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NOTES ON REAL INTERPOLATION OF OPERATOR Lp-SPACES

MARIUS JUNGE AND QUANHUA XU

Abstract. Let M be a semifinite von Neumann algebra. We equip the associated noncommu-
tative Lp-spaces with their natural operator space structure introduced by Pisier via complex
interpolation. On the other hand, for 1 < p < ∞ let

Lp,p(M) =
(

L∞(M), L1(M)
)

1
p
, p

be equipped with the operator space structure via real interpolation as defined by the second
named author (J. Funct. Anal. 139 (1996), 500–539). We show that Lp,p(M) = Lp(M)
completely isomorphically if and only if M is finite dimensional. This solves in the negative the
three problems left open in the quoted work of the second author.

We also show that for 1 < p < ∞ and 1 ≤ q ≤ ∞ with p 6= q
(

L∞(M; ℓq), L1(M; ℓq)
)

1
p
, p

= Lp(M; ℓq)

with equivalent norms, i.e., at the Banach space level if and only if M is isomorphic, as a Banach
space, to a commutative von Neumann algebra.

Our third result concerns the following inequality:
∥

∥

(

∑

i

x
q

i

)
1
q
∥

∥

Lp(M)
≤

∥

∥

(

∑

i

xr
i

) 1
r
∥

∥

Lp(M)

for any finite sequence (xi) ⊂ L
+
p (M), where 0 < r < q < ∞ and 0 < p ≤ ∞. If M is not

isomorphic, as a Banach space, to a commutative von Meumann algebra, then this inequality
holds if and only if p ≥ r.

1. Introduction

Interpolation of Lp-spaces is a classical subject. Our reference for interpolation theory is [1].

Let (Ω, µ) be a measure space. Let 1 ≤ p0, p1, p ≤ ∞ and 0 < θ < 1 with 1
p
= 1−θ

p0
+ θ

p1
. The

following well known interpolation equalities hold

(1)
(

Lp0(Ω), Lp1(Ω)
)

θ
= Lp(Ω) with equal norms,

(2)
(

Lp0(Ω), Lp1(Ω)
)

θ,p
= Lp(Ω) with equivalent norms.

Here ( ·, · )θ and ( ·, · )θ,p denote, respectively, the complex and real interpolation functors. It is
also well known that the above equalities hold for vector-valued Lp-spaces. More precisely, under
the same assumption on the parameters (assuming additionally p < ∞), we have

(3)
(

Lp0(Ω;E0), Lp1(Ω;E1)
)

θ
= Lp

(

Ω; (E0, E1)θ
)

with equal norms,

(4)
(

Lp0(Ω;E0), Lp1(Ω;E1)
)

θ,p
= Lp

(

Ω; (E0, E1)θ,p
)

with equivalent norms

for any compatible pair (E0, E1) of Banach spaces.

The present note concerns interpolation theory in the category of operator spaces. We refer
to [2, 10] for operator space theory. The complex and real interpolations for operator spaces are
developed in [8] and [13], respectively. Unless explicitly stated otherwise, all (commutative and
noncommutative) Lp-spaces in the sequel are equipped with their natural operator space structure
as defined in [9, 10]. Pisier proved that (1) and (3) remain true in the category of operator spaces,
that is, these equalities hold completely isometrically, (E0, E1) being, of course, assumed to be
operator spaces in the case of (3).

It is more natural to work with noncommutative Lp-spaces in the category of operator spaces.
Let M be a semifinite von Neumann algebra equipped with a normal semifinite faithful trace τ .
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Let Lp(M) denote the associated noncommutative Lp-space (cf. [11]). If M = B(ℓ2) with the
usual trace, Lp(M) is the Schatten p-class Sp. If M is hyperfinite, Pisier [9] also introduced the
vector-valued Lp(M;E) for an operator space E, and showed that (3) continues to hold in this
more general setting:

(5)
(

Lp0(M;E0), Lp1(M;E1)
)

