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Abstract1

In this paper, we consider the discontinuous Galerkin method with upwind-biased numerical2

fluxes for two-dimensional linear hyperbolic equations with degenerate variable coefficients3

on Cartesian meshes. The L2-stability is guaranteed by the numerical viscosity of the upwind-4

biased fluxes, and the adjustable numerical viscosity is useful in resolving waves and is5

beneficial for long time simulations. To derive optimal error estimates, a new projection is6

introduced and analyzed, which is the tensor product of the corresponding one-dimensional7

piecewise global projection for each variable. The analysis of uniqueness and optimal inter-8

polation properties of the proposed projection is subtle, as the projection requires different9

collocations for the projection errors involving the volume integral, the boundary integral and 110

the boundary points. By combining the optimal interpolation estimates and a sharp bound11

for the projection errors, optimal error estimates are obtained. Numerical experiments are12

shown to confirm the validity of the theoretical results.13
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1 Introduction17

In this paper, we study optimal error estimates for the discontinuous Galerkin (DG) methods18

with upwind-biased numerical fluxes for two-dimensional linear hyperbolic equations with19

degenerate variable coefficients20

ut + (a(x, y)u)x + (b(x, y)u)y = 0, (x, y, t) ∈ Ω × (0, T ], (1.1a)21

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (1.1b)22
23

where a(x, y) and b(x, y) are given smooth functions that have turning points on a bounded24

rectangular domain in R2, and u0(x, y) is a smooth initial condition. The periodic boundary25

conditions are mainly discussed, and for the Dirichlet boundary condition case, we refer to26

[15, Sect. 3.5]. By constructing a special piecewise global projection and establishing the27

optimal interpolation properties as well as a sharp bound for projection error terms, we are28

able to derive optimal error estimates for the DG methods with upwind-biased fluxes on29

Cartesian meshes.30

The DG method is a class of nonconforming finite element methods, designed mainly31

to capture shocks without nonphysical oscillations and to achieve a uniform high order32

accuracy for smooth solutions. Proposed by Reed and Hill [21] for solving a linear steady-33

state hyperbolic equation, the DG methods were developed by Cockburn and Shu [6,9,10,12]34

for solving nonlinear time-dependent conservation laws. Since the basis functions can be35

completely discontinuous at element interfaces, the DG method provides more flexibility for36

h-p adaptivity. Due to its excellent features for computing both smooth and discontinuous37

solutions, the DG method was generalized to lots of different partial differential equations38

(PDEs), such as diffusion equations and high order wave equations, for which the local DG39

(LDG) method [11] and the ultra weak DG method [5] are proposed. For recent development40

and applications of DG methods, we refer to the survey papers [8,22].41

Traditionally, purely upwind fluxes are chosen in the DG scheme for hyperbolic equa-42

tions. However, in order to better resolve discontinuities and capture the wave for long time43

integrations, the upwind-biased flux in possession of adjustable numerical viscosities can be44

helpful. Specifically, in order to simulate shocks, a small amount of numerical dissipation45

that is lower than that of an upwind flux can be considered, and this is achieved by choosing46

suitable weights in the generalized local Lax–Friedrichs flux in [17]. On the other hand, for47

smooth solutions of hyperbolic equations, a numerical flux with negligible numerical dis-48

sipation can be chosen which will produce a smaller magnitude of the error (especially for49

even polynomial degrees) [15,20]. For linearized Korteweg–de Vries (KdV) equations, by50

choosing a downwind-biased flux for the convection term, a nearly energy conserving LDG51

scheme [16] shows a better result for long time simulations, when compared with the stan-52

dard upwind flux. In addition, an energy conserving DG scheme is proposed and analyzed53

with central fluxes for generalized KdV equations in [1], and a special global projection is54

constructed.55

First proposed in [20], the idea of the upwind-biased flux has shown its flexibility and56

advantages for solving different types of PDEs. In [18], Liu and Ploymaklam consider the57

LDG method for Burgers–Poisson equations, in which weighted numerical fluxes are used58

for the diffusion term. In [4], Cheng et al. adopt upwind-biased and generalized alternat-59

ing numerical fluxes for solving linear convection-diffusion equations; for fully discretized60

analysis, please refer to [23]. In addition to optimal error estimates for these generalized61

numerical fluxes, superconvergence of the DG and LDG methods have been studied for lin-62

ear hyperbolic equations in [3,13] and convection–diffusion equations in [19]. We would like63
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to point out that a main technical issue related to the analysis of upwind-biased fluxes is the64

coupling feature of the projection, as it uses information from both sides of cell interfaces65

due to a weight for the flux. Therefore, in contrast to an explicit formula for local projec-66

tions for purely upwind fluxes, a linear algebraic system of equations needs to be solved67

when upwind-biased fluxes are considered and the unknowns of the global projection in the68

discrete L2 norm should be uniformly bounded. Moreover, for linear hyperbolic equations69

with degenerate coefficients, if we simply use the approach as that for the linear equations,70

