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Abstract 1

This study is devoted to the investigation of dengue spread via a time- 2

space periodic reaction-advection-diffusion model. We establish the existence 3

of the spreading speeds and its coincidence with the minimal speed of almost 4

pulsating waves. 5

1 Introduction 6

Dengue is a vector-borne infectious disease which is transmitted to humans mainly 7

by the bites of Aedes aegypti mosquitoes. Due to the rapid transmission, it has 8

become a serious public health problem in tropical/subtropical regions of the world. 9

In order to investigate the spreading dynamics of Aedes mosquitoes, the authors in 10

[18] proposed a novel model system of differential equations, in which populations 11

are divided into two sub-populations, the winged/mature female mosquitoes and 12

the aquatic population (e.g., eggs, larvae and pupae). To reflect the fact that 13

winged female A. aegypti can search for human blood freely and wind currents 14

may also cause an advection movement of mosquitoes, a diffusion process and an 15

advection term are added to describe the random search movements of mature 16
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female mosquitoes and the result of wind transportation, respectively. Neither 17

advective transport nor diffusive process is added to the aquatic population since 18

they are assumed to stay in water containers. The system proposed in [18] is an 19

advection-dispersion-reaction equation coupled with an ordinary equation in which 20

the involved coefficients are all assumed to be positive constants. 21

There has been a dramatic increase in the number of countries with reported 22

dengue outbreaks during the past 50 years [3, 19, 24]. Therefore, dengue fever 23

can be regarded as one of the most rapidly spreading diseases in the world, and 24

it is natural to incorporate the spatial variations into the model system because 25

of its remarkably growing spatial spread. On the other hand, seasonal or daily 26

fluctuations in temperature also have a significant influence on the maturation 27

rates of the aquatic population and biting rate of mature female mosquitoes (see, 28

e, g., [4]). To explore these aforementioned impacts, we extend the model in [18] 29

to the following system with both spatial heterogeneity and temporal variation: 30
∂
∂t
u1(x, t) = D(x, t)∂

2u1(x,t)
∂x2

− ν(x, t)∂u1(x,t)
∂x

+γ(x, t)u2(x, t)
(

1− u1(x,t)
k1(x,t)

)
− d1(x, t)u1(x, t), x ∈ R, t > 0,

∂
∂t
u2(x, t) = α(x, t)

(
1− u2(x,t)

k2(x,t)

)
u1(x, t)− (d2(x, t) + γ(x, t))u2(x, t), x ∈ R, t > 0.

(1.1)

Here, u1(x, t) represents the spatial density of the winged A. aegypti (mature fe-

male mosquitoes) at position x and time t; u2(x, t) represents the aquatic form of

mosquitoes (eggs, larvae and pupae) at location x and time t; γ(t, x) is the specific

rate of maturation of the aquatic form into winged female mosquitoes, saturated by

a carrying capacity k1(t, x). The term α(t, x)(1− u2(x,t)
k2(t,x)

)u1(x, t) describes the rate of

production of the aquatic form, which is produced only by female mosquitoes. That

is, we assume that the rate of production of the aquatic form is proportional to the

density of female mosquitoes and it is also saturated by a carrying capacity k2(t, x).

The random flying movement of female mosquitoes is represented by a diffusion

process with coefficient D(t, x), and ν(t, x) represents the wind advection. d1(t, x)

and d2(t, x) represent the mortality rates of the mosquitoes and the aquatic forms,

respectively. Periodicity is one of the simplest environmental heterogeneities and

it is a good candidate to approximate the complex heterogeneity. For this reason,

we assume that there is an ω > 0 and L > 0 such that

g(x+L, t+ω) = g(x, t) > 0, for all x ∈ R, t > 0, g ≡ D, ν, γ, k1, d1, α, k2, d2.

When coefficients in (1.1) are all positive constants, the authors in [18] studied 31
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the invasion/spreading speeds and traveling waves, via delicate numerical analysis. 32

In this paper, the revised model (1.1) has time-space heterogeneity, which gives 33

the difficulty for the mathematical analysis due to the lack of compactness caused 34

by the immobility of the aquatic population. Further, instead of traveling wave, 35

almost pulsating wave that was recently introduced in [5] for time-space periodic 36

environment will be the objective. 37

Classical reaction - diffusion equations are not suitable to describe spread and 38

persistence of population with dynamics of seasonal heterogeneous growth and 39

dispersal. Impulsive reaction - diffusion equations were used to study persistence 40

and spread of species with a reproductive stage and a dispersal stage by [8]. We 41

use spatial and temporal periodicity to approximate the complex environmental 42

heterogeneity in this paper. 43

The organization of the rest of this paper is as follows. The well-posedness 44

of our proposed system is studied in Section 2. In Section 3, we first adopt the 45

ideas in [11, Lemma 3.3] to study a one-parameter parabolic eigenvalue problem 46

with time-space periodic boundary conditions (Lemma 3.1), which will be used 47

to determine the local stability of the zero solution of associated linear systems 48

and the characterization of spreading speeds. Then the global attractivity of the 49

zero solution 0 or a positive time-space periodic solution u∗(x, t) for the time- 50

space periodic initial value problem can be established in terms of the reproduction 51

number, R0 (Theorem 3.1). In Section 4, we first establish the continuity of the 52

solution maps associated with system (1.1) in a suitable space (Lemma 4.1). Then 53

we can overcome the lack of compactness of system (1.1), namely, we show that the 54

associated solution map is κ-contraction in the sense of Lemma 4.2. In Section 5, 55

we first assume the reproduction number R0 > 1, and utilize the developed theory 56

in [9, Theorem 5.1] to establish the existence and characterization of rightward 57

and leftward spreading speeds (Lemma 5.2, Lemma 5.3, and Theorem 5.1). Then 58

the coincidence of spreading speeds with the minimal speeds of time-space periodic 59

traveling waves connecting u∗(t, x) and 0 can be rigorously established by the 60

theory developed in [5] (Theorem 5.2). Numerical simulations are collected in 61

Section 6. 62
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2 Well-posedness 63

Let C be the space of all bounded and continuous functions from R to R2. It

is easy to see C+ := {u ∈ C : u(x) ≥ 0, ∀x ∈ R} is a positive cone of C.
For u := (u1, u2), v := (v1, v2) ∈ C, we write u ≥ v (u � v) provided that

ui(x) ≥ vi(x) (ui(x) > vi(x)), ∀ i = 1, 2, x ∈ R, and u > v if u ≥ v and u 6= v.

We equip C with the compact open topology, i.e., um → u in C means that the

sequence of um(x) converges to u(x) as m → ∞ uniformly for x in any compact

set of R. Define

‖u‖ =
∞∑
k=1

max|x|≤k | u(x) |
2k

, ∀ u ∈ C,

where | · | denotes the usual norm in R2. Then (C, ‖ · ‖) is a normed space. Let 64

d(·, ·) be the distance induced by the norm ‖ · ‖. It follows that the topology in the 65

metric space (C, d) is the same as the compact open topology in C. For r ∈ C+, we 66

define Cr := {u ∈ C : 0 ≤ u ≤ r}. 67

Let Γ1(t, s, x), t ≥ s, x ∈ R be the fundamental function of 68

ρt = D(t, x)ρxx − ν(t, x)ρ− d1(t, x)ρ, x ∈ R, t ≥ s. (2.1)

We refer to [16] for the existence and properties of Γ1(t, s, x). Define 69

Γ2(t, s, x) := e−
∫ t
s [d2(η,x)+γ(η,x)]dη. (2.2)

Let φ = (φ1, φ2) ∈ C. For t > 0, define P (t) : C → C by 70

P (t)[φ] =

(
Γ1(t, 0, ·)∗ 0

0 Γ2(t, 0, x)

)(
φ1

φ2

)
, (2.3)

where ∗ stands for the convolution. Define H : R+ × R× R2 → R2 by 71

H(t, x,u) =

γ(t, x)u2

(
1− u1

k1(t,x)

)
α(t, x)u1

(
1− u2

k2(t,x)

) , (2.4)

where u := (u1, u2) ∈ R2. Then (1.1) with the initial condition u(·,0) = φ can be 72

written as the following integral form 73

u(x, t) = P (t)[φ](x) +

∫ t

0

P (t− s)[H(s, ·,u(·, s))](x)ds, t > 0, x ∈ R. (2.5)
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In order to obtain the existence and comparison principle for solutions of system 74

(1.1), we need the following technical conditions on (k1(x, t), k2(x, t)), which is 75

assumed in the rest of the paper: 76

(A) The functions k1(x, t) and k2(x, t) satisfy the following inequalities:{
∂
∂t
k1(x, t) ≥ D(x, t)∂

2k1(x,t)
∂x2

− ν(x, t)∂k1(x,t)
∂x
− d1(x, t)k1(x, t), x ∈ R, t > 0,

∂
∂t
k2(x, t) ≥ − (d2(x, t) + γ(x, t)) k2(x, t), x ∈ R, t > 0.