θ
= Lp

(

M; (E0, E1)θ
)

completely isometrically

for any hyperfinite M and any compatible pair (E0, E1) of operator spaces.
However, real interpolation does not behave as smoothly as complex interpolation in the category

of operator spaces. The problem whether (5) can be extended to real interpolation was left unsolved
in [13], see Problems 6.1, 6.2 and 6.4 there. Let 1 < p < ∞. Using the Banach space equality

Lp(M) =
(

L∞(M), L1(M)
)

1
p
,p
,

we can equip Lp(M) with another operator space structure via real interpolation as in [13], the
resulting operator space is denoted by Lp,p(M). Then Problem 6.1 of [13] asks whether Lp,p(M) =
Lp(M) completely isomorphically for p 6= 2 (the answer is affirmative for p = 2). The following
result resolves this problem in the negative.

Theorem 1. Let 1 < p < ∞ with p 6= 2. Then Lp,p(M) = Lp(M) completely isomorphically if

and only if M is finite dimensional.

Consequently, the answers to all three Problems 6.1, 6.2 and 6.4 of [13] are negative. In partic-
ular, neither (2) nor (4) holds in the category of operator spaces.

The next theorem provides an even worse answer to Problem 6.4. It shows that (5) extends to
real interpolation at the Banach space level only in the commutative case. Recall that one can
define Lp(M; ℓq) for any von Neumann algebra M (see section 3 for more information). Lp(M; ℓq)
coincides with Pisier’s space when M is hyperfinite. Note that Lp(M; ℓq) is defined only as a
Banach space if M is not hyperfinite.

Theorem 2. Let 1 < p < ∞ and 1 ≤ q ≤ ∞ with p 6= q. Then

(6)
(

L∞(M; ℓq), L1(M; ℓq)
)

1
p
,p
= Lp(M; ℓq) with equivalent norms

if and only if M is isomorphic, as a Banach space, to L∞(Ω, µ) for some measure space (Ω, µ).

Our third theorem does not concern the real interpolation of the Lp(M; ℓq) spaces but gives a
result that is to be compared with the norm of these spaces. In the commutative case, the norm
of a sequence (xi) in Lp(Ω; ℓq) is given by

‖(xi)‖Lp(Ω;ℓq) =
∥

∥

(

∑

i

|xi|q
)

1
q
∥

∥

Lp(Ω)
.

It is well known that this expression is no longer valid in the noncommutative setting, which is one
source of many difficulties in noncommutative analysis. The following theorem shows that another
classical property of the norm ‖(xi)‖Lp(Ω;ℓq) does not extend to the noncommutative case. The

index p is now allowed to go below 1, L+
p (M) denotes the positive cone of Lp(M).

Theorem 3. Let 0 < r < q < ∞ and 0 < p ≤ ∞.

(i) If p ≥ r, then

(7)
∥

∥

(

∑

i

x
q
i

)
1
q
∥

∥

Lp(M)
≤

∥

∥

(

∑

i

xr
i

)
1
r
∥

∥

Lp(M)

for any finite sequence (xi) ⊂ L+
p (M).

(ii) If p < r and M is not isomorphic, as a Banach space, to L∞(Ω, µ) for some measure space

(Ω, µ), then there exists no constant C such that

(8)
∥

∥

(

∑

i

x
q
i

)
1
q
∥

∥

Lp(M)
≤ C

∥

∥

(

∑

i

xr
i

)
1
r
∥

∥

Lp(M)

for any finite sequence (xi) ⊂ L+
p (M).

The previous theorems will be respectively proved in the next three sections.
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2. Proof of Theorem 1

We will need some preparations on column and row Hilbertian operator spaces. Let Cp (resp.
Rp) denote the first column (resp. row) subspace of Sp consisting of matrices whose all entries
but those in the first column (resp. row) vanish. We have the following completely isometric
identifications:

(9) (Cp)
∗ ∼= Cp′

∼= Rp and (Rp)
∗ ∼= Rp′

∼= Cp , ∀ 1 ≤ p ≤ ∞,

where p′ denotes the conjugate index of p. Cp and Rp can be also defined via complex interpolation
from C = C∞ and R = R∞. We view (C,R) as a compatible pair by identifying both of them with
ℓ2 (at the Banach space level), i.e., by identifying the canonical bases (ek,1) of Cp and (e1,k) of Rp

with (ek) of ℓ2. Then we have the following completely isometric equalities

(10) Cp = (C, R) 1
p
= (C∞, C1) 1

p
and Rp = (R, C) 1

p
= (R∞, R1) 1

p
.