the resulting matrix may be singular and thus existence of the designed projection cannot71

be obtained. To solve this problem, we proposed in [15] a piecewise global projection by72

imposing an additional exact collocation condition at one of the boundary point, at which the73

value of f ′(u) is of the mesh size. Consequently, the whole region can be divided into three74

parts connected by a varying sign element on which a local Gauss–Radau (GR) projection is75

defined. By requiring some suitable collocations of points at which f ′(u) does not change76

sign, we obtain two matrices that are diagonally dominant, indicating that the resulting two77

matrices are always invertible and thus uniqueness as well as optimal interpolation properties78

can be proved.79

As a continued work of [15,20], we consider in this paper the optimal error analysis80

of DG methods with upwind-biased fluxes for 2D hyperbolic equations with degenerate81

coefficients on Cartesian meshes. To this end, we first define a new projection which is a82

tensor product of the 1D piecewise global projection in [15]. However, the projection is not83

easy to analyze, as it involves different collocations for the volume integral, the boundary84

integral and boundary points of different cells. Noting that this projection cannot completely85

eliminate the contribution for projection errors, a sharp estimate for the projection errors is86

derived, which is based on a global inequality rather than a local equality as that in [4,7].87

The rest of this paper is organized as follows. In Sect. 2, we present the DG scheme with88

upwind-biased fluxes for 2D linear hyperbolic equations with degenerate variable coefficients89

and show L2 stability. In Sect. 3, we begin by presenting some notation and recalling some90

preliminaries for the 1D piecewise global projection in Sect. 3.1. In Sect. 3.2, we define a91

new piecewise global projection and show existence and optimal approximation properties.92

A sharp bound of the projection error is shown in Sect. 3.3. The optimal error estimates are93

given in Sect. 3.4. In Sect. 4, numerical experiments are given to confirm theoretical results.94

Some concluding remarks are given in Sect. 5.95

2 The DGMethod96

In this section, we define the DG scheme and show the L2 stability.97

2.1 The DG Scheme98

Prior to giving the definition of the DG scheme, let us first present some notation. For any99

positive integer r , let Zr = {1, . . . , r} and denote by Ωh = {K � Ii × J j } a Cartesian100

mesh of Ω , where K are shape regular rectangular elements and Ii = (xi− 1
2
, xi+ 1

2
), J j =101

(y j− 1
2
, y j+ 1

2
) with i ∈ ZN1 and j ∈ ZN2 . The cell center is (xi , y j ), where xi = 1

2

(
xi− 1

2
+102

xi+ 1
2

)
, y j = 1

2

(
y j− 1

2
+ y j+ 1

2

)
. We set ∂Ωh = {∂K : K ∈ Ωh} being a collection of103

cell boundaries. Moreover, we denote hx = maxi∈ZN1
hx

i , hy = max j∈ZN2
h

y
j with hx

i =104

xi+ 1
2

− xi− 1
2
, h

y
j = y j+ 1

2
− y j− 1

2
, and h = max(hx , hy). Associated with the mesh Ωh , the105
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finite element space is106

Vh = {v ∈ L2(Ω) : v|K ∈ Qk(K ) ∀K ∈ Ωh},107

where Qk(K ) is the space of the tensor product of polynomials of degree at most k for each108

variable on K .109

Since functions in Vh can be discontinuous across element boundaries, for y ∈ J j and110

j ∈ ZN2 , we use v−

i+ 1
2 ,y

and v+

i+ 1
2 ,y

to denote the traces evaluated from the left element Ii × J j111

and the right element Ii+1 × J j ; the jump and the average of v are denoted by �v�i+ 1
2 ,y =112

v+

i+ 1
2 ,y

−v−

i+ 1
2 ,y

and {{v}}i+ 1
2 ,y = 1

2
(v−

i+ 1
2 ,y

+v+

i+ 1
2 ,y

). Analogously, v−

x, j+ 1
2

, v+

x, j+ 1
2

, �v�x, j+ 1
2

113

and {{v}}x, j+ 1
2

can be well defined on horizontal edges when x ∈ Ii and i ∈ ZN1 .114

As usual, we adopt W ℓ,p(D) to represent the standard Sobolev space on D equipped with115

the norm ‖·‖ℓ,p,D with ℓ ≥ 0, p = 2,∞, and D = K ,Ω etc. The subscripts D, ℓ will be116

omitted when D = Ω or ℓ = 0, and W ℓ,p(D) = H ℓ(D) when p = 2. Similarly, the boundary117

