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Abstract. We study kernel functions of L-functions and products of L-

functions of Hilbert cusp forms over real quadratic fields. This extends the

results on elliptic modular forms in [4, 5].

1. Introduction

One of the central problems in number theory is to explore the nature of

special values of various Dirichlet series such as Riemann zeta function, modu-

lar L-functions, automorphic L-functions, etc. The known main idea to study

arithmetic properties of the special values of modular L-functions is to com-

pare such values with certain inner product of modular forms.

Such an idea was first introduced by Rankin [13], expressing the product of

two critical L-values of an elliptic Hecke eigenform in terms of the Petersson

scalar product of an elliptic Hecke eigenform with a product of Eisenstein

series. Much later Zagier ([16], p 149 ) extended Rankin’s result to express the

product of any two critical L-values of an elliptic Hecke eigenform in terms of

the Petersson scalar product of the Hecke eigenform with the Rankin-Bracketof

two Eisenstein series. Shimura [14] and Manin [11] developed theories to study

arithmetic properties of modular L-values on the critical strip. Kohnen-Zagier

[10, 2] further studied the space of modular forms whose L-values on the critical

strip are rational and showed that such a space can be spanned by Cohen

kernel introduced by Cohen [3]. Recently double Eisenstein series has been

introduced by Diamantis and O’Sullivan[4, 5] as a kernel yielding products

of two L-values of elliptic Hecke eigenforms. It turns out that Rankin-Cohen

brackets [17] of two Eisenstein series can be realized as a double Eisenstein

Keynote: Hilbert modular form, special L-value, cusp form, double Eisenstein series,

Petersson inner product, Rankin-Cohen bracket, kernel function.
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series [5]. Generalizing Cohen kernel, the arithmetic results of L-values by

Manin [11] and Shimura [14] could be recovered [4, 5].

The purpose of this paper to state above results to the space of Hilbert

modular forms by extending kernel functions introduced in [4, 5]. More pre-

cisely, a double Hilbert Eisenstein series is a kernel function of two L-values

of a primitive form in terms of the Petersson scalar product. Also one can

recover the arithmetic results [14] of L-values of Hilbert cusp forms by study-

ing Cohen kernel over real quadratic fields. Furthermore it turns out that the

Rankin-Cohen bracket of two Hilbert Eisenstein series is the special value of

a double Hilbert Eisenstein series.
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590 and NRF2017R1A2B2001807. The second author was partially supported

by by HIT Youth Talent Start-Up Grant and Grant of Technology Division of
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2. Notations and Main Theorems

Throughout of this paper, for simplicity, we only consider the space of

Hilbert modular forms over real quadratic fields F with narrow class num-

ber one on the full Hilbert modular group Γ = SL2(O).

2.1. Notations. Let F be a real quadratic field with narrow class number

equal to 1. Let D, O and d be the fundamental discriminant, the ring of

integers and the different of F respectively. Let N and Tr be the norm and

the trace on F defined by N(a) = aa′,Tr(a) = a + a′ with a′ the algebraic

conjugate of a ∈ F . We denote a � 0 for a ∈ F if a is totally positive, that

is a > 0 and a′ > 0. For B ⊂ F , let B+ denote the subset of totally positive

elements in B. So O+ and O×+ denote the set of totally positive integers and

the set of totally positive units respectively.
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For a 2 × 2 matrix γ in GL+
2 (F ), we usually denote its entries by γ =aγ bγ

cγ dγ

 and γ′ =

a′γ b′γ
c′γ d′γ

 . The group GL+
2 (F ) acts on two copies of the

complex upper half plane H2 by γz := (γz1, γ
′z2) = (aγz1+bγ

cγz1+dγ
,
a′γz2+b′γ
c′γz2+d′γ

) as linear

fractional transformations for all γ ∈ GL+
2 (F ) and z = (z1, z2) ∈ H2.

Let Γ = SL2(O) be the modular group of 2 × 2 matrices with determinant

equal to one overO. Denote Γ∞ the subgroup of upper-triangular elements and

Γ+
∞ the subgroup of elements with totally positive diagonal entries in Γ∞. Let

A denote the subgroup of diagonal elements in Γ+
∞, so A = {diag(ε, ε−1) : ε ∈

O×+}. Throughout the note, we employ the standard multi-index notation. In

particular, for γ ∈ GL+
2 (F ), z = (z1, z2) ∈ H2 and k ∈ Z, we denote 1 = (1, 1),

(γz)k1 = N(γz)k = (γz1)(γ′z2), |z| = (|z1|, |z2|), |z|k1 = |z1|k|z2|k and the

automorphic factor by

j(γ, z)k1 = N(j(γ, z))k = j(γ, z1)kj(γ′, z2)k = (cγz1 + dγ)
k(c′γz2 + d′γ)

k.