We refer to [8, 9] for more details.
Let Radp be the closed subspace spanned by the Rademacher sequence (εn) in Lp([0, 1]). Then

the noncommutative Khintchine inequality can be reformulated in terms of column and row spaces
(see [6, 9]). To this end, we introduce

CRp = Cp +Rp for p ≤ 2 and CRp = Cp ∩Rp for p > 2.

Lemma 4. Let 1 < p < ∞. Then Radp = CRp completely isomorphically. Moreover, the

orthogonal projection from L2([0, 1]) onto Rad2 extends to a completely bounded projection from

Lp([0, 1]) onto Radp. All relevant constants depend only on p.

If E is an operator space, Cp(E) (resp. Rp(E)) denotes the first column (resp. row) sub-
space of the E-valued Schatten class Sp(E). It is clear that Cp(E) and Rp(E) are completely
1-complemented in Sp(E). Consequently, applying (5) to M = B(ℓ2), we get

(11)
(

Cp0(E0), Cp1(E1)
)

θ
= Cp((E0, E1)θ)

for any compatible pair (E0, E1) of operator spaces, where
1
p
= 1−θ

p0
+ θ

p1
.

Note that Cp(Rp) = Sp and Cp(Cp) = S2 isometrically at the Banach space level. Here we
represent the elements in Cp(Rp) and Cp(Cp) by infinite matrices in the canonical bases of Cp and
Rp. The following elementary fact is known to experts and implicitly contained in the proof of [14,
Lemma 5.9]. We include its simple proof for completeness.

Lemma 5. Let 1 ≤ p, q ≤ ∞. Let r be determined by 1
r
= 1

2p + 1
2q′ . Then

Cp(CRq) = Sr with equivalent norms.

Proof. By (5), (11) and (9), we have the following isometric equalities

C∞(Cq) =
(

C∞(C∞), C∞(C1)
)

1
q

=
(

C∞(C∞), C∞(R∞)
)

1
q

=
(

S2, S∞

)

1
q

= S2q′ .

Similarly, C1(Cq) = S(2q)′ isometrically. Thus

Cp(Cq) =
(

C∞(Cq), C1(Cq)
)

1
p

=
(

S2q′ , S(2q)′
)

1
p

= Sr.

Combining this with (9), we also have

Cp(Rq) = Cp(Cp′) = St isometrically,

where 1
t
= 1

2p + 1
2q . Hence,

Cp(CRq) = Cp(Cq) + Cp(Rq) = Sr + St = Sr

for q ≤ 2 and Cp(CRq) = Sr ∩ St = Sr for q > 2 too. �



4 MARIUS JUNGE AND QUANHUA XU

Proof of Theorem 1. By the type decomposition of von Neumann algebras, if M is not finite di-
mensional, then M contains an infinite dimensional commutative L∞(Ω, µ) as subalgebra which
is moreover the image of a trace preserving normal conditional expectation. Indeed, if the type
I summand of M is infinite dimensional, then M contains an infinite dimensional commutative
L∞(Ω, µ). On the other hand, if the type II∞ summand of M exists, then M contains B(ℓ2), so
ℓ∞ too. Finally, if the type II1 summand of M exists, then M contains L∞([0, 1]). See [12] for
the type decomposition of von Neumann algebras.

Note that if L∞(Ω, µ) is infinite dimensional, L∞(Ω, µ) contains, as subalgebra, either L∞([0, 1])
or ℓ∞. On the other hand, if Lp,p(M) = Lp(M) held for M = ℓ∞, it would do so for M = ℓn∞
uniformly in n ≥ 1. Then by a standard approximation argument, we see that it would hold for
M = L∞([0, 1]) too.