Then we have the following result: 77

Lemma 2.1. Let k(x, t) = (k1(x, t), k2(x, t)). For any initial value φ ∈ Ck(·,0), 78

(2.5) has a unique solution u(x, t;φ), which is well-defined for t > 0. Moreover, 79

u(x, t;φ) ≥ u(x, t;ψ) for all t ≥ 0 and x ∈ R provided that φ ≥ ψ in Ck(·,0). 80

Proof. We employ the abstract framework in [13]. Using the notations there, we 81

set C = X = C, D(t) = Ck(·,t), B = H. Choose S(t, s), T (t, s), t ≥ s ≥ a to be 82

P (t), t ≥ s = a = 0. Then one may see that all conditions in [13, Corollary 5] are 83

satisfied. 84

3 The periodic initial value problem 85

Let P = PC(R,R2) be the set of all continuous and L-periodic functions from R 86

to R2 with the maximum norm ‖ · ‖P, and P+ = {ψ ∈ P : ψ(x) ≥ 0, ∀x ∈ R} be a 87

positive cone of P. Then (P,P+) is a strongly ordered Banach lattice. 88

3.1 A one-parameter parabolic eigenvalue problem with 89

periodic boundary conditions 90

For our convenience in the subsequent discussions, we consider the following one- 91

parameter linear system 92
∂u1(x,t)

∂t
= D(x, t)∂

2u1
∂x2
− [2µD(x, t) + ν(x, t)]∂u1

∂x
+ [µ2D(x, t) + µν(x, t)]u1(x, t)

+γ(x, t)u2(x, t)− d1(x, t)u1(x, t), x ∈ R, t > 0,
∂u2(x,t)

∂t
= α(x, t)u1(x, t)− (d2(x, t) + γ(x, t))u2(x, t), x ∈ R, t > 0,

(u1(x, 0), u2(x, 0)) ∈ P+, x ∈ R,
(3.1)
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where µ ≥ 0. The following one-parameter periodic eigenvalue problem is associ- 93

ated with (3.1): 94
∂u1(x,t)

∂t
= D(x, t)∂

2u1
∂x2
− [2µD(x, t) + ν(x, t)]∂u1

∂x
+ [µ2D(x, t) + µν(x, t)]u1(x, t)

+γ(x, t)u2(x, t)− d1(x, t)u1(x, t) + λu1(x, t), x ∈ R, t > 0,
∂u2(x,t)

∂t
= α(x, t)u1(x, t)− (d2(x, t) + γ(x, t))u2(x, t) + λu2(x, t), x ∈ R, t > 0,

ui(x+ L, t) = ui(x, t), ui(x, t+ ω) = ui(x, t), (x, t) ∈ R× R, i = 1, 2.

(3.2)

Let d2(x) = 1
ω

∫ ω
0
d2(x, t)dt, γ(x) = 1

ω

∫ ω
0
γ(x, t)dt andM = maxx∈[0,L]

{
d2(x) + γ(x)

}
.95

In order to establish the existence of the principal eigenvalue of (3.2), we need to 96

impose the following technical condition: 97

(H) There are 0 < a < b < L such that

d2(x) + γ(x) = M, ∀ x ∈ [a, b].

Remark 3.1. The assumption (H) is motivated by the hypothesis (H4) in [11] 98

and can be used to overcome the loss of compactness in system (3.1). We note 99

that if d2(x, t) ≡ d2(t) and γ(x, t) ≡ γ(t) depend on the temporal factor alone, the 100

condition (H) is automatically valid. At this moment it is challenging to remove or 101

weaken this condition (H), but we hope to be able to improve it in the future study. 102

We introduce the Banach spaces Y1 = C(R,R), and Y = Y1 × Y1 with the 103

positive cones Y +
1 = C(R,R+), and Y + = Y +

1 × Y +
1 , respectively. Let 104

Y =
{
u ∈ C(R× R,R2) : u(x+ L, t) = u(x, t), u(x, t+ ω) = u(x, t), ∀ (x, t) ∈ R× R

}
.

(3.3)

Then 105

Y+ =
{
u ∈ C(R× R,R2

+) : u(x+ L, t) = u(x, t), u(x, t+ ω) = u(x, t), ∀ (x, t) ∈ R× R
}

(3.4)

is the positive cone of Y. Further, it is easy to see that Int(Y +
1 ), Int(Y +), and 106

Int(Y+) are nonempty. 107

Let {Uµ(t, s) : t ≥ s} be the evolution family on Y of system (3.1). 108

Lemma 3.1. Assume that µ ≥ 0 and (H) holds. Then r(Uµ(ω, 0)) is the principal 109

eigenvalue of Uµ(ω, 0), and λ∗µ = − ln(r(Uµ(ω,0)))

ω
is the eigenvalue of problem (3.2) 110

with an eigenvector u∗ ∈Int(Y+). 111
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Proof. Our arguments are similar to those in [11, Lemma 3.3]. It is not hard to see 112

that Uµ(t, s) is positive (resp. strongly positive) on Y for t ≥ s (resp. t > s) (see 113

e.g., [11, Lemma 2.10]). For the sake of simplicity, we set 114{
a11(x, t) = µ2D(x, t) + µν(x, t)− d1(x, t), a12(x, t) = γ(x, t),

a21(x, t) = α(x, t), a22(x, t) = − (d2(x, t) + γ(x, t)) ,
(3.5)

for any (x, t) ∈ R× R. Let {Hλ(t, s) : t ≥ s} be the evolution family on Y1 of the 115

following system 116

∂

∂t
v(x, t) = a22(x, t)v + λv, (3.6)

thus, Hλ(t, s) = e
∫ t
s a22(x,τ)dτ+λ(t−s). Then η := −ω̂(H0) = −maxx∈[0,L]{a22(x)}, 117

where ω̂(H0) represents the exponential growth bound of evolution family {H0(t, s) : 118

t ≥ s}, and a22(x) := 1
ω

∫ ω
0
a22(x, t)dt (see e. g., [11, Lemma 2.14]). 119

Thus, Kλ defined in [11, (2.9)] becomes 120

Kλw(x, t) =

∫ ω
0

[e
∫ ω
s a22(x,τ)dτ+λ(ω−s)]a21(x, s)w(x, s)ds

1− e
∫ ω
0 a22(x,τ)dτ+λω

e
∫ t
0 a22(x,τ)dτ+λt

+

∫ t

0

[e
∫ t
s a22(x,τ)dτ+λ(t−s)]a21(x, s)w(x, s)ds, (3.7)

for any λ < η, and [M12w](x, t) = a12(x, t)w(x, t). 121

Let G = C1
0([a, b],R2) with the following positive cone 122

G+ = {ϕ ∈ G : ϕ(x) ≥ 0, ∀ x ∈ [a, b]} . (3.8)

Then 123

Int(G+) =

{
ϕ ∈ G : ϕ(x) > 0, ∀ x ∈ [a, b],

∂ϕ

∂x
(a) > 0,

∂ϕ

∂x
(b) < 0

}
(3.9)

is nonempty. Assume that G is the Banach space of continuous ω-periodic functions 124

from R to G, which is equipped with the maximum norm, and the positive cone 125

G+ = {u ∈ G : u(x, t) ≥ 0, ∀ (x, t) ∈ [a, b]× R} . (3.10)

Then it is not hard to see that 126

Int(G+) = {u ∈ G : u(x, t) > 0, ∀ (x, t) ∈ [a, b]× R,
∂u

∂x
(a, t) > 0,

∂u

∂x
(b, t) < 0, ∀ t ∈ R} (3.11)
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is nonempty. Let 127

G =
{
u ∈ C2,1

0 ([a, b]× R,R2) : u(x, t+ ω) = u(x, t), ∀ (x, t) ∈ [a, b]× R
}
. (3.12)

Next, we define a parabolic operator L on G as follows: 128

Lw =
∂w

∂t
−D(x, t)

∂2w

∂x2
+[2µD(x, t)+ν(x, t)]

∂w

∂x
+[d1(x, t)−µ2D(x, t)−µν(x, t)]w.

(3.13)

Let λ0 be the principal eigenvalue of 129
Lw = λw, x ∈ (a, b), t > 0,

w(a, t) = w(b, t) = 0, t > 0,

w(x, t) = w(x, t+ ω), x ∈ (a, b), t ∈ R,
(3.14)

with a positive eigenvector w∗ ∈ Int(G+)∩G. 130

Claim 1: There exists λ < η such that 131

Lw∗(x, t)−M12Kλw∗(x, t) ≤ 0, ∀ x ∈ [a, b], t ∈ R. (3.15)

In the case where λ0 < η. Then a22(x) + λ0 < λ0 − η < 0, and hence, 1 −
e
∫ ω
0 a22(x,τ)dτ+λ0ω > 0. This implies that Kλ0w∗(x, t) ≥ 0, ∀ x ∈ [a, b], t ∈ R.