For any function f on H2 and γ ∈ GL+
2 (F ), define the slash operator by

(f |kγ)(z) = N(det(γ))
k
2N(j(γ, z))−kf(γz).

A Hilbert modular form of (parallel) weight k for Γ is a holomorphic function

f on H2 such that f |kγ = f for any γ ∈ Γ. Then f has the following Fourier

expansion

f(z) = af (0) +
∑
α∈d−1

+

af (α)e2πitr(αz).

If af (0) = 0, we call f a Hilbert cusp form. For a Hilbert cusp form f and

a Hilbert modular form g of weight k on Γ, their Petersson scalar product is

defined by

〈f , g〉 :=

∫
Γ\H2

f(z)g(z)dµ =

∫
F
f(z)g(z)dµ,

where F is a fundamental domain of Γ on H2 and

dµ = (y1y2)−2dx1dx2dy1dy2 = N(y)−2N(dx)N(dy).

Here z = x+ iy, Re(z) = x = (x1, x2) and Im(z) = y = (y1, y2).
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Note that this “unnormalized” Petersson inner product is different from

Shimura’s [14]. For a Hilbert cusp form f of weight k for Γ, define the associ-

ated L-function by

L(f, s) =
∑

α∈d−1
+ /O×+

af (α)N(αd)−s =
∑
a

af (a)N(a)−s,

where af (a) := af (α) for αd = a. It is known [7] that the complete L-function

satisfies

Λ(f, s) := Ds(2π)−2sΓ(s)2L(f, s) = (−1)kΛ(f, k − s)

and has an analytic continuation to the entire C.

Next we recall the theory of Hecke operators on spaces of Hilbert modular

forms. For each nonzero integral ideal n of O, let Mn be the set of 2 × 2

matrices γ over O such that det(γ) � 0 and (det(γ)) = n. Moreover, let

Z ∼= O× denote the 2 × 2 scalar matrices with diagonal entries in O×. The

n-th Hecke operator Tn on Sk(Γ), the space of cusp forms for Γ of parallel

weight-k, is defined as

Tn(f(z)) = N(n)
k
2
−1

∑
γ∈ZΓ\Mn

f |kγ(z).

The operators Tn are self-adjoint with respect to the Petersson inner product

and generate a commutative algebra. It follows that there exists a basis Hk,

consisting of normalized cuspidal Hecke eigenforms, of Sk(Γ). We call elements

inHk “primitive forms”. Here f is normalized if the Fourier coefficient af (O) =

1 or equivalently if d−1 = (α) with α � 0, then af (α) = 1. Therefore, for

f ∈ Hk, Tnf = af (n)f , so af (n) is real. For details see Section 1.15 of [7].

2.2. Main Theorems. Fix k ∈ Z. We define the Cohen kernel CHilk (z; s) on

H2 × C by

CHilk (z; s) =
1

2
c−2
k,s,D

∑
γ∈A\Γ

(γz)−s1j(γ, z)−k1,(2.1)

with

ck,s,D =
D

k−1
2 22−kπΓ(k − 1)

e
πis
2 Γ(s)Γ(k − s)
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and A = {diag(ε, ε−1) : ε ∈ O×+}. Note that if k is odd, this definition gives

zero function.

Theorem 2.1. (Cohen kernel) Let k ≥ 4 be even. Then the following hold:

(1) CHilk (z; s) converges absolutely and uniformly on all compact subsets in

the region given by

1 < Re(s) < k − 1, z ∈ H2.

(2) For each s ∈ C,

CHilk (z; s) =
∑
f∈Hk

Λ(f, k − s)
〈f, f〉

f(z),

where Hk is the set of primitive forms s of weight k on Γ.

(3) CHilk (z; s) can be analytically continued to the whole s-plane and for

each s ∈ C, CHilk (z; s) is a cusp form for Γ of weight k in z.