Thus we are reduced to showing the theorem for the special case M = L∞([0, 1]). Namely, we
must show that Lp,p([0, 1]) 6= Lp([0, 1]) completely isomorphically. In the rest of the proof, we
will drop the interval [0, 1] from Lp([0, 1]). By [13, Theorem 5.4], we choose 1 < p0 < p1 < ∞ and

0 < θ < 1 such that 1
p
= 1−θ

p0
+ θ

p1
and

Lp,p =
(

Lp0 , Lp1

)

θ,p
.

Then by [13, Proposition 6.3] and its proof, we have

Sp(Lp,p) =
(

Sp(Lp0), Sp(Lp1)
)

θ,p
.

Using the complete complementation of Cp(E) in Sp(E), we deduce

Cp(Lp,p) =
(

Cp(Lp0), Cp(Lp1)
)

θ,p
.

On the other hand, by the complete complementation of Radpi
in Lpi

for i = 0, 1, we get the
following isomorphic embedding:

(

Cp(Radp0), Cp(Radp1)
)

θ,p
⊂ Cp(Lp,p).

Now by Lemmas 4 and 5,
(

Cp(Radp0), Cp(Radp1)
)

θ,p
= (Sr0 , Sr1)θ,p = S2,p with equivalent norms,

where 1
ri

= 1
2p + 1

2p′
i

for i = 0, 1. Thus the closed subspace spanned by the Rademacher functions

in Cp(Lp,p) is isomorphic to S2,p. However, that spanned by the same functions in Cp(Lp) is
isomorphic to S2. But S2,p = S2 only if p = 2. Thus the theorem is proved. �

3. Proof of Theorem 2

We begin this proof by recalling the definition of the space Lp(M; ℓq) that is introduced in [3]
for q = 1 and q = ∞ (see also [4]), and in [5] for 1 < q < ∞. This definition is inspired by Pisier’s
description of the norm of Lp(M; ℓq) in the hyperfinite case.

A sequence (xi) in Lp(M) belongs to Lp(M; ℓ∞) iff (xi) admits a factorization xi = ayib with
a, b ∈ L2p(M) and (yi) ∈ ℓ∞(L∞(M)). The norm of (xi) is then defined as

(12) ‖(xi)‖Lp(M;ℓ∞) = inf
xi=ayib

‖a‖L2p(M) ‖(yi)‖ℓ∞(L∞(M)) ‖b‖L2p(M) .

On the other hand, Lp(M; ℓ1) is defined as the space of all sequences (xi) ⊂ Lp(M) for which
there exist aij , bij ∈ L2p(M) such that

xi =
∑

j

a∗ijbij .

Lp(M; ℓ1) is equipped with the norm

‖(xi)‖Lp(M;ℓ1) = inf
xi=

∑
j
a∗
ij
bij

∥

∥

∑

i,j

a∗ijaij
∥

∥

1
2

Lp(M)

∥

∥

∑

i,j

b∗ijbij
∥

∥

1
2

Lp(M)
.

Now for 1 < q < ∞ we define Lp(M; ℓq) as a complex interpolation space between Lp(M; ℓ∞) and
Lp(M; ℓ1):

Lp(M; ℓq) =
(

Lp(M; ℓ∞), Lp(M; ℓ1)
)

1
q

.
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The following description of the norm of Lp(M; ℓq) is proved in [9] for hyperfinite M and in [5]
for a general M.

Lemma 6. Let 1 ≤ p, q ≤ ∞.

(i) If p ≤ q,

‖(xi)‖Lp(M;ℓq) = inf
xi=ayib

‖a‖L2r(M) ‖(yi)‖ℓq(Lq(M)) ‖b‖L2r(M)

for any (xi) ∈ Lp(M; ℓq), where
1
r
= 1

p
− 1

q
.