L2 norm is ‖v‖∂Ωh
=

( ∑
K∈Ωh

‖v‖2
∂K

) 1
2 with ‖v‖2

∂K =
∫

J j
[(v+

i− 1
2 ,y

)2 + (v−

i+ 1
2 ,y

)2]dy +118

∫
Ii

[(v+

x, j− 1
2

)2 + (v−

x, j+ 1
2

)2]dx .119

We are now ready to present the DG scheme for (1.1). For all t ∈ (0, T ], find uh(t) ∈ Vh120

such that121

∫

K

uh tvhdxdy −

∫

K

auh(vh)x dxdy +

∫

J j

(aûhv−
h )i+ 1

2 ,ydy −

∫

J j

(aûhv+
h )

i− 1
2 ,y

dy122

−

∫

K

buh(vh)ydxdy +

∫

Ii

(bûhv−
h )

x, j+ 1
2
dx −

∫

Ii

(bûhv+
h )

x, j− 1
2
dx (2.1)123

124

holds for all vh ∈ Vh and K ∈ Ωh . Instead of using purely upwind fluxes for the hat terms,125

here we consider a more generalized upwind-biased fluxes in the form126

ûh =

{
uh

(θ1) if a(xi+ 1
2
, y j ) ≥ 0,

uh
(θ̃1) if a(xi+ 1

2
, y j ) < 0,

at (xi+ 1
2
, y), (2.2a)127

ûh =

{
uh

(θ2) if b(xi , y j+ 1
2
) ≥ 0,

uh
(θ̃2) if b(xi , y j+ 1

2
) < 0,

at (x, y j+ 1
2
). (2.2b)128

Here and in what follows, w
(θ1)

i+ 1
2 ,y

= θ1w
−

i+ 1
2 ,y

+ θ̃1w
+

i+ 1
2 ,y

, w
(θ2)

x, j+ 1
2

= θ2w
−

x, j+ 1
2

+ θ̃2w
+

x, j+ 1
2

129

and θs > 1
2

are the weights in the upwind-biased fluxes with θ̃s = 1−θs for s = 1, 2. For the130

numerical initial discretization, we can simply take the L2 projection of u0. This completes131

the definition of the DG scheme.132

For notational convenience, we would like to use the DG spatial discretization operators133

in the form134

H
x
K (w, v) =

∫

K

wvx dxdy −

∫

J j

(ŵv−)i+ 1
2 ,ydy +

∫

J j

(ŵv+)i− 1
2 ,ydy, (2.3a)135

H
y
K (w, v) =

∫

K

wvydxdy −

∫

Ii

(ŵv−)x, j+ 1
2
dx +

∫

Ii

(ŵv+)x, j− 1
2
dx, (2.3b)136

137

and the removal of the subscript K indicates the summation of all K ∈ Ωh .138
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2.2 Stability139

The DG scheme (2.1) with the upwind-biased fluxes (2.2) satisfies the following L2 stability.140

141

Proposition 2.1 The solution of the DG scheme (2.1) with the fluxes (2.2) satisfies142

‖uh(t)‖ ≤ C‖uh(0)‖, ∀t > 0,143

where C is a positive constant depending on ax and by .144

Proof Taking vh = uh in (2.1) and summing over all K , we get145

1

2

d

dt
‖uh‖2 = H

x (auh, vh) + H
y(buh, vh). (2.4)146

It follows from integration by parts and a local linearization ai+ 1
2 ,y =

(
ai+ 1

2 ,y − ai+ 1
2 , j

)
+147

ai+ 1
2 , j that148

H
x (auh, uh) =

∑

K∈Ωh

∫

K

−
ax

2
u2

hdxdy149

−

(
θ1 −

1

2

) N2∑

j=1

∫

J j

N1∑

i=1

∣∣ai+ 1
2 , j

∣∣�uh�2

i+ 1
2 ,y

dy150

+

N2∑

j=1

∫

J j

N1∑

i=1

(
ai+ 1

2 ,y − ai+ 1
2 , j

) (
ûh − {{uh}}

)
i+ 1

2 ,y
�uh�i+ 1

2 ,ydy151

≤ C‖uh‖2 + Ch‖uh‖2
∂Ωh

152

≤ C‖uh‖2,153
154

since θ1 > 1
2

and
∣∣ai+ 1

2 ,y − ai+ 1
2 , j

∣∣ ≤ Ch, and we have also used the fact that
∑

K∈Ωh
w =155

∑N2

j=1

∑N1

i=1 w implied by the structure of Cartesian meshes and the inverse property (ii).156

Analogously, for H
y(buh, uh), we have157

H
y(buh, vh) ≤ C‖uh‖2.158

A substitution of the above two inequalities into (2.4) together with the Gronwall’s inequality159

leads to the L2 stability. This finishes the proof of Proposition 2.1. ⊓⊔160

3 Optimal Error Estimates161

3.1 Preliminaries162

3.1.1 A Special Projection in 1D163

Basically, for optimal error estimates of the DG methods with upwind-biased fluxes solving164

linear hyperbolic equations with variable coefficients, the design of special projection is165

mainly divided into two cases. The first case is that the derivatives of flux functions a, b166

do not change signs over Ω; for such a case, one can simply employ the local linearization167

approach for a, b at each element and take the projection proposed in [20]. Note that in [20] a168
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global linear system of size N1 N2 × N1 N2 needs to be solved, which, however, can be treated169

as the tensor product of two matrices of size N1 and N2, respectively. For the second case170

when a, b do change signs over Ω , the situation is totally different, for which we should be171

careful to rearrange different collocation conditions. A successful treatment proposed in [15]172

is to split the whole projection into a piecewise global projection via replacing a collocation173

condition by a decoupling condition for a sign varying element (connecting cell).174