Next we define the double Eisenstein series as follows: for s, w ∈ C, z ∈ H2

and even integer k ≥ 6,

EHil
s,k−s(z;w) =

∑
γ,δ∈Γ+

∞\Γ,cγδ−1�0

(cγδ−1)(w−1)1

(
j(γ, z)

j(δ, z)

)−s1
j(δ, z)−k1,

and a completed double Eisenstein series by

E∗,Hils,k−s(z;w) = 2αk,s,w,D · EHil
s,k−s(z;w)

with

αk,s,w,D := Dk−wζF (1− w + s)ζF (1− w + k − s)

×
(
e
isπ
2 (2π)w−k−12k−2 Γ(s)Γ(k − s)Γ(k − w)

Γ(k − 1)

)2

.

Then we have the following:

Theorem 2.2. (double Eisenstein series) Let k ≥ 6 be even.



6 YOUNGJU CHOIE AND YICHAO ZHANG

(1) EHil
s,k−s(z;w) converges absolutely and uniformly on compact subsets in

the region R of points (z, (s, w)) in H2 × C2 subject to

2 < Re(s) < k − 2, Re(w) < min{Re(s)− 1, k − 1− Re(s)}.

(2) E∗,Hils,k−s(z;w) has an analytic continuation to all s, w ∈ C and is a Hilbert

cusp form of weight k on Γ as a function in z.

(3)

E∗,Hils,k−s(·;w) =
∑
f∈Hk

Λ(f, s)Λ(f, w)

〈f, f〉
f,

where Hk is the set of primitive forms of weight k.

(4) For f ∈ Hk, 〈E∗,Hils,k−s(·;w), f〉 = Λ(f, s)Λ(f, w), for all s, w ∈ C.
(5) E∗,Hils,k−s(z;w) satisfies functional equations:

E∗,Hils,k−s(z;w) = E∗,Hilw,k−w(z; s), E∗,Hilk−s,s(z;w) = E∗,Hils,k−s(z;w).

The following gives a relation between Rankin-Cohen brackets and a double

Eisenstein series. Rankin-Cohen brackets on spaces of Hilbert modular forms

have been studied in [1]. Let us recall the definition of Rankin-Cohen brackets:

for each j = 1, 2, let fj : H2 → C be holomorphic, kj ∈ Nand ` = (`1, `2), ν =

(ν1, ν2) ∈ Z2
≥0. Define the ν-th Rankin-Cohen bracket

[f1, f2]Hilν =
∑

0 ≤ `j ≤ νj, j = 1, 2

(−1)`1+`2
(
k11+ν−1
ν−`

) (
k21+ν−1

`

)
f

(`)
1 f

(ν−`)
2 .

Here f (`)(z) = ( ∂`1+`2

∂z1
`1∂z2

`2
f)(z) and

(
k1+ν−1
ν−`

)
=
(
k+ν1−1
ν1−`

) (
k+ν2−1
ν2−`

)
.

In the following, we only need parallel ν, that is ν1 = ν2.

Theorem 2.3. (Rankin-Cohen brackets and a double Eisenstein se-

ries) For ν ∈ Z≥0 and kj ∈ 2N, j = 1, 2, we have(
Γ(k1)Γ(ν + 1)

Γ(k1 + ν)

)2

[Ek1 , Ek2 ]
Hil
(ν,ν) = 4

(
Γ(k2 + ν)

Γ(k2)

)2

EHil
k1+ν,k2+ν(z; ν + 1),

where Ek(z) is the usual Hilbert Eisenstein series of weight k on Γ defined by

Ek(z) :=
∑

γ∈Γ+
∞\Γ

j(γ, z)−k1.
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Remark 2.4. (1) Cohen kernel (see [3] and [10]) is an elliptic cusp form

Rn of weight 2k on SL2(Z) characterized by, for each 0 ≤ n ≤ 2k − 2,

〈f, Rn〉 = n!(2π)−n−1L(f, n+ 1), for all f ∈ S2k(SL2(Z)).

Diamantis and O’Sullivan in [4] generalized Cohen kernel Cellk (τ, s) to

get

〈f, Cellk (τ, s)〉 = Γ(s)(2π)sL(f, s), s ∈ C.

(2) Double Eisenstein series was introduced and studied in [4, 5] as a kernel

yielding products of the periods of an elliptic Hecke eigenform at critical

values as well as producing products of L-functions for Maass cusp

forms.

In the following theorem, we recover Shimura’s result on the algebraicity of

critical values of L(f, s) (Theorem 4.3 of [14]). For a primitive form f of even

weight k, let Q(f) denote the number field generated by the Fourier coefficients

of f over Q.