Therefore, we see that (3.15) holds with λ = λ0. Next, we consider the case where

λ0 ≥ η. Let ŵ∗(x) :=
∫ ω

0
w∗(x, t)dt. Then it follows from the fact w∗ ∈ G+ ∩ G

that ŵ∗(·) ∈ G+. Further, one can further verify that ŵ∗(·) ∈ Int(G+) (see e. g.,

[11, Lemma 2.10]). Then

B := max{b : ŵ∗(·)− bw∗(·, t) ∈ G+, ∀ t ∈ R} > 0.

Note that
∫ t
s
a22(x, τ)dτ + λ(t − s) is uniformly bounded for λ ∈ [η − 1, η] and 132

0 ≤ s ≤ t ≤ ω. Using this observation together with the fact that the second term 133

in the R.H.S. of (3.7) is positive, it follows that there exists a constant C > 0 such 134

that 135

M12Kλw∗(x, t)

≥ C · 1

1− e(a22(x)+λ)ω

∫ ω

0

w∗(x, s)ds

≥ C · [− 1

(a22(x) + λ)ω
]

∫ ω

0

w∗(x, s)ds, x ∈ [a, b], t ∈ R, (3.16)
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for any λ ∈ [η − 1, η), where we used the fact 1
1−e♦ ≥ −

1
♦ , ∀ ♦ < 0. From the 136

assumption (H), we see that η = −a22(x), ∀ x ∈ [a, b]. This fact together with 137

(3.16) implies that 138

M12Kλw∗(x, t) ≥
C

(η − λ)ω

∫ ω

0

w∗(x, s)ds ≥
BC

(η − λ)ω
w∗(x, t), x ∈ [a, b], t ∈ R,

(3.17)

for any λ ∈ [η − 1, η). Let λ1 = BC
(η−1−λ0)ω

+ η and λ := max{λ1, η − 1}. Then 139

λ1 < η since η − 1− λ0 < 0. Thus, it is easy to see that η − 1 ≤ λ < η. In view of 140

(3.17), it follows that 141

Lw∗(x, t)−M12Kλw∗(x, t)

≤ λ0w∗(x, t)−
BC

(η − λ)ω
w∗(x, t) ≤ λ0w∗(x, t)−

BC

(η − λ1)ω
w∗(x, t)

= [λ0 −
BC

(η − λ1)ω
]w∗(x, t)

= (η − 1)w∗(x, t) ≤ λw∗(x, t), x ∈ [a, b], t ∈ R. (3.18)

Thus, we have proved Claim 1. 142

Claim 2: r
(
eλωUµ(ω, 0)

)
≥ 1. 143

To this end, for any t > 0 we define a function w0(·, t) : R→ R such that

w0(x, t) =

{
w∗(x, t), x ∈ [a, b],

0, x ∈ [0, L] \ [a, b],

and w0(x + L, t) = w0(x, t), ∀ x ∈ R. Let v0(x, t) = Kλw
0(x, t) and u0(x, t) := 144

(w0(x, t), v0(x, t)), for (x, t) ∈ R × R. For convenience, we set φ0(·) = u0(·, 0) and 145

u0(x, t, φ0) = (u0
1(x, t), u0

2(x, t)), for (x, t) ∈ R × R. Then it follows from Claim 1 146

and the construction of u0(x, t, φ0) that 147

∂
∂t
u0

1(x, t)−D(x, t)
∂2u01
∂x2

+ [2µD(x, t) + ν(x, t)]
∂u01
∂x
− [µ2D(x, t) + µν(x, t)]u0

1(x, t)

−γ(x, t)u0
2(x, t) + d1(x, t)u0

1(x, t) ≤ λu0
1(x, t), x ∈ R, t > 0,

∂
∂t
u0

2(x, t)− α(x, t)u0
1(x, t)

+ (d2(x, t) + γ(x, t))u0
2(x, t) = λu0

1(x, t), x ∈ R, t > 0,

u0
1(a, t) = u0

1(b, t), t > 0,

((u0
1(x, 0), u0

2(x, 0)) = φ0(x) ∈ P+, x ∈ R.
(3.19)
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By the comparison principle, we have

eλtUµ(t, 0)φ0(x) ≥ u0(x, t, φ0) = φ0(x), ∀ x ∈ R, t > 0.

Since eλtUµ(t, 0)φ0(x) ∈ Y +, ∀ t > 0, it follows that eλωUµ(ω, 0)φ0(x) ≥ φ0(x), ∀ x ∈ 148

R, and hence, r
(
eλωUµ(ω, 0)

)
≥ 1. Thus, we have proved Claim 2. 149

By Claim 2, [11, Theorem 2.16], and [11, Remark 2.21], the proof of this lemma 150

is finished. 151

3.2 Threshold dynamics of the periodic initial value prob- 152

lem 153

Given a function ζ(·), we define [0, ζ(·)]P = {φ ∈ P+ : 0 ≤ φ(x) ≤ ζ(x), ∀ x ∈ R}. 154

Recall that k(x, t) = (k1(x, t), k2(x, t)). Then we consider the following parabolic 155

system with periodic initial value, which is associated with system (1.1): 156

∂
∂t
u1(x, t) = D(x, t)∂

2u1
∂x2
− ν(x, t)∂u1

∂x

+γ(x, t)u2(x, t)
(

1− u1(x,t)
k1(x,t)

)
− d1(x, t)u1(x, t), x ∈ R, t > 0,

∂
∂t
u2(x, t) = α(x, t)

(
1− u2(x,t)

k2(x,t)

)
u1(x, t)− (d2(x, t) + γ(x, t))u2(x, t), x ∈ R, t > 0,

(u1(x, 0), u2(x, 0)) ∈ [0,k(x, 0)]P, x ∈ R.
(3.20)

By same arguments to those in Lemma 2.1, we have the following results: 157

Lemma 3.2. For any given initial function ϕ(·) ∈ [0,k(·, 0)]P, there exists a unique 158

nonnegative solution u(x, t) = u(x, t, ϕ(·)) of system (3.20) defined on [0,∞), and 159

u(x, t) ∈ [0,k(x, t)]P for t ≥ 0. Moreover, u(x, t;φ) ≥ u(x, t;ψ) for all t ≥ 0 and 160

x ∈ R provided that φ ≥ ψ in [0,k(·, 0)]P. 161

Linearizing system (3.20) at (0, 0), we have 162
∂
∂t
u1(x, t) = D(x, t)∂

2u1
∂x2
− ν(x, t)∂u1

∂x

+γ(x, t)u2(x, t)− d1(x, t)u1(x, t), x ∈ R, t > 0,
∂
∂t
u2(x, t) = α(x, t)u1(x, t)− (d2(x, t) + γ(x, t))u2(x, t), x ∈ R, t > 0,

(u1(x, 0), u2(x, 0)) ∈ P+, x ∈ R.

(3.21)
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Consider the following parabolic eigenvalue problem with periodic boundary con- 163

ditions, which is associated with system (3.21): 164
∂
∂t
u1(x, t) = D(x, t)∂

2u1
∂x2
− ν(x, t)∂u1

∂x

+γ(x, t)u2(x, t)− d1(x, t)u1(x, t) + λu1(x, t), (x, t) ∈ R× R,
∂
∂t
u2(x, t) = α(x, t)u1(x, t)− (d2(x, t) + γ(x, t))u2(x, t) + λu2(x, t), (x, t) ∈ R× R,

ui(x, t) = ui(x, t+ ω), ui(x, t) = ui(x+ L, t), (x, t) ∈ R× R, i = 1, 2.

