‖2

=‖[G(t,Fi)−G(t− k

n
,Fi−k)]

2 − βk(t)− [G(s,Fi)−G(s− k

n
,Fi−k)]

2 + βk(s)‖2

≤‖βk(t)− βk(s)‖2 + ‖(G(t,Fi)−G(t− k

n
,Fi−k) +G(s,Fi)−G(s− k

n
,Fi−k)‖4

· ‖(G(t,Fi)−G(t− k

n
,Fi−k)−G(s,Fi) +G(s− k

n
,Fi−k)‖4

≤C|t− s|+ 4 sup
t∈[0,1]

‖xi‖4 · (‖G(t,Fi)−G(s,Fi)‖4

+ ‖G(t− k

n
,Fi−k)−G(s− k

n
,Fi−k)‖4)

≤C|t− s|.

The first inequality follows from the triangle inequality and Minkowski’s in-
equality. The second inequality uses elementary calculation and the last line
follows by Assumption 2. On the other hand, Assumption 3 implies that βk(t)
is bounded on the compact [0, 1]. Then,

sup
t∈[0,1]

‖Hk(t,Fi)‖4 = sup
t∈[0,1]

‖(xi − xi−k)(xi − xi−k) + βk(t)‖4

≤ ( sup
t∈[0,1]

‖xi − xi−k‖8)2 + sup
t∈[0,1]

‖βk(t)‖4

≤ ( sup
t∈[0,1]

‖xi‖8 + sup
t∈[0,1]

‖xi−k‖8)2 + sup
t∈[0,1]

‖βk(t)‖4

< ∞.

To prove Theorem 1, we need to introduce the following lemmas.

Lemma 4. Let F k
n (t) =

∑n
i=1 uiKb(ti − t), where {ui}i∈Z be i.i.d. N(0, 1)

random variables. Suppose that b → 0 and nb/ log(n) → ∞, m∗ = 1/b. Then,

lim
n→∞

(
P

[
1√
nbφ0

sup
t∈T

|F k
n (t)| −BK(m∗) ≤ u√

2 log(m∗)

])
= exp{−2 exp(−u)}.

Proof. Similar to Lemma 2 in [38].
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Lemma 5. Let Dk(t) =
1
nb

∑n
i=1 ε

k
iKb(ti − t). Assume that σk(t) is Lipschitz

continuous and bounded away from 0 on [0, 1] and log(n)/n3/5b+ b log(n) → 0.
Then we have

lim
n→∞

(
P

[√
nb

φ0
sup
t∈T

∣∣σ−1
k (t)Dk(t)

∣∣−BK(m∗) ≤ u√
2 log(m∗)

])
= exp{−2 exp(−u)}.

Proof. By summation by part and the result of Theorem 5, we have

sup
t∈T

|Dk(t)− Ξk(t)| ≤

∣∣∣∣∣∣ 1nb
n∑

i=1

⎡⎣ i∑
j=1

[εji − σk(tj)uj ]K

(
ti − t

b

)⎤⎦∣∣∣∣∣∣ = OP

(
log(n)

n3/5b

)
,

where Ξk(t) =
1
nb

∑n
i=1 σk(ti)uiKb(ti − t). Since σk(·) is Lipschitz continuous,

then

sup
t∈T

∣∣∣∣∣Ξk(t)−
1

nb
σk(t)

n∑
i=1

uiK

(
ti − t

b

)∣∣∣∣∣ = OP

(√
b log(n)

n

)
. (18)

Hence, Lemma 5 holds following the above equations and the arguments of
Lemma 4.

Proof of Theorem 1. Recall Eqs. (13) to (15) and denote ηk(t)=(βk(t), bβ
′
k(t))

�

= [Qk
n(t)]

−1Rk
n(t), we have

Qk
n(t)(η̂k(t)−ηk(t)) =

(
b2Qk

n,2(t){β′′
k (t)/2 +O(b)}

b2Qk
n,3(t){β′′

k (t)/2 +O(b)}

)
+Λk

n(t)+Θk
n(t)+T k

n (t),

(19)
where T k

n (t) = (T k
n,0(t), T

k
n,1(t))

�, Λk
n(t) = (Λk

n,0(t),Λ
k
n,1(t))

�,Θk
n(t) = (Θk

n,0(t),

Θk
n,1(t))

� and

T k
n,l(t) =

1

nb

n∑
i=1

εki

(
ti − t

b

)l

K

(
ti − t

b

)
,

Λk
n,l(t) =

1

nb

n∑
i=1

λk
i

(
ti − t

b

)l

K

(
ti − t

b

)
,

Θk
n,l(t) =

1

nb

n∑
i=1

θki

(
ti − t

b

)l

K

(
ti − t

b

)
, l = 0, 1.