Theorem 2.5. (rationality) Let f be a primitive form of even weight k ≥ 6

for Γ. Then there exist complex numbers ω±(f) with 〈f, f〉 = ω+(f)ω−(f)

such that for even m and odd ` with 1 ≤ m, ` ≤ k − 1,

(1)
Λ(f,m)

w+(f)
,
Λ(f, `)

w−(f)
∈ Q(f),

(2) for each σ ∈ Gal(Q̄/Q),(
Λ(f,m)

ω+(f)

)σ
=

Λ(fσ,m)

ω+(fσ)
,

(
Λ(f, `)

ω−(f)

)σ
=

Λ(fσ, `)

ω−(fσ)
.

Remark 2.6. (1) The above theorm is an analogous result of that for el-

liptic modular forms proved in [10] (Theorem in page 202). We can also

extend the rationality easily to arbitrary L-values as did in Theorem

8.3 of [5].

(2) The above theorem is a special case of Shimura theorem (Theorem 4.3

in [14]) by taking n = 2, ψ = 1, and k1 = k2 = k.
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3. Proofs

We need the following multi variable Lipschitz summation formula.

Lemma 3.1. (multivariable Lipschitz summation formula) Assume that

Im(s) > 2. For z ∈ H2,∑
x∈O

(z + x)−s1 =
(2π)2s

eπisΓ(s)2D1/2

∑
ξ∈d−1

+

N(ξ)s−1 exp(2πiTr(ξz)),

Proof. By the multi-index notation,∑
x∈O

(z + x)−s1 =
∑
x∈O

N(z + x)−s =
∑
x∈O

(z1 + x)−s(z2 + x′)−s.

Following [9], define

f(x) = N(x)s−1 exp(2πiTr(xz))

for x = (x1, x2)� 0 and 0 otherwise, so for Im(s) > 2 and z ∈ H2, f is clearly

L1 on the quadratic space V = R2 with the trace form. The computation of

[9, Theorem 1] shows that the Fourier transform f̂(w) is given by

f̂(w) =
Γ(s)2

(−2πi)2s
(z + w)−s1, w ∈ R2.

It is clear that for x ∈ R2,

|f(x)|+ |f̂(x)| � (1 + ||x||)−2−δ

for any positive δ, where || · || is the Euclidean norm. Therefore, we may apply

the Poisson summation formula (see page 252 of [15]), and for a general lattice

M in V with integral dual lattice M∨, the Poisson summation formula reads∑
α∈M

f(α) =
√
|M/M∨|

∑
α∈M∨

f̂(α).

Now set M = d−1, then M∨ = O, |M/M∨| = D and the Lipschitz summation

formula follows easily. �

Now we prove Theorem 2.1 about Cohen kernel.

Proof of Theorem 2.1 : To show the convergence, we follow the treatment of

Section 1.15 in [7]. Firstly, we prove the uniform absolute convergence on com-

pact subsets, using the fact that L1-convergence implies uniform convergence



KERNELS FOR PRODUCTS OF HILBERT L-FUNCTIONS 9

on compact subset for series of holomorphic functions (See Lemma on Page 52

of [7]). It suffices to treat the case for z in a small neighborhood U such that

U is compact, N(Imz) > X−1 and N(Imγz) < X for any γ ∈ Γ and z ∈ U for

fixed big X > 0. Note that this essentially picks a Siegel set where U lives. In

this case, we only have to prove that∫
Γ\H2

X

∑
γ∈A\Γ

|N(j(γ, z))|−k|γz|−σ1dµ(z) <∞

where σ = Re(s) and H2
X is the subset of z with N(Imz) < X in H2. Here we

denote |z| = (|z1|, |z2|) and employ the multi-index notation. The left-hand

side is bounded by

≤X
k
2

∫
Γ\H2

X

∑
γ∈A\Γ

(Imγz)
k
2
1|γz|−σ1dµ(z)

�
∑
γ∈A\Γ

∫
Γ\H2

X

(Imγz)
k
2
1|γz|−σ1dµ(z)

=

∫
A\H2

X

(Imz)
k
2
1|z|−σ1dµ(z).

The space A\H2
X can be viewed as a subspace of

{(z1, z2) : N(Imz) < X, Y −1 ≤ y1/y2 ≤ Y }

for some positive Y (Y can be chosen as the smallest totally positive unit bigger

than 1). Moreover, that N(Im(−1/z)) < X implies N(|z|2) > X−1N(Imz).