(3.22)

Observing that if we put µ = 0 in system (3.1) (resp. (3.2)), then we get system 165

(3.21) (resp. (3.22)). Then {U0(t, s) : t ≥ s} is the evolution family on Y of system 166

(3.21). In view of Lemma 3.1, we see that 167

λ∗0 = − ln(r(U0(ω, 0)))

ω
(3.23)

is the principal eigenvalue of problem (3.22) with an eigenvector u∗0 ∈Int(Y+). 168

In the following, we will adopt the theory developed in [12] (with delay τ = 0) to 169

define the basic reproduction number for system (3.20). Recall that P = PC(R,R2) 170

is the set of all continuous and L-periodic functions from R to R2 with the maximum 171

norm ‖ · ‖P, and P+ = {ψ ∈ P : ψ(x) ≥ 0,∀x ∈ R} is a positive cone of P. Assume 172

Cω(R,P) is the Banach space consisting of all ω-periodic and continuous functions 173

from R to P, where ‖ϕ‖Cω(R,P) = maxθ∈[0,ω] ‖ϕ(θ)‖P for any ϕ ∈ Cω(R,P). From 174

(3.21), we define F(t) : P→ P by 175

F(t)

(
ϕ1

ϕ2

)
=

(
γ(·, t)ϕ2

α(·, t)ϕ1

)
, (3.24)

and 176

−V(t)

(
ϕ1

ϕ2

)
=

(
D(·, t)∂2ϕ1

∂x2
− ν(·, t)∂ϕ1

∂x
− d1(·, t)ϕ1

− (d2(·, t) + γ(·, t))ϕ2

)
, (3.25)

where (ϕ1, ϕ2) ∈ P. It is easy to see that F(t) : P → P is positive in the sense

that F(t)P+ ⊂ P+, and hence, the condition (H1) in [12] holds. Next, we assume

{Ψ(t, s), t ≥ s} is the evolution family on P associated with the following system

dv(t)

dt
= −V(t)v(t).
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It is not hard to see that Ψ(t, s) is a positive operator in the sense that Ψ(t, s)P+ ⊂ 177

P+ for all t ≥ s. Then it follows from [20, Theorem 3.12] that −V(t) is resolvent 178

positive. Further, it is not hard to show that the spectral radius of Ψ(ω, 0) is 179

less than 1, that is, r (Ψ(ω, 0)) < 1. Then it follows from [20, Proposition A2] ( 180

see also [11, Lemma 2.1]) that the exponential growth bound of evolution family 181

{Ψ(t, s), t ≥ s} is negative, that is, ω(Ψ) < 0. Therefore, the condition (H2) in 182

[12] holds. Thus, we can follow the developed theory in [12] and [26] to define the 183

basic reproduction number for system (3.20). 184

We assume that v ∈ Cω(R,P) and v(t) is the initial distribution of mosquitoes

at time t ∈ R. For any s ≥ 0, F(t− s)v(t− s) represents the density distribution of

newly produced population at time t−s, which is produced by the initial mosquitoes

introduced at time t−s. Then Ψ(t, t−s)F(t−s)v(t−s) is the distribution of those

produced population who were newly produced at time t − s and still survive in

the habitat at time t, for t ≥ s. Thus, the integral∫ ∞
0

Ψ(t, t− s)F(t− s)v(t− s)ds

is the distribution of accumulative new individuals at time t produced by all those

fertile individuals v(·) introduced at all time previous to t. On the other hand, for

any s ≥ 0, Ψ(t, t− s)v(t− s) is the distribution of those fertile individuals at time

t− s and remain in the fertile compartments at time t, and hence,∫ ∞
0

Ψ(t, t− s)v(t− s)ds

represents the distribution of accumulative fertile individuals who were introduced

at all previous times to t and remain in the fertile compartments at time t. Thus,

F(t)

∫ ∞
0

Ψ(t, t− s)v(t− s)ds

is the distribution of newly produced individuals at time t. 185

Define two linear operators on Cω(R,P) by

[Lv](t) :=

∫ ∞
0

Ψ(t, t− s)F(t− s)v(t− s)ds, ∀ t ∈ R, v ∈ Cω(R,P).

and

[L̃v](t) := F(t)

∫ ∞
0

Ψ(t, t− s)v(t− s)ds, ∀ t ∈ R, v ∈ Cω(R,P),
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Let A and B be two bounded linear operators on Cω(R,P) defined by

[Av](t) :=

∫ ∞
0

Ψ(t, t− s)v(t− s)ds, [Bv](t) := F(t)v(t), ∀ t ∈ R, v ∈ Cω(R,P).

It then follows that L = A ◦ B and L̃ = B ◦ A, and hence L and L̃ have same 186

spectral radius. Motivated by the concept of next generation operators (see, e.g., 187

[2, 14, 21]), we define the spectral radius of L and L̃ as the basic reproduction 188

number for system (3.20), that is, 189

R0 := r(L) = r(L̃). (3.26)

Recall that U0(ω, 0) is the Poincaré map associated with system (3.21). By [12, 190

Theorem 3.7] and (3.23), we have the following observation. 191

Lemma 3.3. R0 − 1 has the same sign as r(U0(ω, 0))− 1 and −λ∗0. 192

The following result is concerned with the threshold dynamics of system (3.20): 193

Theorem 3.1. Let u(x, t, ϕ(·)) be the unique solution of system (3.20) with u(·, 0, ϕ(·)) =194

ϕ(·) ∈ [0,k(·, 0)]P. Then the following statements hold. 195

(i) If R0 < 1, then u = 0 is globally asymptotically stable with respect to initial 196

values in [0,k(·, 0)]P; 197

(ii) If R0 > 1, then system (3.20) admits a unique positive time-space periodic 198

solution u∗(x, t), and it is globally asymptotically stable with respect to initial 199

values in [0,k(·, 0)]P\{(0, 0)}. 200

Proof. We first note that the solution u(x, t, ϕ(·)) of system (3.20) satisfies u(x, t, ϕ(·)) ∈201
[0,k(x, t)]P for t ≥ 0 (see Lemma 3.2). 202

Part (i). Our arguments are similar to those in [11, Theorem 3.8 (i)]. Let 203

v(x, t, ϕ) = U0(t, 0)ϕ. Then v(x, t, ϕ) is a solution of system (3.21) with initial 204

value ϕ, and we see that v(x, t, ϕ) is also a supersolution of system (3.20). By the 205

comparison principle 206

u(x, t, ϕ) ≤ v(x, t, ϕ), ∀ x ∈ R, t ≥ 0. (3.27)

Since R0 < 1, it follows from Lemma 3.3 that r(U0(ω, 0)) < 1, and hence, 207

lim
t→∞

v(x, t, ϕ(·)) = (0, 0), uniformly for x ∈ R. (3.28)
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In view of (3.27) and (3.28), we see that Part (i) is established. 208

Part (ii). Since u(x, t, ϕ(·)) ∈ [0,k(x, t)]P for t ≥ 0, it is easy to see that (3.20) is 209

a monotone/cooperative system on [0,k(x, t)]P (see, e.g., [17]). Next, the reaction 210

terms in (3.20) can be expressed as follows: 211

G(x, t, u1, u2) =

(
G1(x, t, u1, u2)

G2(x, t, u1, u2)

)
=

 γ(x, t)u2

(
1− u1

k1(x,t)

)
− d1(x, t)u1

α(x, t)
(

1− u2
k2(x,t)

)
u1 − (d2(x, t) + γ(x, t))u2

 .

Then G(x, t, u1, u2) is strongly subhomogeneous in the sense that

G(x, t, θu1, θu2)� θG(x, t, u1, u2), ∀ 0 < θ < 1, (u1, u2) ∈ [0,k(·, 0)]P\{(0, 0)}.

Further, there is no diffusion term in the second equation of system (3.20), and

hence, the associated solution maps are not compact. For this, we observe that the

reaction term in the second equation of system (3.20) satisfies

∂G2

∂u2

(x, t, u1, u2) = − α(x, t)

k2(x, t)
u1 − (d2(x, t) + γ(x, t)) < 0,

for all (x, t, u1, u2) ∈ R × R × [0,k(x, t)]P. With the above property, one can use 212

the similar arguments in [7, Lemma 4.1] to overcome the loss of compactness of 213

(3.20). Using the properties in (3.23) and Lemma 3.3, the rest of the arguments of 214

Part (ii) are similar to those in Theorem 3.8 (ii) and Theorem 3.10 of [11] and we 215

omit the details. 216

217

4 Continuity and κ-contraction 218

Recall that u∗(x, t) is given in Theorem 3.1. Define a family of operators {Qt}t≥0 219

from Cu∗(·,0) to Cu∗(·,t) by 220

Qt[φ] = u(·, t;φ), (4.1)

where u(·, t;φ) is the solution of system (1.1) with u(·, 0) = φ ∈ Cu∗(·,0). This 221

section is devoted to the study of continuity and κ-contraction of {Qt}t≥0. 222

Lemma 4.1. Qt[φ] is continuous in (t, φ) in the following sense: if φn → φ in 223

Cu∗(·,0) and tn → t as n→∞, then Qtn [φn]→ Qt[φ] in C. 224
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Proof. Recall that Γ1(t, s, x) and Γ2(t, s, x) are defined in (2.1) and (2.2), respec- 225

tively; P (t) and H(t, x,u) are defined in (2.3) and (2.4), respectively; u(x, t) can be 226

rewritten as the integral form (2.5). We first show that there exists a continuous 227

and positive function C0(t) with C0(0) = 1 such that ‖P (t)[ψ]‖ ≤ C0(t)‖ψ‖ for 228