(ii) If p ≥ q,

‖(xi)‖Lp(M;ℓq) = sup
‖α‖L2s(M)≤1, ‖β‖L2s(M)≤1

‖(αxiβ)‖ℓq(Lq(M))

for any (xi) ∈ Lp(M; ℓq), where
1
s
= 1

q
− 1

p
.

We will again consider the column subspace Cp(ℓq) of Sp(ℓq) for the proof of Theorem 2. As in
the previous section, a generic element x ∈ Cp(ℓq) is viewed as an infinite matrix

x =
∞
∑

i,j=1

xijei,1 ⊗ ej .

Let Dp,q denote the diagonal subspace of Cp(ℓq) consisting of all x with xij = 0 for i 6= j.

Lemma 7. Let 1 ≤ p, q ≤ ∞. Then Dp,q is completely 1-complemented in Cp(ℓq).

Proof. The proof is very simple. It suffices to note that the canonical bases of Cp and ℓq are
completely 1-unconditional. A standard average argument then yields the assertion. �

We will identify an element x = (xiei,1) ∈ Dp,q with the sequence (xi).

Lemma 8. Let 1 ≤ p, q ≤ ∞ and rp,q be determined by 1
rp,q

= 1
2p + 1

2q . Then Dp,q = ℓrp,q with

equal norms.

Proof. First consider the cases q = ∞ and q = 1. Let x = (xiei,1) ∈ Dp,∞ ⊂ Sp(ℓ∞). Let a be the
diagonal matrix with the xi’s as its diagonal entries. Then we have the following factorization:

xiei,1 = aei,1e11, i ≥ 1.

Thus by the definition of the norm of Sp(ℓ∞), we get

‖x‖Sp(ℓ∞) ≤ ‖a‖S2p ‖(ei,1)‖ℓ∞(B(ℓ2)) ‖e11‖S2p = ‖x‖ℓ2p .

On the other hand, for q = 1 we factorize x as

xiei,1 = [sgn(xi)|xi|αei,1] [|xi|1−αe1,1] = aibi,

where α =
rp,1
2p . Therefore, by the definition of the norm of Sp(ℓ1)

‖x‖Sp(ℓ1) ≤
∥

∥

∑

i

aia
∗
i

∥

∥

1
2

p

∥

∥

∑

i

b∗i bi
∥

∥

1
2

p

=
(

∑

i

|xi|rp,1
)

1
2p
(

∑

i

|xi|rp,1
)

1
2 = ‖x‖ℓrp,1 .

Thus we have proved that for any 1 ≤ p ≤ ∞

ℓrp,∞ ⊂ Dp,∞ and ℓrp,1 ⊂ Dp,1 contractively.

Dualizing these inclusions and using Lemma 7, we deduce the assertion for q = ∞ and q = 1. The
case 1 < q < ∞ is then completed by complex interpolation via (11) with the help of Lemma 7
again. �

Remark 9. The previous lemma can be proved directly by Lemma 6 without passing to complex
interpolation.
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Proof of Theorem 2. If M is isomorphic, as Banach space, to some commutative L∞, then M is a
finite direct sum of algebras of the form L∞(Ω, µ)⊗Mn, where Mn is the n×n full matrix algebra.
Then (6) goes back to (4).

Conversely, suppose that M is not isomorphic to a commutative von Neumann algebra. Our
first step is to reduce the non validity of (6) to the special case where M = B(ℓ∞). To this end,
we use the type decomposition of M. If the type I summand of M is infinite dimensional, then M
contains Mn for infinite many n’s. On the other hand, if the type II∞ summand of M exists, then
M contains B(ℓ2). Finally, it is well known that if the type II1 summand of M exists, then M
contains the hyperfinite II1 factor R (cf. e.g. [7]); R is the von Neumann tensor of countable many
copies of (M2, tr), where tr is the normalized trace on M2; so M again contains Mn for infinite
many n’s. Note that in all the three cases, the Mn’s contained in M are images of trace preserving
normal conditional expectations (up to a normalization in the type II1 case).