For 1 < r < σ < k − 1, the last quantity is equal to∫
A\H2

X

(N(Imz))
k
2 |Nz|−r−(σ−r)dµ(z)

�
∫
A\H2

X

(N(Imz))
k−σ+r

2 |Nz|−rdµ(z)

�
∫
y1y2<X,Y −1<y1/y2<Y

(N(Imz))
k−σ+r

2 (N(Imz))1−r dy1dy2

(y1y2)2

=

∫
y1y2<X,Y −1<y1/y2<Y

(N(Imz))
k−σ−r

2
−1dy1dy2 <∞

where in the third line we applied Equation (5.8) of [4] for the integration on

x. This is part (1).



10 YOUNGJU CHOIE AND YICHAO ZHANG

For part (2), first note that the absolutely uniformly convergence implies

that CHilk (z; s) converges to a Hilbert modular form in the strip 2 < σ < k− 1

since CHilk (z; s) is Γ-invariant with a proper automorphic factor. Secondly, we

write

2c2
k,s,D · CHilk (z; s) =

∑
α∈A\Γ+

∞

∑
γ∈Γ+

∞\Γ

j(αγ, z)−k1(αγz)−s1

=
∑

γ∈Γ+
∞\Γ

j(γ, z)−k1
∑

α∈A\Γ+
∞

(αγz)−s1 =
∑

γ∈Γ+
∞\Γ

j(γ, z)−k1
∑
x∈O

(γz + x)−s1.

Applying the Lipschitz summation formula in Lemma 3.1 with 2 < σ < k− 1,

we have

2c2
k,s,D · CHilk (z; s) =

(2π)2s

eπisΓ(s)2D1/2

∑
γ∈Γ+

∞\Γ

j(γ, z)−k1
∑
ξ∈d−1

+

(Nξ)s−1 exp(2πiTr(ξγz))

=
(2π)2s

eπisΓ(s)2D1/2

∑
ξ∈d−1

+

(Nξ)s−1
∑

γ∈Γ+
∞\Γ

j(γ, z)−k1 exp(2πiTr(ξγz))

=
(2π)2s

eπisΓ(s)2D1/2

∑
ξ∈d−1

+ /(O×+)2

(Nξ)s−1

×
∑
u∈O×+

∑
γ∈Γ+

∞\Γ

j(γ, z)−k1 exp(2πiTr(u2ξγz))

=
(2π)2s

eπisΓ(s)2D1/2

∑
ξ∈d−1

+ /(O×+)2

(Nξ)s−1
∑
γ∈U\Γ

j(γ, z)−k1 exp(2πiTr(ξγz)),

where U is the subgroup of elements of the form

(
1 x

0 1

)
in Γ. On the other

hand, recall the ξ-th Poincaré series [7]

Pk(z; ξ) =
∑
γ∈U\Γ

j(γ, z)−k1 exp(2πiTr(ξγz))

and that it is a cusp form with

Pk(z; ξ) =
Γ(k − 1)2D1/2

(4π)2k−2N(ξ)k−1

∑
f∈Hk

āf (ξ)f

〈f, f〉
.
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We see that up to a constant factor (depending on s) CHilk (z; s) is equal to∑
ξ∈d−1

+ /(O×+)2

(Nξ)s−1(Nξ)1−k
∑
f∈Hk

āf (ξ)f(z)

〈f, f〉

=
∑

ξ∈d−1
+ /(O×+)2

(Nξ)s−k
∑
f∈Hk

āf (ξ)f(z)

〈f, f〉

=2
∑

ξ∈d−1
+ /O×+

(Nξ)s−k
∑
f∈Hk

āf (ξ)f(z)

〈f, f〉

=2Dk−s
∑
f∈Hk

f(z)

〈f, f〉
∑

ξ∈d−1
+ /O×+

(Nξd)s−kāf (ξ)

=2Dk−s
∑
f∈Hk

f(z)L(f, k − s)
〈f, f〉

,

where we used the fact that af (ξ) is real. Putting everything together, we see

that

2c2
k,s,D · CHilk (z; s) =

25−2kπ2Γ(k − 1)2

eπisΓ(s)2Γ(k − s)2

∑
f∈Hk

Λ(f, k − s)f(z)

〈f, f〉

It follows that CHilk (z; s) is cuspidal on the region 2 < σ < k − 1, and that

CHilk (z; s) =
∑
f∈Hk

Λ(f, k − s)f(z)

〈f, f〉
.