To be more specific, let us recall the definition of the special piecewise global projection175

in 1D. Thus, (1.1) reduces to176

ut + (c(x)u)x = 0.177

According to the sign variation of c(x) together with an assumption that f ′(u) = c(x) has178

only two zeros, we follow [15] and denote179

β = { j | c(x j− 1
2
) < 0 and c(x j+ 1

2
) ≥ 0, ∀ j ∈ ZN }, (3.1a)180

γ = { j | c(x j− 1
2
) > 0 and c(x j+ 1

2
) ≤ 0, ∀ j ∈ ZN }, (3.1b)181

182

and183

b
+ = {β, . . . , γ − 1}, b

− = {γ + 1, . . . , β − 1} (3.1c)184

no matter whether γ is greater than β or not. Note that ZN \{b+ ∪ b
−} = γ , allowing us to185

define an additional decoupling condition for the element Iγ in (3.2b) below. The piecewise186

global projection P
θ
h u is defined as a delicate collocation at different points with the purpose187

of obtaining matrices that are always diagonally dominant, resulting in the uniqueness and188

existence of the projection. It reads189

∫

Ii

(Pθ
h u)ϕdx =

∫

Ii

uϕdx ∀ϕ ∈ Pk−1(Ii ), i ∈ ZN , (3.2a)190

(Pθ
h u)−

i+ 1
2

= u−

i+ 1
2

at xi+ 1
2
, i = γ, (3.2b)191

(̂Pθ
h u)i+ 1

2
= ûi+ 1

2
at xi+ 1

2
, i ∈ b

+, (3.2c)192

(̂Pθ
h u)i− 1

2
= ûi− 1

2
at xi− 1

2
, i ∈ b

−, (3.2d)193

194

where ŵ = θw− + θ̃w+ for c(xi+ 1
2
) ≥ 0 and ŵ = θ̃w− + θw+ for c(xi+ 1

2
) < 0 with195

θ > 1
2

and θ̃ = 1 − θ . We can see that the projection is doubly defined at xγ+ 1
2

without any196

collocation at xβ− 1
2

(namely (u − P
θ
h u)β− 1

2
�= 0), which will give us a local GR projection197

on Iγ , entailing that P
θ
h u can be decoupled starting from this element. For more details, see198

[15, Lemma 3.1 and Remark 3.1].199

3.1.2 Inverse Properties in 2D200

For any function v ∈ Vh , the following inverse inequalities hold [2]:201

(i)‖∇v‖ ≤ Ch−1‖v‖, (ii)‖v‖∂Ωh
≤ Ch− 1

2 ‖v‖, (iii)‖v‖∞ ≤ Ch−1‖v‖, (3.3)202

where ‖∇v‖ =
(
‖vx‖

2 + ‖vy‖
2
) 1

2 and the bounding constant C is independent of h.203
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3.2 A Special Piecewise Global Projection in 2D204

We are now ready to define a new projection for the 2D case. For simplicity, we consider205

the univariate case of (1.1), namely a(x, y) = a(x) and b(x, y) = b(y); definition of the206

projection for the multivariate case of (1.1) is more involved, as sign variations will be quite207

complicated. Analogous to β, γ, b
+, b

− in (3.1a)–(3.1c) for 1D, we can define β1, γ1, β2, γ2,208

and further b1
+, b1

−, b2
+, b2

−. Next, for u ∈ W 1,∞(Ωh), the new projection, denoted by 	
θ1,θ2

h u,209

is defined to be the tensor product of the corresponding 1D projection. That is,210

	
θ1,θ2

h u = P
θ1

hx
⊗ P

θ2

hy
u, (3.4)211

where the subscripts x and y denote the 1D projection is used as given in (3.2). Taking into212

account collocations at different boundary points, the projection 	
θ1,θ2

h u is a polynomial in213

Vh satisfying the following four groups of identities, i.e., the volume integrals214

∫

K

	
θ1,θ2

h u(x, y)vh(x, y)dxdy =

∫

K

u(x, y)vh(x, y)dxdy, (3.5a)215

the collocations for vertical boundary integrals216

∫

J j

(	
θ1,θ2

h u)
−

i+ 1
2 ,y

(vh)−
i+ 1

2 ,y
dy =

∫

J j

u−

i+ 1
2 ,y

(vh)−
i+ 1

2 ,y
dy i = γ1, (3.5b)217

∫

J j

(	
θ1,θ2

h u)
(θ1)

i+ 1
2 ,y

(vh)−
i+ 1

2 ,y
dy =

∫

J j

u
(θ1)