As a consequence of the weak law of large numbers, we know that Qk
n(t)

P−→ Q(t)
in the sense that each element converges in probability, where

Q(t) =

(
1 0
0 μ2

)
.

Hence, from Eq. (19) and the technical proofs of Theorem 2, we have

√
nb sup

t∈T

∣∣∣β̂k,b(t)− βk(t)− T k
n,0(t)

∣∣∣
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=
√
nb sup

t∈T

∣∣b2Qk
n,2(t){β′′

k (t)/2 +O(b)}+ Λk
n,0(t) + Θk

n,0(t)
∣∣

=OP

(√
nb5
)
+OP

(
log(n)

n3/8−2β
√
b

)
+OP

(
log(n)

n1/4−β
√
b

)
P−→ 0.

Furthermore by the Proposition 6 in [37], we have for any k = 1, ..., h,

(nb)1/2T k
n (t) ⇒ N(0, νk(t)), νk(t) = σ2

k(t) diag(φ0, φ2).

Next, we treat T k
n,0(t) as Dk(t) in Lemma 5, then Theorem 1 follows.

Proof of Theorem 2. Recall that our model contains d = O(nα) change
points with the maximal size Δn = O(nβ) on μ(·). By condition ι > 2b, we
know there exists at most one jump on the b-neighborhood of any time t. For
each k = 1, ..., h and any fixed t ∈ [0, 1], by Eqs.(6), (7) and (12) in the paper,
we have

sup
t∈T

∣∣∣β̂k,b(t)− βk(t)
∣∣∣

=sup
t∈T

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)(βk(ti) + εki + λk

i + θki )−
n∑

i=1

ωb
n(t, i)βk(t)

∣∣∣∣∣
=sup

t∈T

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)β

′
k(ti)(t− ti) +

n∑
i=1

ωb
n(t, i)

[
β′′
k (ti)

2
+O(b)

]
(t− ti)

2

+

n∑
i=1

ωb
n(t, i)ε

k
i +

n∑
i=1

ωb
n(t, i)λ

k
i +

n∑
i=1

ωb
n(t, i)θ

k
i

∣∣∣∣∣
≤ sup

t∈T

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)

[
β′′
k (ti)

2
+O(b)

]
(t− ti)

2

∣∣∣∣∣+ sup
t∈T

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)ε

k
i

∣∣∣∣∣
+ sup

t∈T

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)λ

k
i

∣∣∣∣∣+ sup
t∈T

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)θ

k
i

∣∣∣∣∣ := I + II + III + IV.

It is obvious to see I = OP(b
2). Then we will apply a chaining argument for

calculating II. For t ∈ [0, 1], define the sampling time points as t = s/n, s =
0, 1, ..., n and let Πt =

∑n
i=1 ω

b
n(t, i)ε

k
i . Then for each time point s/n, we have

max
0≤s≤n

∣∣Π s
n

∣∣ = max
0≤s≤n

∣∣∣∣∣
n∑

i=1

ωb
n

( s
n
, i
)
εki

∣∣∣∣∣
≤ max

0≤s≤n

∣∣∣∣∣
n∑

i=1

ωb
n

( s
n
, i
)
[εki − σk(ti)ui]

∣∣∣∣∣+ max
0≤s≤n

∣∣∣∣∣
n∑

i=1

ωb
n

( s
n
, i
)
σk(ti)ui

∣∣∣∣∣
= max

0≤s≤n

∣∣∣∣∣
n∑

i=1

ωb
n

( s
n
, n
)
[εki − σk(ti)ui]
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−
n∑

j=2

[ωb
n(

s

n
, j)− ωb

n(
s

n
, j − 1)]

j∑
i=1

[εi − σk(ti)ui]

∣∣∣∣∣∣
+ max

0≤s≤n

∣∣∣∣∣
n∑

i=1

ωb
n

( s
n
, i
)
σk(ti)ui

∣∣∣∣∣
≤ max

0≤s≤n

⎧⎨⎩max
j≤n

∣∣∣∣∣
j∑

i=1

[εi − σ(ti)ui]