For part (3): The expression of CHilk (z; s) in part (2) gives the analytic

continuation to s ∈ C and that for each s ∈ C, CHilk (z; s) is a cusp form. This

completes the proof. �

Next, to prove Theorem 2.2 we first need to show a connection between

Cohen kernel and double Eisenstein series, which is obtained in the following

lemma:

Lemma 3.2. On the region R, we have

ζF (1−w+s)ζF (1−w+k−s)EHil
s,k−s(z;w) = 2c2

k,s,D

∑
n

N(n)w−kTn
(
CHilk (z; s)

)
,
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with Tn the n-th Hecke operator and ζF (s) the Dedekind zeta function for F

defined as

ζF (s) =
∑
a

N(a)−s =
∑

a∈O+/O×+

N(a)−s,

where a runs through all integral nonzero ideals.

Proof. On R, the series expansions of the two ζF -factors converge absolutely.

Therefore, on R, by sending γ to (cγ, dγ), the left-hand side is equal to

ζF (1− w + s)ζF (1− w + k − s)EHil
s,k−s(z;w)

=
∑
u,ũ

N(u)w−1−sN(ũ)w+s−1−k
∑

(c,d),(c̃,d̃)

(cd̃− dc̃)(w−1)1

(
cz + d

c̃z + d̃

)−s1
(c̃z + d̃)−k1,

where u, ũ ∈ O×+\O+ and (c, d), (c̃, d̃) ∈ O×+\O2 such that Oc + Od = Oc̃ +

Od̃ = O and cd̃− dc̃� 0. Combining the two summations, we have

∑
a,ã

∑
(c,d),(c̃,d̃)

(cd̃− dc̃)(w−1)1

(
cz + d

c̃z + d̃

)−s1
(c̃z + d̃)−k1,

where this time a, ã are over all nonzero integral ideals and the inner summa-

tion is over (c, d), (c̃, d̃) ∈ O×+\O2 such that Oc + Od = a, Oc̃ + Od̃ = ã and

cd̃− dc̃� 0. Then we can remove the summation over a, ã and it equals to

∑
(c,d),(c̃,d̃)

(cd̃− dc̃)(w−1)1

(
cz + d

c̃z + d̃

)−s1
(c̃z + d̃)−k1

=
∑
n

∑
(c,d),(c̃,d̃)

(cd̃− dc̃)(w−1)1

(
cz + d

c̃z + d̃

)−s1
(c̃z + d̃)−k1,

where n is over all nonzero integral ideals and the inner summation is over

over (c, d), (c̃, d̃) ∈ O×+\O2 such that cd̃−dc̃� 0 and (cd̃−dc̃) = n. Note that

the two summations over (c, d), (c̃, d̃) in the preceding equation have different

ranges.

Let Ã denote the group of diagonal 2 × 2 matrices with entries in O×+, so

clearly Ã ⊂ ZΓ and Ã\ZΓ ∼= A\Γ. Note that the inner summation set is
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mapped bijectively to Ã\Mn via

((c, d), (c̃, d̃)) 7→

(
c d

c̃ d̃

)
.

Therefore, above expression is equal to∑
n

∑
γ∈Ã\Mn

(det(γ))(w−1)1(γz)−sj(γ, z)−k1

=
∑
n

∑
γ∈ZΓ\Mn

∑
β∈Ã\ZΓ

(det(βγ))(w−1)1(βγz)−s1j(βγ, z)−k1

=
∑
n

∑
γ∈ZΓ\Mn

∑
β∈A\Γ

(det(γ))(w−1)1(βγz)−s1j(βγ, z)−k1

=2c2
k,s,D ·

∑
n

N(n)−
k
2

+w−1
∑

γ∈ZΓ\Mn

CHilk (z; s)|kγ

=2c2
k,s,D ·

∑
n

N(n)w−kTn
(
CHilk (z; s)

)
,

which is the right-hand side. �

Using the preceding lemma we prove the following main theorem:

Proof of Theorem 2.2 : For part (1), apply the proof of Lemma 4.1 in [5] for

each component and we have

N(cγδ−1) ≤ N(Im(γz))−1/2N(Im(δz))−1/2,

for any γ, δ ∈ Γ with cγδ−1 � 0. Let r = max{Re(w), 1}. Since [Γ∞ : Γ+
∞] is

finite, Es,k−s(z;w) is absolutely bounded up to a constant by∑
γ,δ∈Γ+

∞\Γ,cγδ−1�0

(Ncγδ−1)Re(w)−1|Nj(γ, z)|−Re(s)|Nj(δ, z)|Re(s)−k

≤
∑

γ,δ∈Γ+
∞\Γ,cγδ−1�0

N(Im(γz))
1−r
2 N(Im(δz))