i+ 1
2 ,y

(vh)−
i+ 1

2 ,y
dy i ∈ b1

+, (3.5c)218

∫

J j

(	
θ1,θ2

h u)
(θ̃1)

i− 1
2 ,y

(vh)+
i− 1

2 ,y
dy =

∫

J j

u
(θ̃1)

i− 1
2 ,y

(vh)+
i− 1

2 ,y
dy i ∈ b1

−, (3.5d)219

220

the collocations for horizontal boundary integrals221

∫

Ii

(	
θ1,θ2

h u)
−

x, j+ 1
2
(vh)−

x, j+ 1
2

dx =

∫

Ii

u−

x, j+ 1
2

(vh)−
x, j+ 1

2

dx j = γ2, (3.5e)222

∫

Ii

(	
θ1,θ2

h u)
(θ2)

x, j+ 1
2
(vh)−

x, j+ 1
2

dx =

∫

Ii

u
(θ2)

x, j+ 1
2

(vh)−
x, j+ 1

2

dx j ∈ b2
+, (3.5f)223

∫

Ii

(	
θ1,θ2

h u)
(θ̃2)

x, j− 1
2
(vh)+

x, j− 1
2

dx =

∫

Ii

u
(θ̃2)

x, j− 1
2

(vh)+
x, j− 1

2

dx j ∈ b2
−, (3.5g)224

225

which hold for all vh ∈ Qk−1(K ) and K ∈ Ωh , and the collocations for boundary points226

(	
θ1,θ2

h u)
−,−

i+ 1
2 , j+ 1

2
= u

−,−

i+ 1
2 , j+ 1

2

(i, j) = (γ1, γ2), (3.5h)227

(	
θ1,θ2

h u)
(θ1),−

i+ 1
2 , j+ 1

2
= u

(θ1),−

i+ 1
2 , j+ 1

2

(i, j) ∈ (b1
+, γ2), (3.5i)228

(	
θ1,θ2

h u)
(θ̃1),−

i− 1
2 , j+ 1

2
= u

(θ̃1),−

i− 1
2 , j+ 1

2

(i, j) ∈ (b1
−, γ2), (3.5j)229

(	
θ1,θ2

h u)
−,(θ2)

i+ 1
2 , j+ 1

2
= u

−,(θ2)

i+ 1
2 , j+ 1

2

(i, j) ∈ (γ1, b2
+), (3.5k)230

(	
θ1,θ2

h u)
−,(θ̃2)

i+ 1
2 , j− 1

2
= u

−,(θ̃2)

i+ 1
2 , j− 1

2

(i, j) ∈ (γ1, b2
−), (3.5l)231

(	
θ1,θ2

h u)
(θ1,θ2)

i+ 1
2 , j+ 1

2
= u

(θ1,θ2)

i+ 1
2 , j+ 1

2

(i, j) ∈ (b1
+, b2

+), (3.5m)232

(	
θ1,θ2

h u)
(θ1,θ̃2)

i+ 1
2 , j− 1

2
= u

(θ1,θ̃2)

i+ 1
2 , j− 1

2

(i, j) ∈ (b1
+, b2

−), (3.5n)233
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(	
θ1,θ2

h u)
(θ̃1,θ2)

i− 1
2 , j+ 1

2
= u

(θ̃1,θ2)

i− 1
2 , j+ 1

2

(i, j) ∈ (b1
−, b2

+), (3.5o)234

(	
θ1,θ2

h u)
(θ̃1,θ̃2)

i− 1
2 , j− 1

2
= u

(θ̃1,θ̃2)

i− 1
2 , j− 1

2

(i, j) ∈ (b1
−, b2

−). (3.5p)235

236

Here and below,237

w
(θ1,θ2)

i+ 1
2 , j+ 1

2

= θ1θ2w
−,−

i+ 1
2 , j+ 1

2

+ θ1θ̃2w
−,+

i+ 1
2 , j+ 1

2

238

+ θ̃1θ2w
+,−

i+ 1
2 , j+ 1

2

+ θ̃1θ̃2w
+,+

i+ 1
2 , j+ 1

2

.239

240

In order to show uniqueness, existence and optimal approximation properties of the pro-241

jection 	
θ1,θ2

h u, we need to recall the definition 	−
h as defined in [7,20]. Specifically, for242

u ∈ W 1,∞(Ωh), the projection 	−
h u is a unique polynomial in Vh such that243

∫

K

	−
h u(x, y)vh(x, y)dxdy =

∫

K

u(x, y)vh(x, y)dxdy, (3.6a)244

∫

J j

(	−
h u)

−

i+ 1
2 ,y

(vh)−
i+ 1

2 ,y
dy =

∫

J j

u−

i+ 1
2 ,y

(vh)−
i+ 1

2 ,y
dy, (3.6b)245

∫

Ii

(	−
h u)

−

x, j+ 1
2
(vh)−

x, j+ 1
2

dx =

∫

Ii

u−

x, j+ 1
2

(vh)−
x, j+ 1

2

dx, (3.6c)246

(	−
h u)