∣∣∣∣∣
⎡⎣∣∣∣ωb

n(
s

n
, n)
∣∣∣+ n∑

j=2

∣∣∣ωb
n(

s

n
, j)− ωb

n(
s

n
, j − 1)

∣∣∣
⎤⎦⎫⎬⎭

+ max
0≤s≤n

∣∣∣∣∣
n∑

i=1

ωb
n

( s
n
, i
)
σk(ti)ui

∣∣∣∣∣
=OP

(
n2/5 logn

nb

)
+OP

(√
logn

nb

)
= OP

(
logn

n3/5b
+

√
logn

nb

)
.

The first inequality uses Theorem 5 and the triangle inequality. Next, we con-
sider the difference between Πt and Π s

n
.

sup
t∈[s/n,(s+1)/n]

∣∣Πt −Π s
n

∣∣
= sup

t∈[s/n,(s+1)/n]

∣∣∣∣∣
n∑

i=1

[
ωb
n(t, i)− ωb

n

( s
n
, i
)]

εki

∣∣∣∣∣
= sup

t∈[s/n,(s+1)/n]

∫ t

s
n

∣∣∣∣∣
n∑

i=1

ωb
n

′
(v, i)εki

∣∣∣∣∣ dv
≤
∫ s+1

n

s
n

∣∣∣∣∣
n∑

i=1

ωb
n
′(v, i)εki

∣∣∣∣∣dv
=

∣∣∣∣∣
n∑

i=1

∣∣∣∣ωb
n

(
s+ 1

n
, i

)
− ωb

n

( s
n
, i
)∣∣∣∣ εki

∣∣∣∣∣
≤
∣∣∣∣∣

n∑
i=1

∣∣∣∣ωb
n

(
s+ 1

n
, i

)
− ωb

n

( s
n
, i
)∣∣∣∣ [εki − σk(ti)ui]

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

∣∣∣∣ωb
n

(
s+ 1

n
, i

)
− ωb

n

( s
n
, i
)∣∣∣∣σk(ti)ui

∣∣∣∣∣
= OP

(
n2/5 logn

n2b2

)
+OP

(√
logn

nb

)
.

Thus, we have

II = sup
t∈T

|Πt| = sup
t∈T

∣∣Πt −Π s
n
+Π s

n

∣∣
≤ max

0≤s≤n
sup

t∈[s/n,(s+1)/n]

∣∣Πt −Π s
n

∣∣+ max
0≤s≤n

∣∣Π s
n

∣∣
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= OP

(√
log n

nb

)
+OP

(
log n

n3/5b

)
.

As for III, we consider the following two cases.

• When μ(t) is continuous on [0, 1]. Rewrite λk(ti) = [μ(ti)−μ(ti−k)]
2, then

we know function λk is also continuous for t ∈ [0, 1]. Moreover, λ′
k = O( 1

n2 )
and λ′′

k = O( 1
n2 ). By Taylor’s expansion, we have

sup
t∈T

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)λ

k
i

∣∣∣∣∣
=sup

t∈T

∣∣ωb
n(t, i)[λk(t) + λ′

k(t)(t− ti) + λ′′
k(t)(t− ti)

2/2 +O(b3/n2)]
∣∣

=sup
t∈T

∣∣λk(t) +O(b2/n2) +O(b2/n3)
∣∣

≤C

(
k2

n2
+ b2/n2 + b2/n3

)
= O

(
n1/4 log2(n)

n2

)
.

• When μ(t) is a piecewise continuous function with the maximal jump size
Δn = O(nβ). Let T0 be the union of the b-neighborhood of all change
points, that is [a1 − b, a1 + b] ∪ · · · ∪ [ad − b, ad + b].

sup
t∈T

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)λ

k
i

∣∣∣∣∣
=max

{
sup

t∈T \T0

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)λ

k
i

∣∣∣∣∣ , supt∈T0

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)λ

k
i

∣∣∣∣∣
}

=max

⎧⎨⎩ sup
t∈T \T0

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)λ

k
i

∣∣∣∣∣ , supt∈T0

∣∣∣∣∣∣
n(t+b)∑

i=n(t−b)

ωb
n(t, i)[μ(ti)− μ(ti−k)]

2

∣∣∣∣∣∣
⎫⎬⎭

=max

{
O
(
n1/4 log2(n)

n2

)
,O
(
kn2β

nb
+

1

nb
(2nb− k)

n1/4 log2(n)

n2

)}
=O
(

log(n)

n7/8−2βb

)

In summary, III = O
(

log(n)
n7/8−2βb

)
.