In summary, if M is not isomorphic to a commutative von Neumann algebra, M contains Mn

for infinite many n’s which are images of trace preserving normal conditional expectations. This
shows that if (6) held for M, then it would do so for M = Mn for infinite many n’s; consequently,
by approximation, it would further hold for M = B(ℓ2) too. This finishes the announced reduction.

It remains to show that (6) fails for M = B(ℓ2). Namely, we must show
(

S∞(ℓq), S1(ℓq)
)

1
p
,p
6= Sp(ℓq) .

This is an easy consequence of the previous two lemmas. By Lemma 7,
(

D∞,q, D1,q

)

1
p
,p
⊂

(

S∞(ℓq), S1(ℓq)
)

1
p
,p
, an isometric embedding.

On the other hand, by Lemma 8,
(

D∞,q, D1,q

)

1
p
,p
=

(

ℓr∞,q
, ℓr∞,q

)

1
p
,p
= ℓrp,q,p with equivalent norms,

where ℓr,p denotes the Lorentz sequence space. On the other hand, by Lemma 8, the corresponding
subspace of Sp(ℓq) is equal to ℓrp,q . However, ℓrp,q,p = ℓrp,q if and only if rp,q = p, i.e., q = p. The
theorem is thus proved. �

4. Proof of Theorem 3

In the sequel, ‖ ‖p will denote the norm of Lp(M). Fix a finite sequence (xi) ⊂ L+
p (M). We

claim that the function q 7→
∥

∥

(
∑

i x
q
i

)
1
q
∥

∥

q

p
is log-convex. Namely, for any q0, q1 ∈ (0, ∞) and any

α ∈ (0, 1)

(13)
∥

∥

(

∑

i

x
q
i

)
1
q
∥

∥

q

p
≤

∥

∥

(

∑

i

x
q0
i

)
1
q0

∥

∥

(1−α)q0

p

∥

∥

(

∑

i

x
q1
i

)
1
q1

∥

∥

(1−α)q1

p
,

where q = (1 − α)q0 + αq1. It suffices to show this inequality for α = 1
2 . Then it immediately

follows from the Hölder inequality for column spaces:

∥

∥

∑

i

x
q
i

∥

∥

p

q

=
∥

∥

∑

i

x
q0
2

i x
q1
2

i

∥

∥

p

q

≤
∥

∥

(

∑

i

x
q0
i

)
1
q0

∥

∥

q0
2

p

∥

∥

(

∑

i

x
q1
i

)
1
q1

∥

∥

q1
2

p
.

Now let us show (7). Replacing xi by xr
i and dividing all indices by r, we are reduced to the

case where r = 1 < q and p ≥ 1. Thus it suffices to show

(14)
∥

∥

(

∑

i

x
q
i

)
1
q
∥

∥

p
≤

∥

∥

∑

i

xi

∥

∥

p
.

Set x =
∑

i xi. We first consider the case where q = 2. If p ≤ 2, then

∥

∥

(

∑

i

x2
i

)
1
2
∥

∥

p

p
= τ

[(

∑

i

x2
i

)

p

2
]

≤
∑

i

τ(xp
i )

≤
∑

i

τ(x
1
2

i x
p−1x

1
2

i ) =
∑

i

τ(xp−1xi) = ‖x‖pp .
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Note that the same argument yields (14) in the case where p ≤ min(q, 2). Assume p > 2. Let (εn)
be a Rademacher sequence, and let E denote the corresponding expectation. Then by the triangle
inequality in L p

2
(M),

∥

∥

(

∑

i

x2
i

)
1
2
∥

∥

p
≤

[

E
∥

∥

∑

i

εixi

∥

∥

2

p

]
1
2 ≤ ‖x‖p ,

where we have used the fact that −x ≤
∑

i εixi ≤ x. Thus inequality (14) is proved for q = 2 and
any p ≥ 1.