−,−

i+ 1
2 , j+ 1

2

= u
−,−

i+ 1
2 , j+ 1

2

(3.6d)247

248

hold for all vh ∈ Qk−1(K ) and K ∈ Ωh . Clearly, 	−
h u is locally defined and satisfies the249

optimal approximation property [2,7]:250

‖u − 	−
h u‖ + h

1
2 ‖u − 	−

h u‖
∂Ωh

+ h‖u − 	−
h u‖∞ ≤ Chk+1‖u‖k+1, (3.7)251

where C is independent of h.252

Existence and optimal approximation properties of the piecewise global projection 	
θ1,θ2

h253

are established in the following lemma.254

Lemma 3.1 There exists a unique 	
θ1,θ2

h satisfying (3.5a)–(3.5p). Moreover, assume that255

u is sufficiently smooth, i.e. u ∈ H k+1(Ωh), and periodic. Then, there holds the optimal256

approximation property:257

‖u − 	
θ1,θ2

h u‖ + h
1
2 ‖u − 	

θ1,θ2

h u‖
∂Ωh

≤ Chk+1‖u‖k+1, (3.8)258

where ‖u‖k+1 =
( ∑

K∈Ωh
‖u‖2

k+1,K

) 1
2 is the broken Sobolev k + 1 norm of u and C is259

independent of the mesh size h.260

Proof Denote 	
θ1,θ2

h u−u = 	
θ1,θ2

h u−	−
h u+	−

h u−u � E+ψ with E = 	
θ1,θ2

h u−	−
h u ∈261

Vh and ψ = 	−
h u − u. Since 	−

h u defined in (3.6) has already known, if we can prove the262

existence and uniqueness of E , then 	
θ1,θ2

h u = E + 	−
h u will be unique. By the definitions263

of 	
θ1,θ2

h and 	−
h , E satisfies the following identities264

∫

K

Evhdxdy = 0, (3.9a)265

∫

J j

E−

i+ 1
2 ,y

(vh)−
i+ 1

2 ,y
dy = 0 i = γ1, (3.9b)266
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∫

J j

E
(θ1)

i+ 1
2 ,y

(vh)−
i+ 1

2 ,y
dy = −θ̃1

∫

J j

ψ+

i+ 1
2 ,y

(vh)−
i+ 1

2 ,y
dy i ∈ b1

+, (3.9c)267

∫

J j

E
(θ̃1)

i− 1
2 ,y

(vh)+
i− 1

2 ,y
dy = −θ1

∫

J j

ψ+

i− 1
2 ,y

(vh)+
i− 1

2 ,y
dy i ∈ b1

−, (3.9d)268

∫

Ii

E−

x, j+ 1
2

(vh)−
x, j+ 1

2

dx = 0 j = γ2, (3.9e)269

∫

Ii

E
(θ2)

x, j+ 1
2

(vh)−
x, j+ 1

2

dx = −θ̃2

∫

Ii

ψ+

x, j+ 1
2

(vh)−
x, j+ 1

2

dx j ∈ b2
+, (3.9f)270

∫

Ii

E
(θ̃2)

x, j− 1
2

(vh)+
x, j− 1

2

dx = −θ2

∫

Ii

ψ+

x, j− 1
2

(vh)+
x, j− 1

2

dx j ∈ b2
−, (3.9g)271

E
−,−

i+ 1
2 , j+ 1

2

= 0 (i, j) = (γ1, γ2), (3.9h)272

E
(θ1),−

i+ 1
2 , j+ 1

2

= −θ̃1ψ
+,−

i+ 1
2 , j+ 1

2

(i, j) = (b1
+, γ2), (3.9i)273

E
(θ̃1),−

i− 1
2 , j+ 1

2

= −θ1ψ
+,−

i− 1
2 , j+ 1

2

(i, j) = (b1
−, γ2), (3.9j)274

E
−,(θ2)

i+ 1
2 , j+ 1

2

= −θ̃2ψ
−,+

i+ 1
2 , j+ 1

2

(i, j) = (γ1, b2
+), (3.9k)275

E
−,(θ̃2)

i+ 1
2 , j− 1

2

= −θ2ψ
−,+

i+ 1
2 , j− 1

2

(i, j) = (γ1, b2
−), (3.9l)276

E
(θ1,θ2)

i+ 1
2 , j+ 1

2

= −ψ
(θ1,θ2)

i+ 1
2 , j+ 1

2

(i, j) = (b1
+, b2

+), (3.9m)277

E
(θ1,θ̃2)

i+ 1
2 , j− 1

2

= −ψ
(θ1,θ̃2)

i+ 1
2 , j− 1

2

(i, j) = (b1
+, b2

−), (3.9n)278

E
(θ̃1,θ2)

i− 1
2 , j+ 1

2

= −ψ
(θ̃1,θ2)

i− 1
2 , j+ 1

2

(i, j) = (b1
−, b2

+), (3.9o)279

E
(θ̃1,θ̃2)

i− 1
2 , j− 1

2

= −ψ
(θ̃1,θ̃2)

i− 1
2 , j− 1

2

(i, j) = (b1
−, b2

−), (3.9p)280

281

which hold for all vh ∈ Qk−1(K ) and K ∈ Ωh .282

Since E ∈ Vh , we can express the restriction of E to K = Ii × J j in terms of the orthogonal283