As for IV = supt∈T
∣∣∑n

i=1 ω
b
n(t, i)θ

k
i

∣∣ where θki = (μi − μi−k)(xi − xi−k).
Similar to previous proof, we consider two cases: when μ(t) is continuous on
[0, 1] or piecewise continuous function with maximal jump size O(nβ).

• When μ(t) is continuous on [0, 1]. Denote λ̃k
i = λ̃k(ti) = μ(ti) − μ(ti−k),

then we know function λ̃k is also continuous for t ∈ [0, 1]. Moreover, λ̃′
k =

O( 1n ) and λ̃′′
k = O( 1n ). Since supi ‖xi‖8 < ∞, we have max1≤i≤n |xi| =
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OP(n
1/8).

IV =sup
t∈T

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)θ

k
i

∣∣∣∣∣ ≤ max
1≤i≤n

|xi| sup
t∈T

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)λ̃

k
i

∣∣∣∣∣
≤Cn1/8 sup

t∈T

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)[λ̃k(t) + λ̃′

k(t)(t− ti)

+ λ̃′′
k(t)(t− ti)

2/2 +O(b3/n)]

∣∣∣∣∣
=Cn1/8 sup

t∈T

∣∣∣λ̃k(t) +O(b2/n) +O(b2/n2)
∣∣∣ = O(n−3/4 log(n)).

• When μ(t) is a piecewise continuous function.

sup
t∈T

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)θ

k
i

∣∣∣∣∣
=max

{
sup

t∈T \T0

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)θ

k
i

∣∣∣∣∣ , supt∈T0

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)θ

k
i

∣∣∣∣∣
}

≤Cn1/8 max

⎧⎨⎩ sup
t∈T \T0

∣∣∣∣∣
n∑

i=1

ωb
n(t, i)λ̃

k
i

∣∣∣∣∣ , supt∈T0

∣∣∣∣∣∣
n(t+b)∑

i=n(t−b)

ωb
n(t, i)λ̃

k
i

∣∣∣∣∣∣
⎫⎬⎭

≤Cn1/8 max

{
O(n−7/8 log(n)),O

(
knβ

nb
+

1

nb
(2nb− k)n−7/8 log(n)

)}
=OP

(
log(n)

n3/4−βb

)
.

As a result, IV = OP

(
log(n)

n3/4−βb

)
. With conditions imposed in the theorem, the

above four error bounds all converge to 0 as n → ∞.

Proof of Theorem 3. Similar to the proof of Theorem 4 in [38].

Proof of Theorem 4. Let I ′ be a closed interval in (0, 1) such that I ⊂ I ′ and

the two intervals do not share common end points. Recall β̃k(t) = (βh(t), βk(t))
�

and denote β̂k,bk(t) = (β̂h,bk(t), β̂k,bk(t))
�. According to Theorem 2, it follows

that

sup
i/n∈I′

|ε̂i − ε̃i| = sup
i/n∈I′

∣∣∣β̃k(ti)− β̂k,bk(ti)
∣∣∣ = OP(χn). (20)

Note that Qk
i /(2m+1) is the Nadaraya-Waston smoother of the series {ε̃i} at i

with the rectangle kernel and bandwidth m/n. Therefore, for each k = 1, ..., h,
we have

sup
i/n∈I′

|Qk
i | = OP(

√
m logn). (21)
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Let Q̂k
i =
∑m

j=−m ε̂i+j and N̂k
i = Q̂k

i Q̂
k�
i /(2m+ 1). Then

(2m+ 1)(Nk
i − N̂k

i ) = (Qk
i − Q̂k

i )(Q
k
i )

� + Q̂k
i (Q

k
i − Q̂k

i )
�.

Substituting equations (20) and (21) into the above equation, we have supi/n∈I′

|Nk
i − N̂k

i | = OP(νn) with the assumption νn → 0. By the definitions of Σ̃k(t)

and Σ̂k(t), we obtain

sup
i/n∈I′

∣∣∣Σ̃k(t)− Σ̂k(t)
∣∣∣ = OP(νn).

Together with the results of Theorem 3, Theorem 4 holds.
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