ψ ∈ Cu∗(·,0). Indeed, write ψ = (ψ1, ψ2). Define 229

C1(t) := sup
x∈R

Γ2(t, 0, x) = e−
∫ t
0 infx∈R[d2(s,x)+γ(s,x)]ds. (4.2)

In view of (4.2) we have 230

‖P (t)[ψ]‖ =
∑
k≥1

2−k max
|x|≤k
|P (t)[ψ](x)|

=
∑
k≥1

2−k max
|x|≤k

[|Γ1(t, 0, ·) ∗ ψ1(x)|+ |Γ2(t, 0, x)ψ2(x)|]

=
∑
k≥1

2−k max
|x|≤k

Γ1(t, 0, ·) ∗ |ψ1|(x) +
∑
k≥1

2−k max
|x|≤k

Γ2(t, 0, x)|ψ2(x)|

≤
∑
k≥1

2−k max
|x|≤k

Γ1(t, 0, ·) ∗ |ψ1|(x) + C1(t)
∑
k≥1

2−k max
|x|≤k
|ψ2(x)| (4.3)

Using the equality 231∫
y∈R

=
∑
l≥0

∫
|y|∈[l,l+1]

, (4.4)

we obtain 232

I1 :=
∑
k≥1

2−k max
|x|≤k

Γ1(t, 0, ·) ∗ |ψ1|(x)

=
∑
k≥1

2−k max
|x|≤k

∑
l≥0

∫
|y|∈[l,l+1]

Γ1(t, 0, y)|ψ1(x− y)|dy

≤
∑
k≥1

2−k
∑
l≥0

max
|x|≤k+l+1

|ψ1(x)|
∫
|y|∈[l,l+1]

Γ1(t, 0, y)dy (4.5)

Introducing the variable change l̃ = k + l + 1 and dropping the tilde, we have 233

I1 ≤
∑
k≥1

2−k
∑
l≥k+1

max
|x|≤l
|ψ1(x)|

∫
|y|∈[l−k−1,l−k]

Γ1(t, 0, y)dy. (4.6)
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Using Fubini’s theorem, we change the order of sums to arrive at 234

I1 ≤
∑
l≥2

max
|x|≤l
|ψ1(x)|

l−1∑
k=1

2−k
∫
|y|∈[l−k−1,l−k]

Γ1(t, 0, y)dy

=
∑
l≥2

2−l max
|x|≤l
|ψ1(x)|

(
l−1∑
k=1

2l−k
∫
|y|∈[l−k−1,l−k]

Γ1(t, 0, y)dy

)
. (4.7)

To estimate the term in the bracket, after the change of variable n = l − k we 235

obtain 236

I2 :=
l−1∑
k=1

2l−k
∫
|y|∈[l−k−1,l−k]

Γ1(t, 0, y)dy

=
l−1∑
n=1

2n
∫
|y|∈[n−1,n]

Γ1(t, 0, y)dy. (4.8)

To show that I2 is bounded we employ a comparison argument to estimate the 237

integral
∫
|y|∈[n−1,n]

Γ1(t, 0, y)dy. Let θ be a positive number that will be specified 238

later. Define 239

p(t) := e
∫ t
0 [supx∈RD(s,x)θ2+|ν(s,x)|θ+d1(s,x)]ds. (4.9)

Then we infer that for any θ > 0, v̄(t, x) := e−θxp(t) is a super solution of (2.1) 240

from the following inequality. 241

−v̄t +D(t, x)v̄xx − ν(t, x)v̄x − d1(t, x)v̄

= v̄

(
−p
′

p
+D(t, x)θ2 + ν(t, x)θ − d1(t, x)

)
≤ 0.

Define 242

ρ(x) :=

{
1/2, x ∈ [−1, 0]

0, x 6∈ [−1, 0].
(4.10)

Then v̄(0, x) = e−θx ≥ ρ(x) for x ∈ R. Recall that Γ1(t, s, x) is the Green function 243

of (2.1). By the comparison principle we obtain 244

e−θxp(t) ≥
∫
R

Γ1(t, 0, y)ρ(x− y)dy, t > 0, x ∈ R. (4.11)
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In particular, at x = n− 1 we have 245

e−θ(n−1)p(t) ≥
∫ n

n−1

Γ1(t, 0, y)ρ(n− 1− y)dy =
1

2

∫ n

n−1

Γ1(t, 0, y)dy. (4.12)

Similarly, eθxp(t) is also a super solution of (2.1). Then by the same arguments we 246

obtain 247

e−θ(n−1)p(t) ≥ 1

2

∫ −(n−1)

−n
Γ1(t, 0, y)dy. (4.13)

Therefore, 248∫
|y|∈[n−1,n]

Γ1(t, 0, y)dy ≤ e−θ(n−1)p(t), (4.14)

which implies that 249

I2 ≤
∑
n≥1

2ne−θ(n−1)p(t) = 2p(t)
∑
n≥1

e−(θ−ln 2)(n−1)

≤ 2p(t)

∫ ∞
0

e−(θ−ln 2)xdx =
2p(t)

θ − ln 2

provided that θ > ln 2. For the sake of calculation simplicity, we may set θ = 2+ln 2. 250

Then 251

I1 ≤ p(t)
∑
l≥1

max
|x|≤l
|ψ1(x)|, (4.15)

and hence, 252

‖P (t)[ψ]‖
≤ p(t)

∑
l≥1

2−l max
|x|≤l
|ψ1(x)|+ C1(t)

∑
k≥1

2−k max
|x|≤k
|ψ2(x)|

≤ C0(t)‖ψ‖, (4.16)

where 253

C0(t) := max{p(t), C1(t)} = p(t) (4.17)

thanks to the explicit expressions of p(t) and C1(t). 254

Next we use the obtained inequality ‖P (t)[ψ]‖ ≤ C0(t)‖ψ‖ to complete the 255

proof. Indeed, let LH be the Lipschtiz constant of H(t, x,u) for t ∈ R, x ∈ R and 256

u ∈ [0,maxs∈[0,ω]{u∗(·, s)}]. By the triangle inequality, we see that 257

‖Qtn [φn]−Qt[φ]‖ ≤ ‖Qtn [φn]−Qtn [φ]‖+ ‖Qtn [φ]−Qt[φ]‖. (4.18)
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Without loss of generality, we may assume that tn > t, n ≥ 1. In view of (2.5) and 258

the properties of ki(t, 0, x), i = 1, 2, we obtain 259

‖Qtn [φ]−Qt[φ]‖

≤ ‖P (tn − t)[φ]‖+

∫ tn

t

‖P (tn − s)[H(s, ·, Qs[φ])]‖ds

+

∫ t

0

‖(P (t− s)− P (tn − s))[H(s, ·, Qs[φ])]‖ds

≤ C0(tn − t)‖φ‖+

∫ tn

t

C0(tn − s)LH‖Qs[φ]‖ds

+

∫ t

0

C0(t− s)‖P (tn − t)− I‖LH‖Qs[φ]‖ds

→ 0 as tn → t. (4.19)

Meanwhile, 260

‖Qt[φn]−Qt[φ]‖

≤ ‖P (t)[φn − φ]‖+

∫ t

0

LH‖P (t− s)[Qs[φn]−Qs[φ]]‖

≤ C0(t)‖φn − φ‖+

∫ t

0

LHC0(t− s)‖Qs[φn]−Qs[φ]‖ds, ∀t > 0.

Note that 261

p(t− s)
p(s)

= e(−
∫ t
t−s +

∫ s
0 ) supx∈R[D(η,x)θ2+|ν(η,x)|θ+d1(η,x)]dη, ∀t ≥ s > 0. (4.20)

It then follows from the periodicity of supx∈R[D(η, x)θ2 + |ν(η, x)|θ+ d1(η, x)] that 262

C0(t− s)
C0(s)

≤ e
∫ ω
0 supx∈R[D(η,x)θ2+|ν(η,x)|θ+d1(η,x)]dη := C2, ∀t ≥ s > 0. (4.21)

Thus, 263

[C0(t)]−1‖Qt[φn]−Qt[φ]‖

≤ ‖φn − φ‖+

∫ t

0

LHC2[C0(s)]−1‖Qs[φn]−Qs[φ]‖ds, t > 0. (4.22)

By Gronwall’s inequality we then infer that 264

[C0(t)]−1‖Qt[φn]−Qt[φ]‖ ≤ ‖φn − φ‖]eLHC2t, t > 0. (4.23)

Combining (4.23) with t = tn, (4.18) and (4.19), we complete the proof. 265
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For I = [a, b] ⊂ R and φ = (φ1, φ2) ∈ Cu∗(·,0), we define φI ∈ C(I,R2) by 266

φI(x) := φ(x), x ∈ I. (4.24)