Legendre basis functions, i.e.,284

E |K � EK (x, y) =

k∑

ℓ1=0

k∑

ℓ2=0

α
ℓ1,ℓ2

i, j Pi,ℓ1(x)Pj,ℓ2(y) =

k∑

ℓ1=0

k∑

ℓ2=0

α
ℓ1,ℓ2

i, j Pℓ1(x̂)Pℓ2(ŷ),285

where Pℓ1(x̂) is the ℓ1th order Legendre polynomial on the reference element [−1, 1] with286

x̂ = 2(x−xi )
hx

i
; likewise for Pℓ2(ŷ).287

Below we will finish the proof of Lemma 3.1 with the following five steps.288

Step 1 It follows from (3.9a) and the orthogonality property of the Legendre polynomials289

that290

EK (x, y) =

k−1∑

ℓ2=0

α
k,ℓ2

i, j Pk(x̂)Pℓ2(ŷ) +

k−1∑

ℓ1=0

α
ℓ1,k
i, j Pℓ1(x̂)Pk(ŷ) + α

k,k
i, j Pk(x̂)Pk(ŷ)291

� W1 + W2 + W3, (3.10)292
293

since α
ℓ1,ℓ2

i, j = 0 for ℓ1, ℓ2 = 0, . . . , k − 1, i ∈ ZN1 and j ∈ ZN2 .294
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Step 2 Estimate to W1. Taking vh = Pℓ2(ŷ) in (3.9b)–(3.9d) with ℓ2 = 0, . . . , k − 1 and295

using the orthogonality property of Legendre polynomials, we obtain consecutively296

α
k,ℓ2

i, j = 0 i = γ1, (3.11a)297

θ1α
k,ℓ2

i, j + θ̃1(−1)kα
k,ℓ2

i+1, j = θ̃1g
k,ℓ2

i+1, j i ∈ b1
+, (3.11b)298

θ̃1α
k,ℓ2

i−1, j + θ1(−1)kα
k,ℓ2

i, j = θ1g
k,ℓ2

i, j i ∈ b1
−, (3.11c)299

300

for ℓ2 = 0, . . . , k − 1, j ∈ ZN2 , where g
k,ℓ2

i+1, j = − 2ℓ2+1
2

∫ 1
−1 ψ+

i+ 1
2 ,y

Pℓ2(ŷ)d ŷ with y =301

y j +
h

y
j

2
ŷ. Next, a combination of (3.11a) with (3.11b) and (3.11c), respectively, gives us,302

for ℓ2 = 0, . . . , k − 1, j ∈ ZN2 , the linear systems of equations303

Ab1
+ α

k,ℓ2

b1
+, j

= θ̃1g
k,ℓ2

b1
+, j

, (3.12a)304

Ab1
− α

k,ℓ2

b1
−, j

= θ1g
k,ℓ2

b1
−, j

, (3.12b)305

306

where the vectors α
k,ℓ2

b1
+, j

= (α
k,ℓ2

β1, j , . . . , α
k,ℓ2

γ1−1, j )
T, α

k,ℓ2

b1
−, j

= (α
k,ℓ2

γ1+1, j , . . . , α
k,ℓ2

β1−1, j )
T, g

k,ℓ2

b1
+, j

=307

(g
k,ℓ2

β1+1, j , . . . , g
k,ℓ2

γ1, j )
T, g

k,ℓ2

b1
−, j

= (g
k,ℓ2

γ1+1, j , . . . , g
k,ℓ2

β1−1, j )
T, and the diagonally dominant matri-308

ces309

Ab1
+ =

⎛
⎜⎜⎜⎝

θ1 θ̃1(−1)k

. . .
. . .

θ1 θ̃1(−1)k

θ1

⎞
⎟⎟⎟⎠ , Ab1

− =

⎛
⎜⎜⎜⎝

θ1(−1)k

θ̃1 θ1(−1)k

. . .
. . .