1−r
2 |Nj(γ, z)|−Re(s)|Nj(δ, z)|Re(s)−k

≤
∑

γ,δ∈Γ+
∞\Γ,cγδ−1 6=0

N(Im(γz))
1−r
2 N(Im(δz))

1−r
2 |Nj(γ, z)|−Re(s)|Nj(δ, z)|Re(s)−k

�
∑

γ,δ∈Γ∞\Γ,cγδ−1 6=0

N(Im(γz))
1−r
2 N(Im(δz))

1−r
2 |Nj(γ, z)|−Re(s)|Nj(δ, z)|Re(s)−k
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�N(y)−
k
2

∑
γ,δ∈Γ∞\Γ,cγδ−1 6=0

N(Im(γz))
Re(s)−r+1

2 N(Im(δz))
k−Re(s)−r+1

2

�N(y)−
k
2

∑
γ,δ∈Γ∞\Γ

N(Im(γz))
Re(s)−r+1

2 N(Im(δz))
k−Re(s)−r+1

2 ,

which is the product of two Eisenstein series whose absolute convergence is

well-known (see, for example, 5.7 Lemma of Chapter I in [6]). So absolute

convergence follows if we have

Re(s)− r + 1

2
> 1 and

k − Re(s)− r + 1

2
> 1.

One sees easily that Es,k−s(z;w) transforms correctly under Γ. In the above

estimate ∑
γ,δ∈Γ∞\Γ,cγδ−1 6=0

N(Im(γz))
Re(s)−r+1

2 N(Im(δz))
k−Re(s)−r+1

2

= E

(
z,

Re(s)− r + 1

2

)
E

(
z,
k − Re(s)− r + 1

2

)
− E

(
z,
k − 2r + 2

2

)
,

where E(z, s) :=
∑

γ∈Γ∞\Γ N(Im(γz))−s = N(y)s + A(s)N(y)1−s + o(1). By

removing the highest terms N(y)
k
2
−r+1 from the difference, the rest are all

o(N(y)
k
2 ). This shows that Es,k−s(z;w)→ 0 as N(y)→∞, and hence proves

part (2) that Es,k−s(z;w) is a cuspform since only one cusp exists.

For part (3), by Theorem 2.1 the Cohen kernel are cuspforms. By Lemma

3.2,

ζF (1− w + s)ζF (1− w + k − s)EHil
s,k−s(z;w)

=2c2
k,s,D

∑
n

N(n)w−kTn
(
CHilk (z; s)

)
=2c2

k,s,D

∑
n

N(n)w−k
∑
f∈Hk

〈TnCHilk (z; s), f〉
〈f, f〉

f(z)

=2c2
k,s,D

∑
n

N(n)w−k
∑
f∈Hk

〈CHilk (z; s), Tnf〉
〈f, f〉

f(z)

=2c2
k,s,D

∑
n

N(n)w−k
∑
f∈Hk

af (n)
〈CHilk (z; s), f〉
〈f, f〉

f(z),
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since af (n) = af (n). We have shown in Theorem 2.1 that

2c2
k,s,D〈CHilk (z; s), f〉 =

25−2kπ2Γ(k − 1)2

eπisΓ(s)2Γ(k − s)2
Λ(f, k − s), for f ∈ Hk.

By defining

E
∗,Hil
s,k−s(z;w) = 2αk,s,w,DE

Hil
s,k−s(z;w)

with αk,s,w,D in (2.2) and using the result of Theorem 2.1, we obtain

E∗,Hils,k−s(z;w) =
∑
f∈Hk

Λ(f, k − w)Λ(f, k − s)
〈f, f〉

f(z) =
∑
f∈Hk

Λ(f, w)Λ(f, s)

〈f, f〉
f(z).

Part (4) follows easily from part (3) since f is a primitive form. Finally, by

part (3), E∗,Hils,k−s(z;w) has meromorphic continuation to all of s, w ∈ C, and

reflected from properties of Λ(f, s), it satisfies functional equations

E∗,Hils,k−s(z;w) = E∗,Hilw,k−w(z; s), E∗,Hilk−s,s(z;w) = E∗,Hils,k−s(z;w),

proving part (5) and hence the whole theorem. �

Using the result about Rankin-Cohen brackets studied in [1], we prove The-

orem 2.3:

Proof of Theorem 2.3: One checks (from Proposition 1 in [1])(
(k1 − 1)!ν!

(k1 + ν − 1)!