For B ⊂ Cu∗(·,0), let BI denote the set {φI : φ ∈ Cu∗(·,0)} and κ(BI) the Kuratowski 267

noncompactness of BI in C(I,R2), which is naturally endowed with the uniform 268

topology. The set BI is precompact if and only if κ(BI) = 0. For each component 269

(BI)i, i = 1, 2 of BI , we may similarly define the Kuratowski noncompactness in 270

C(I,R). Recall that we endow the l1 norm in R2. It then follows that 271

κ(BI) ≤ κ((BI)1) + κ((BI)2), B ⊂ Cu∗(·,0). (4.25)

Lemma 4.2. For I = [a, b] ⊂ R and t > 0 there exists ϑ = ϑ(t) ∈ (0, 1) such that 272

κ((Qt[B])I) ≤ ϑκ(BI),∀B ⊂ Cu∗(·,0). 273

Proof. Define α∗ := supt,x α(t, x). From the second equation of (1.1) we have 274

u2(t, x) ≤ Γ2(t, 0, x)u2(0, x) +

∫ t

0

Γ2(t− s, 0, x)α(s, x)u1(s, x)ds, (4.26)

which implies that 275

κ(((Qt[B])I)2) ≤ C1(t)κ((BI)2) + α∗
∫ t

0

κ(((Qs[B])I)1)ds, (4.27)

where C1(t) ∈ (0, 1) is defined as in (4.2). From the first equation of (1.1) we see 276

that (Qt[B])I)1 is precompact, that is, κ((Qt[B])I)1), and hence, 277

κ(((Qt[B])I)2) ≤ C1(t)κ((BI)2), (4.28)

which, together with (4.25), implies the conclusion with ϑ(t) = C1(t). 278

279

5 Spreading speeds and Traveling waves 280

In this section, we assume that R0 > 1, that is, λ∗0 < 0 (see Lemma 3.3) and we 281

investigate the spreading speeds and traveling waves of system (1.1). Since R0 > 1, 282

it follows from Theorem 3.1 that there exist two periodic state, 0 := (0, 0) and 283
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u∗(x, t) := (u∗1(x, t), u∗2(x, t)), for system (3.21). Recall that Qt : Cu∗(·,0) → Cu∗(·,t) 284

is the solution maps associated with system (3.21), which is defined in (4.1). 285

From Lemma 2.1, Lemma 4.1, Lemma 4.2 and [9, Theorem 5.1] (see also [23, 286

Appendix]), it follows that the map Qω admits a rightward spreading speed c+
ω and 287

a leftward spreading speed c−ω . In order to obtain the computation formulas for c±ω , 288

we consider the linearized system of (1.1) at the zero solution: 289{
∂
∂t
u1(x, t) = D(x, t) ∂2

∂x2
u1(x, t)− ν(x, t) ∂

∂x
u1(x, t)− d1(x, t)u1(x, t) + γ(x, t)u2(x, t),

∂
∂t
u2(x, t) = α(x, t)u1(x, t)− (d2(x, t) + γ(x, t))u2(x, t), x ∈ R, t > 0.

(5.1)

Let {L(t, s) : t ≥ s} be the evolution family on C generated by system (5.1), that 290

is, L(t, 0)φ = u(·, t;φ), where u(x, t;φ) is the unique solution of system (5.1) with 291

u(x, 0;φ) = φ ∈ C. 292

For µ ≥ 0, substituting (u1(x, t), u2(x, t)) = e−µx(v1(x, t), v2(x, t)) into (5.1) 293

yields 294
∂v1(x,t)
∂t

= D(x, t)∂
2v1
∂x2
− [2µD(x, t) + ν(x, t)]∂v1

∂x
+ [µ2D(x, t) + µν(x, t)]v1(x, t)

+γ(x, t)v2(x, t)− d1(x, t)v1(x, t), x ∈ R, t > 0,
∂v2(x,t)
∂t

= α(x, t)v1(x, t)− (d2(x, t) + γ(x, t)) v2(x, t), x ∈ R, t > 0.

(5.2)

Let {Lµ(t, s)}t≥s be the evolution family on C generated by system (5.2), that

is,Lµ(t, 0)ϕ = v(·, t;ϕ), where v(x, t;ϕ) is the unique solution of system (5.2) with

v(x, 0;ϕ) = ϕ. Then

L(t, 0)[e−µxϕ](x) = e−µxLµ(t, 0)[ϕ](x), x ∈ R, t ≥ 0, ϕ(·) ∈ C.

Substituting (v1(x, t), v2(x, t)) = eΛt(φ1(x, t), φ2(x, t)) into (5.1) yields the fol- 295

lowing periodic eigenvalue problem: 296
Λφ1(x, t) = −∂φ1(x,t)

∂t
+D(x, t)∂

2φ1
∂x2
− [2µD(x, t) + ν(x, t)]∂φ1

∂x
+ [µ2D(x, t) + µν(x, t)]φ1(x, t)

+γ(x, t)φ2(x, t)− d1(x, t)φ1(x, t), x ∈ R, t > 0,

Λφ2(x, t) = −∂φ2(x,t)
∂t

+ α(x, t)φ1(x, t)− (d2(x, t) + γ(x, t))φ2(x, t), x ∈ R, t > 0,

φi(x+ L, t) = φi(x, t), φi(x, t+ ω) = φi(x, t), (x, t) ∈ R× R, i = 1, 2.

(5.3)

By Lemma 3.1, we have the following results: 297
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Lemma 5.1. Assume that (H) holds. Then r+(Lµ(ω, 0)) is the principal eigenvalue 298

of Lµ(ω, 0), and Λ0
+(µ) = ln(r+(Lµ(ω,0))

ω
is an eigenvalue of problem (5.3) with a 299

positive eigenvector. 300

The following is a computation formula for c+
ω . 301

Lemma 5.2. Let Φ+(µ) := ln[r+(Lµ(ω,0))]

µ
=

Λ0
+(µ)ω

µ
, where r+(Lµ(ω, 0)) and Λ0

+(µ) 302

are given in Lemma 5.1. Then 303

lim
µ→0+

Φ+(µ) =∞, lim
µ→∞

Φ+(µ) =∞, and c+
ω = inf

µ>0
Φ+(µ). (5.4)

Proof. Observing that system (3.22) is equivalent to system (5.2) with µ = 0. 304

Thus, Λ0
+(0) = −λ∗0 > 0, and hence, limµ→0+ Φ+(µ) = ∞. We next show that 305

limµ→∞Φ+(µ) =∞. Let 306

A(t) =

(
a(t) minx∈[0,L] γ(x, t)

minx∈[0,L] α(x, t) −maxx∈[0,L](d1(x, t) + γ(x, t))

)
,

where a(t) = µ2 minx∈[0,L] D(x, t) + µminx∈[0,L] ν(x, t)−maxx∈[0,L] d1(x, t). Then it 307

is easy to see that A(t) is a continuous, cooperative, irreducible, and ω-periodic 308

2 × 2 matrix function. Suppose ΠA(·)(t) is the monodromy matrix of the linear 309

ordinary differential system 310

dy(t)

dt
= A(t)y, (5.5)

and r(ΠA(·)(ω)) is the spectral radius of ΠA(·)(ω). From [1, Lemma 2] (see also [6,

Theorem 1.1]), it follows that ΠA(·)(t) is a matrix with all entries positive for each

t > 0. By the Perron-Frobenius theorem, r(ΠA(·)(ω)) is the principal eigenvalue

of ΠA(·)(ω) in the sense that it is simple and admits a positive eigenvector. Let

λ̃ = 1
ω

ln[r(ΠA(·)(ω))]. Then it follows from [25, Lemma 2.1] that there exists a

positive, ω-periodic function ψ(t) such that eλ̃tψ(t) is a solution of (5.5). Thus, it

is easy to show that eλ̃tψ(t) is a subsolution of system (5.2), and hence,

Lµ(t, 0)[ψ](x) ≥ eλ̃tψ(t), x ∈ R, t ≥ 0.

In particular,

Lµ(ω, 0)[ψ](x) ≥ eλ̃ωψ(ω), x ∈ R.

This implies that 311

r+(Lµ(ω, 0)) ≥ eλ̃ω, (5.6)
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due to Gelfand’s formula (see, e.g., [15, Theorem VI.6]). On the other hand, we 312

see that ψ(t) := (ψ1(t), ψ2(t)) satisfies 313
ψ′1(t) = [−λ̃+ µ2 minx∈[0,L] D(x, t) + µminx∈[0,L] ν(x, t)−maxx∈[0,L] d1(x, t)]ψ1(t)

+[minx∈[0,L] γ(x, t)]ψ2(t),

ψ′2(t) = [minx∈[0,L] α(x, t)]ψ1(t)− [λ̃+ maxx∈[0,L](d1(x, t) + γ(x, t))]ψ2(t).