Using (13) and the just proved cases, we deduce (14) for any 1 < q ≤ 2 and any p ≥ 1.
Next, we show (14) for q = p. If p ≤ 2, this was proved previously. The case p > 2 easily follows

by an iteration argument. Indeed, if 2 < p ≤ 4, by the two cases already proved
∥

∥

(

∑

i

x
p
i

)
1
p
∥

∥

p
=

∥

∥

(

∑

i

x
p
i

)
2
p
∥

∥

1
2
p

2

≤
∥

∥

∑

i

x2
i

∥

∥

1
2
p

2

=
∥

∥

(

∑

n

x2
n

)
1
2
∥

∥

p
≤ ‖x‖p.

Repeating this argument, we obtain (14) for the case q = p.
We then deduce (14) for 1 ≤ p ≤ q as follows

∥

∥

(

∑

i

x
q
i

)
1
q
∥

∥

p
≤

∥

∥

(

∑

i

x
p
i

)
1
p
∥

∥

p
≤ ‖x‖p .

Thus it remains to consider the case where p ≥ q ≥ 2. This is treated by an iteration argument
as above. Indeed, if q ≤ 4, then

∥

∥

(

∑

i

x
q
i

)
1
q
∥

∥

p
=

∥

∥

(

∑

i

(x2
i )

q

2

)
2
q
∥

∥

1
2
p
2

≤
∥

∥

(

∑

i

x2
i

)
1
2
∥

∥

p
≤ ‖x‖p .

Thus the proof of (14), so that of (7), is complete.

Now we turn to the proof of part (ii) of the theorem. As in the proof of Theorem 2, it suffices to
consider the case where M = B(ℓ2). Suppose that (8) holds with a constant C and some indices
p, q, r such that 0 < p < r < q < ∞. Then by dividing all indices by r, we are again reduced to
the case where p < 1 = r < q. Thus

(15)
∥

∥

(

∑

i

x
q
i

)
1
q
∥

∥

p
≤ C

∥

∥

∑

i

xi

∥

∥

p

for all finite sequences (xi) ⊂ L+
p (M). We claim that C must be equal to 1. Indeed, given a

positive integer k, applying (15) to the family (xi1 ⊗ · · · ⊗ xik ) we get
∥

∥

(

∑

i1,...,ik

x
q
i1
⊗ · · · ⊗ x

q
ik

)
1
q
∥

∥

p
≤ C

∥

∥

∑

i1,...,ik

xi1 ⊗ · · · ⊗ xik

∥

∥

p
.

However,
∥

∥

∑

i1,...,ik

xi1 ⊗ · · · ⊗ xik

∥

∥

p
=

∥

∥

(

∑

i

xi

)⊗k∥
∥

p
=

∥

∥

∑

i

xi

∥

∥

k

p
.

Similarly,
∥

∥

(

∑

i1,...,ik

x
q
i1
⊗ · · · ⊗ x

q
ik

)
1
q
∥

∥

p
=

∥

∥

(

∑

i

x
q
i

)
1
q
∥

∥

k

p
.

It then follows that
∥

∥

(

∑

i

x
q
i

)
1
q
∥

∥

p
≤ C

1
k

∥

∥

∑

i

xi

∥

∥

p
;

whence the claim by letting k → ∞.
Now it is easy to construct counterexamples to (15) with C = 1. Consider M = M2 and the

following matrices

x =

(

1 1
1 1

)

and y =

(

0 0
0 t

)

with t > 0 very small. Then

x+ y =

(

1 1
1 1 + t

)

and xq + yq = 2q−1

(

1 1
1 1 + 21−q tq

)

.
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The two eigenvalues of x+ y are
2 + t±

√
4 + t2

2
.

Thus (recalling that p < 1)

∥

∥x+ y
∥

∥

p

p
=

(2 + t+
√
4 + t2 )p

2p
+

(2 + t−
√
4 + t2 )p

2p

= 2p + 2−p tp + o(tp) as t → 0.

Similarly,
∥

∥(xq + yq)
1
q

∥

∥

p

p
= 2p + 2−

p

q tp + o(tp).

Hence, by (15) with C = 1, we get

2p + 2−
p

q tp + o(tp) ≤ 2p + 2−p tp + o(tp).

It then follows that 2q ≤ 2, which is a contradiction since q > 1. Thus Theorem 3 is completely
proved.
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