)2

[Ek1 , Ek2 ]
Hil
(ν,ν) =

∑
δ∈Γ∞\Γ

j(δ, z)−k11E
(ν)
k2
|k2+2νδ.

Since

E
(ν)
k2

=

(
(k2 − 1 + ν)!

(k2 − 1)!

)2 ∑
γ∈Γ+

∞\Γ

N(cγ)
νj(γ, z)−(k2+ν)1

by Lemma 1 in [1], this in turn is equal to

(
(k2 − 1 + ν)!

(k2 − 1)!

)2 ∑
δ,γ∈Γ+

∞\Γ

j(δ, z)−k11N(cγ)
νj(γ, δ(z))−(k2+ν)1j(δ, z)−(k2+2ν)1

=

(
(k2 − 1 + ν)!

(k2 − 1)!

)2 ∑
δ,γ∈Γ+

∞\Γ

N(cγδ−1)νj(δ, z)−(k1+ν)1j(γ, z)−(k2+ν)1.

In such a particular situation, we see easily that the summand is actually well-

defined on Γ∞\Γ. Denote S the subset of (δ, γ) ∈ (Γ+
∞\Γ)2 with cγδ−1 6= 0 and
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S±,± ⊂ S consists of elements whose cγδ−1 has the prescribed sign vector. In

particular, S+,+ consists of elements with cγδ−1 � 0. It is obvious that the

sums over these four subsets are all equal, since we may multiply on left by

±I and ±diag(ε0, ε
−1
0 ) ∈ Γ∞ to adjust the signs; here ε0 is the fundamental

unit. That said, we have(
(k1 − 1)!ν!

(k1 + ν − 1)!

)2

[Ek1 , Ek2 ]
Hil
(ν,ν) = 4

(
(k2 − 1 + ν)!

(k2 − 1)!

)2

EHil
k1+ν,k2+ν(z, ν + 1),

and it finishes the proof. �

Proof of Theorem 2.5: We follow the lines in Section 8A of [5] and first prove

that for even m and odd ` with 1 ≤ m, ` ≤ k−1, both of E∗,Hilm,k−m(z; k−1) and

E∗,Hilk−2,2(z; `) have rational Fourier coefficients. By the functional equations in

Theorem 2.2,

E∗,Hilm,k−m(z; k − 1) = E∗,Hilm,k−m(z; 1),

and it suffices to prove that the Fourier coefficients of E∗,Hilm,k−m(z; `) are rational

for even m and odd ` with 1 ≤ ` < m ≤ k/2. By Theorem 2.3, E∗,Hilm,k−m(z; `) =

C[Em+1−`, Ek+1−m−`]
Hil
`−1, where C is a rational multiple of π2−2` by Theorem

9.8 on page 515 of [12]. It follows that the Fourier coefficients of E∗,Hilm,k−m(z; `)

belong to Q.

Next, for primitive f ∈ Hk, by Proposition 4.15 of [14] and Theorem 2.2,

we have 〈f, E∗,Hilk−1,2(z; k − 1)〉 = αf〈f, f〉 = Λ(f, k − 1)Λ(f, k − 2), for certain

αf ∈ Q(f). Again by Proposition 4.15, since E∗,Hilk−1,2(z; k − 1) has rational

Fourier coefficients, ασf = αfσ for each σ ∈ Gal(Q̄/Q). Also note αf 6= 0

because of the convergence of the Euler product of Λ(f, s) for Re(s) ≥ k/2 + 1

(see Kim-Sarnak’s bound in [8]). Define

ω+(f) =
αf〈f, f〉

Λ(f, k − 1)
, ω−(f) =

〈f, f〉
Λ(f, k − 2)

.

Then for even m, odd ` with 1 ≤ m, ` ≤ k − 1,

Λ(f,m)

ω+(f)
=
〈f, E∗,Hilm,k−m(z; k − 1)〉

αf〈f, f〉
∈ Q(f)

again by Proposition 4.15 of [14] and similarly Λ(f,`)
ω−(f)

∈ Q(f). It is clear that

ω+(f)ω−(f) = 〈f, f〉. Finally, the assertion (4.16) of [14] and that ασf = αfσ
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for each σ ∈ Gal(Q̄/Q) implies that(
Λ(f,m)

ω+(f)

)σ
=

Λ(fσ,m)

ω+(fσ)
,

(
Λ(f, `)

ω−(f)

)σ
=

Λ(fσ, `)

ω−(fσ)
,

finishing the proof. �
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3. H. Cohen, Sur certaines sommes de séries liées aux périoded de formes modulaires, in
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