(5.7)

From the first equation of (5.7), it follows that

ψ′1(t)

ψ1(t)
≥ −λ̃+ µ2 min

x∈[0,L]
D(x, t) + µ min

x∈[0,L]
ν(x, t)− max

x∈[0,L]
d1(x, t).

Integrating the above inequality from 0 to ω, we obtain

0 =

∫ ω

0

ψ′1(t)

ψ1(t)
≥ −λ̃ω+µ2

∫ ω

0

[ min
x∈[0,L]

D(x, t)]dt+µ

∫ ω

0

[ min
x∈[0,L]

ν(x, t)]dt−
∫ ω

0

[ max
x∈[0,L]

d1(x, t)]dt,

which implies that

λ̃ω

µ
≥ µ

∫ ω

0

[ min
x∈[0,L]

D(x, t)]dt+

∫ ω

0

[ min
x∈[0,L]

ν(x, t)]dt− 1

µ

∫ ω

0

[ max
x∈[0,L]

d1(x, t)]dt.

Since
∫ ω

0
[minx∈[0,L]D(x, t)]dt > 0, it follows that 314

lim
µ→∞

λ̃ω

µ
=∞. (5.8)

In view of (5.6) and (5.8), it follows that limµ→∞Φ+(µ) =∞. Thus, Φ+(µ) attains

its minimum at some finite value µ∗. Since the solution of system (1.1) is a lower

solution of the linear system (5.1), we have

Qt[φ] ≤ L(t, 0)[φ], ∀ φ ∈ Cu∗(0), t ≥ 0.

Then we can use the similar arguments as in [22, Theorem 2.5] and [10, Theorem 315

3.10(i)] to show that c+
ω ≤ infµ>0 Φ+(µ). 316

By the continuous dependence of solutions on initial conditions, it follows that

for any 0 < ε < 1, there exists a sufficiently small η̄ ∈ Int(P+) such that the solution

u(x, t, η̄) of (1.1) with u(x, 0, η̄) = η̄ satisfies

u(x, t, η̄) ≤ ε ( min
(x,t)∈[0,L]×[0,ω]

k1(x, t), min
(x,t)∈[0,L]×[0,ω]

k2(x, t)), ∀ x ∈ R, t ∈ [0, ω].
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Then the comparison principle implies that

Qt(φ)(x) := u(x, t, φ) ≤ u(x, t, η̄), ∀ φ ∈ Cη̄, x ∈ R, t ∈ [0, ω].

Thus, for all t ∈ [0, ω] and x ∈ R, Qt(φ)(x) := u(x, t, φ) with φ ∈ Cη̄ satisfies 317
∂
∂t
u1(x, t) ≥ D(x, t) ∂2

∂x2
u1(x, t)− ν(x, t) ∂

∂x
u1(x, t)− d1(x, t)u1(x, t)

+(1− ε)γ(x, t)u2(x, t),
∂
∂t
u2(x, t) ≥ (1− ε)α(x, t)u1(x, t)− (d2(x, t) + γ(x, t))u2(x, t), x ∈ R, t > 0.

(5.9)

Let {Lε(t, s) : t ≥ s} be the evolution family on C generated by the following 318

system: 319
∂
∂t
u1(x, t) = D(x, t) ∂2

∂x2
u1(x, t)− ν(x, t) ∂

∂x
u1(x, t)− d1(x, t)u1(x, t)

+(1− ε)γ(x, t)u2(x, t),
∂
∂t
u2(x, t) = (1− ε)α(x, t)u1(x, t)− (d2(x, t) + γ(x, t))u2(x, t), x ∈ R, t > 0.

(5.10)

For µ ≥ 0, assume that {Lεµ(t, s)}t≥s is the evolution family on C generated the 320

following system 321
∂v1(x,t)
∂t

= D(x, t)∂
2v1
∂x2
− [2µD(x, t) + ν(x, t)]∂v1

∂x
+ [µ2D(x, t) + µν(x, t)]v1(x, t)

+(1− ε)γ(x, t)v2(x, t)− d1(x, t)v1(x, t), x ∈ R, t > 0,
∂v2(x,t)
∂t

= (1− ε)α(x, t)v1(x, t)− (d2(x, t) + γ(x, t)) v2(x, t), x ∈ R, t > 0,

(v1(x, 0), v2(x, 0)) = eµxφ(x), x ∈ R.
(5.11)

By (5.9), it follows that Qt(φ)(x) := u(x, t, φ) is an upper solution of linear system

(5.10) for t ∈ [0, ω] and φ ∈ Cη̄, and hence,

Lεµ(t, 0)(φ) ≤ Qt(φ), ∀ φ ∈ Cη̄, t ∈ [0, ω].

In particular,

Lεµ(ω, 0)(φ) ≤ Qω(φ), ∀ φ ∈ Cη̄.

Define the function

Φε
+(µ) :=

ln[r+(Lεµ(ω, 0))]

µ
, ∀ µ > 0,
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where r+(Lεµ(ω, 0)) the spectral radius of the Poincaré map associated with sys- 322

tem (5.11). Using the analysis on Lεµ(t, 0) similar to those for Lµ(t, 0), and the 323

similar arguments as in [22, Theorem 2.4] and [10, Theorem 3.10(ii)] give rise 324

to c+
ω ≥ infµ>0 Φε

+(µ). Letting ε → 0, we obtain c+
ω ≥ infµ>0 Φ+(µ). Thus, 325

c+
ω = infµ>0 Φ+(µ). 326

327

Substituting û1(x, t) := u1(−x, t) and û2(x, t) := u2(−x, t) into (1.1), we obtain 328
∂
∂t
û1(x, t) = D(x, t) ∂2

∂x2
û1(x, t) + ν(x, t) ∂

∂x
û1(x, t)

+γ(x, t)û2(x, t)(1− û1(x,t)
k1(x,t)

)− d1(x, t)û1(x, t),
∂
∂t
û2(x, t) = α(x, t)(1− û2(x,t)

k2(x,t)
)û1(x, t)− (d2(x, t) + γ(x, t))û2(x, t), x ∈ R, t > 0.

(5.12)

Let Q̂t be the solution map of system (5.12). It is easy to see that if c−ω is the 329

leftward spreading speed of the map Qω then c−ω is the rightward spreading speed 330

of the map Q̂ω. For µ ≥ 0, substituting (û1(x, t), û2(x, t)) = e−µx(v̂1(t), v̂2(t)) into 331

(5.12) yields 332
∂v̂1(x,t)
∂t

= D(x, t)∂
2v̂1
∂x2
− [2µD(x, t)− ν(x, t)]∂v̂1

∂x
+ [µ2D(x, t)− µν(x, t)]v̂1(x, t)

+γ(x, t)v̂2(x, t)− d1(x, t)v̂1(x, t), x ∈ R, t > 0,
∂v̂2(x,t)
∂t

= α(x, t)v̂1(x, t)− (d2(x, t) + γ(x, t)) v̂2(x, t), x ∈ R, t > 0.

(5.13)

Assume that {L̂µ(t, s)}t≥s is the evolution family on C generated by system (5.13), 333

and r−(L̂µ(ω, 0)) is the spectral radius of the Poincaré map associated with the 334

linear system (5.13). By similar arguments to those in Lemma 5.2, we obtain the 335

following computation formula for c−ω . 336

Lemma 5.3. Let Φ−(µ) := ln[r−(L̂µ(ω,0))]

µ
=

Λ0
−(µ)ω

µ
, where Λ0

−(µ) = ln(r−(L̂µ(ω,0)))

ω
. 337

Then 338

lim
µ→0+

Φ−(µ) = lim
µ→∞

Φ−(µ) =∞, and c−ω = inf
µ>0

Φ−(µ). (5.14)

We further have the following result. 339

Lemma 5.4. The following statement holds. 340

c+
ω + c−ω > 0. (5.15)
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Proof. Our arguments are similar to those in [9, Section 7]. For µ ∈ R, we assume 341

that r(µ) is the spectral radius of the Poincaré map associated with the linear 342

system (5.2), and Λ0(µ) = ln(r(µ))
ω

. Then it is easy to see that Λ0
+(µ) = Λ0(µ), ∀ µ ≥ 343

0, and Λ0
−(µ) = Λ0(−µ), ∀ µ ≥ 0. From Lemma 5.2 and Lemma 5.3, we can choose 344

µ1 > 0 and µ2 > 0 such that c+
ω =

Λ0
+(µ1)ω

µ1
= Λ0(µ1)ω

µ1
and c−ω =

Λ0
−(µ2)ω

µ2
= Λ(−µ2)ω

µ2
. 345

Let θ = µ2
µ1+µ2

∈ (0, 1). Then θµ1 + (1− θ)(−µ2) = 0, and 346

c+
ω + c−ω =

Λ0(µ1)ω

µ1

+
Λ(−µ2)ω

µ2

= ω
µ1 + µ2

µ1µ2

[
θΛ0(µ1) + (1− θ)Λ0(−µ2)

]
. (5.16)

From [10, Lemma 3.7], we see that Λ0(µ) is convex on R. Thus, it follows from

(5.16) that

c+
ω+c−ω ≥ ω

µ1 + µ2

µ1µ2

Λ0 (θµ1 + (1− θ)(−µ2)) = ω
µ1 + µ2

µ1µ2

Λ0(0) = −ωµ1 + µ2

µ1µ2

λ∗0 > 0.

The proof is complete. 347

348

Combining Lemma 2.1, Lemma 4.1, Lemma 4.2, [9, Theorem 5.1], and the 349

above discussions, we have the following result indicating that c+ω
ω

and c−ω
ω

are the 350

rightward and leftward spreading speeds for system (1.1), respectively, with initial 351

functions having compact supports: 352

Theorem 5.1. Assume that (H) holds, and R0 > 1. Let c∗± = c±ω
ω

and u(x, t, φ) be 353

a solution of (1.1) with u(·, 0, φ) = φ ∈ Cu∗(·,0). Then the following statements are 354

valid: 355

(i) If 0 ≤ φ(·) ≤ ϕ(·)� u∗(·, 0), for some ϕ(·) ∈ P, and φ(x) = 0 for x outside

a bounded interval, then we have

lim
t→∞, x≥ct

u(x, t, φ) = 0, for any c > c∗+,

and

lim
t→∞, x≤−ct

u(x, t, φ) = 0, for any c > c∗− ;

(ii) If φ ∈ Cu∗(·,0) and φ 6≡ 0, then for any c and c′ satisfying −c∗− < −c′ < c < c∗+,

we have

lim
t→∞, −c′t≤x≤ct

(u(x, t, φ)− u∗(x, t)) = 0.
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Next, we can employ the theory developed in [5, Theorems 2.1] to establish 356

that the spreading speeds given in Theorem 5.1 coincides with the minimal speed 357

of traveling waves of system (1.1), which connects the positive periodic state u∗(x, t) 358

to 0, or connects 0 to the positive periodic state u∗(x, t). 359

Theorem 5.2. Assume that (H) holds, R0 > 1, and c∗± is given in Theorem 5.1. 360

Then the following statements are valid: 361

(i) For any c ≥ c∗+, system (1.1) admits rightward almost pulsating waves U(t, x, x−362

ct) connecting u∗(x, t) to 0 with the wave profile component U(t, x, ξ) being 363

continuous and non-increasing in ξ. While for any c ∈ (0, c∗+), system (1.1) 364

admits no rightward almost pulsating waves connecting u∗(x, t) to 0. 365

(ii) For any c ≥ c∗−, system (1.1) admits leftward almost pulsating waves V(t, x, x+ 366

ct) connecting 0 to u∗(x, t) with the wave profile component V(t, x, ξ) being 367

continuous and non-decreasing in ξ. While for any c ∈ (0, c∗−), system (1.1) 368

admits no leftward almost pulsating waves connecting 0 to u∗(x, t). 369

6 Numerical simulation 370

We illustrate the analytic results by numerical simulation, for the temporal peri- 371

odic case and the temporal and spatial periodic case, respectively. 372

373

Example 1. Temporal periodic case. 374

375

We consider the temporal periodic diffusion coefficient D(t) = c1(1+0.8cos(πt
6

)), 376

advection velocity ν(t) = c0(1+0.8cos(πt
6

)), maturation rate γ(t) = r1(1+0.7sin(πt
6

)), 377

production rate α(t) = r2(1 − 0.7sin(πt
6

)), carrying capacities k1(t) = b1(1 + 378

0.7sin(πt
6

)) and k2(t) = b2(1 − 0.7sin(πt
6

)), death rates d1(t) = e1(1 + 0.7sin(πt
6

)) 379

and d2(t) = e2(1 − 0.7sin(πt
6

)), with period ω = 12. For illustration, we choose 380

r1 = 0.15, r2 = 0.2, b1 = 50, b2 = 50, e1 = 0.01, e2 = 0.01. When c0 = 0.5 and 381

c1 = 1.1, we have c∗+ = 19.2543 and c∗− = 7.4282; When c0 = 1.5 and c1 = 1.1, we 382

have c∗+ = 31.2036 and c∗− = −0.6161. Figure 6.1(a) shows the spreading speed- 383

s c∗+ and c∗− as functions of c0, which is exactly the average advection velocity 384

[ν] = 1
ω

∫ ω
0
ν(t)dt, with fixed c1 = 1.1; Figure 6.1(b) shows a plot of the spreading 385

speeds c∗+ and c∗− as functions of c1, which is exactly the average advection diffusion 386

coefficient [D] = 1
ω

∫ ω
0
D(t)dt, with fixed c0 = 0.5. 387
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Figure 6.1: Spreading speeds. Leftward spreading speed (c∗−) and rightward

spreading speed (c∗+): (a) as functions of the average advection velocity [ν] (that is

c0); (b) as functions of the average diffusion coefficient [D] (that is c1).

We consider different initial distribution functions for the mature female mosquitoes388

u1(x, t) and aquatic mosquitoes u2(x, t), and observe, by numerical simulations, the 389

evolution of these populations. We consider a finite interval [−L∗, L∗] with suffi- 390

ciently large L∗ and non-flux boundary conditions (we choose L∗ = 100 in follows). 391

First, to obtain rightward traveling wave solution, we choose the initial condition 392

as follows: 393

u1(x, t) =


30 if x ≤ −20
3
4
(20− x) if |x| < 20,

0 if x ≥ −20

u2(x, t) =
9

5
u1(x, t). (6.1)

Numerical simulation results about spatial and temporal evolution of u1(x, t) and 394

u2(x, t) are shown in Figure 6.2, which indicates that the population of all mosquitoes 395

persist. 396

Figure 6.3 shows the spatial and temporal evolution of u1(x, t) and u2(x, t) with 397

the following initial condition: 398

u1(x, t) =


24 if |x| ≤ 20
4
5
(50− x) if 20 < |x| < 50

0 if x ≥ 50

u2(x, t) =
4

3
u1(x, t). (6.2)
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Figure 6.2: The spacial and temporal evolution of u1(x, t) and u2(x, t). The

rightward periodic traveling waves observed (a) for u1, and (b) for u2, respectively.

Figure 6.3: The spacial and temporal evolution of u1(x, t) and u2(x, t). The left-

word and rightward periodic traveling waves observed (a) for u1, and (b) for u2,

respectively.

Example 2. Temporal and spatial periodic case. 399

400

We next consider spatial and temporal periodic diffusion coefficient D(x, t) = 401

c1(1+0.8cos(πt
6

))(1+0.5cos(πt
12

)), advection velocity ν(x, t) = c0(1+0.8cos(πt
6

))(1+ 402

0.5cos(πt
12

)), maturation rate γ(x, t) = r1(1 + 0.7sin(πt
6

))(1 + 0.5cos(πt
12

)), produc- 403

tion rate α(x, t) = r2(1− 0.7sin(πt
6

))(1 + 0.5cos(πt
12

)), carrying capacities k1(x, t) = 404

b1(1 + 0.7sin(πt
6

))(1 + 0.5cos(πt
12

)) and k2(x, t) = b2(1− 0.7sin(πt
6

))(1 + 0.5cos(πt
12

)), 405

death rates d1(x, t) = e1(1 + 0.7sin(πt
6

))(1 + 0.5cos(πt
12

)) and d2(x, t) = e2(1 − 406

0.7sin(πt
6

))(1 + 0.5cos(πt
12

)). 407

408

Figure 6.4(a) shows a plot of the spreading speeds c∗+ and c∗− as functions of the 409

advection velocity coefficient c0; Figure 6.4(b) shows a plot of the spreading speeds 410

c∗+ and c∗− as functions of the diffusion coefficient c1. 411

412

28



Figure 6.4: Spreading speeds. Leftward spreading speed (c∗−) and rightward

spreading speed (c∗+): (a) as functions of the advection velocity coefficient c0; (b)

as functions of the diffusion coefficient c1.

Figure 6.5 shows the spatial and temporal evolution of u1(x, t) and u2(x, t) 413

with initial condition (6.1). Figure 6.6 shows the spatial and temporal evolution of 414

u1(x, t) and u2(x, t) with initial condition (6.2), which indicates that the population 415

of all mosquitoes persist with spatial periodic pattern. 416

Figure 6.5: The spacial and temporal evolution of u1(x, t) and u2(x, t) with initial

condition (6.1). The rightward periodic traveling waves observed for u1 and u2,

respectively.
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Figure 6.6: The spacial and temporal evolution of u1(x, t) and u2(x, t) with initial

condition (6.2).
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