θ̃1 θ1(−1)k

⎞
⎟⎟⎟⎠ . (3.13)310

Obviously, by (2.2a) with θ1 > 1
2

, the determinants of Ab1
+ and Ab1

− are not zero. Thus, α
k,ℓ2

i, j311

exists uniquely for ℓ2 = 0, . . . , k − 1, j ∈ ZN2 and i ∈ ZN1 .312

Step 3 Estimate to W2. Analogously, taking vh = Pℓ1(x̂) in (3.9e)–(3.9g) with ℓ1 =313

0, . . . , k − 1 and using the orthogonality property of Legendre polynomials, we obtain con-314

secutively315

α
ℓ1,k
i, j = 0 j = γ2, (3.14a)316

θ2α
ℓ1,k
i, j + θ̃2(−1)kα

ℓ1,k
i, j+1 = θ̃2g

ℓ1,k
i, j+1 j ∈ b2

+, (3.14b)317

θ̃2α
ℓ1,k
i, j−1 + θ2(−1)kα

ℓ1,k
i, j = θ2g

ℓ1,k
i, j j ∈ b2

−, (3.14c)318

319

for ℓ1 = 0, . . . , k − 1, i ∈ ZN1 , where g
ℓ1,k
i, j+1 = − 2ℓ1+1

2

∫ 1
−1 ψ+

x, j+ 1
2

Pℓ1(x̂)dx̂ with x =320

xi +
hx

i

2
x̂ . Next, a combination of (3.14a) with (3.14b) and (3.14c), respectively, gives us,321

for ℓ1 = 0, . . . , k − 1, i ∈ ZN1 , the linear systems of equations322

Ab2
+ α

ℓ1,k

i,b2
+ = θ̃2g

ℓ1,k

i,b2
+ , (3.15a)323

Ab2
− α

ℓ1,k

i,b2
− = θ2g

ℓ1,k

i,b2
− , (3.15b)324

325
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where the vectors α
ℓ1,k

i,b2
+ = (α

ℓ1,k
i,β2

, . . . , α
ℓ1,k
i,γ2−1)

T, α
ℓ1,k

i,b2
− = (α

ℓ1,k
i,γ2+1, . . . , α

ℓ1,k
i,β2−1)

T, g
ℓ1,k

i,b2
+ =326

(g
ℓ1,k
i,β2+1, . . . , g

ℓ1,k
i,γ2

)T, g
ℓ1,k

i,b2
− = (g

ℓ1,k
i,γ2+1, . . . , g

ℓ1,k
i,β2−1)

T, and the diagonally dominant matrices327

Ab2
+ =

⎛
⎜⎜⎜⎝

θ2 θ̃2(−1)k

. . .
. . .

θ2 θ̃2(−1)k

θ2

⎞
⎟⎟⎟⎠ , Ab2

− =

⎛
⎜⎜⎜⎝

θ2(−1)k

θ̃2 θ2(−1)k

. . .
. . .

θ̃2 θ2(−1)k

⎞
⎟⎟⎟⎠ . (3.16)328

Obviously, by (2.2b) with θ2 > 1
2

, the determinants of Ab2
+ and Ab2

− are not zero. Thus, α
ℓ1,k
i, j329

exists uniquely for ℓ1 = 0, . . . , k − 1, i ∈ ZN1 and j ∈ ZN2 .330

Step 4 Estimate to W3. By the exact collocation at (xγ1+
1
2
, yγ2+ 1

2
) in (3.9h), we have that331

αk,k
γ1,γ2

= −

k−1∑

ℓ2=0

αk,ℓ2
γ1,γ2

−

k−1∑

ℓ1=0

αℓ1,k
γ1,γ2

= 0, (3.17a)332

since, by (3.11a) and (3.14a), α
k,ℓ2

γ1, j = 0 for ℓ2 = 0, . . . , k − 1, j ∈ ZN2 and α
ℓ1,k
i,γ2

= 0 for333

ℓ1 = 0, . . . , k − 1, i ∈ ZN1 .334

Then, the conditions (3.9i) and (3.9j) imply that335

θ1α
k,k
i,γ2

+ θ̃1(−1)kα
k,k
i+1,γ2

= g
k,k
i+1,γ2

i ∈ b1
+, (3.17b)336

θ̃1α
k,k
i−1,γ2

+ θ1(−1)kα
k,k
i,γ2

= g
k,k
i,γ2

i ∈ b1
−, (3.17c)337

338

where339

g
k,k
i+1,γ2

= −θ̃1ψ
+,−

i+ 1
2 ,γ2+ 1

2

− θ1

⎛
⎝

k−1∑

ℓ2=0

α
k,ℓ2

i,γ2
+

k−1∑

ℓ1=0

α
ℓ1,k
i,γ2

⎞
⎠

340

− θ̃1

⎛
⎝

k−1∑

ℓ2=0

α
k,ℓ2

i+1,γ2
(−1)k +

k−1∑

ℓ1=0

α
ℓ1,k
i+1,γ2

(−1)ℓ1

⎞
⎠ i ∈ b1

+,341

g
k,k
i,γ2

= −θ1ψ
+,−

i− 1
2 ,γ2+ 1

2

− θ1

⎛
⎝

k−1∑

ℓ2=0

α
k,ℓ2

i−1,γ2
+

k−1∑

ℓ1=0

α
ℓ1,k
i−1,γ2

⎞
⎠

342

− θ̃1

⎛
⎝

k−1∑

ℓ2=0

α
k,ℓ2

i,γ2
(−1)k +

k−1∑

ℓ1=0

α
ℓ1,k
i,γ2

(−1)ℓ1

⎞
⎠ i ∈ b1

−.343

344

Inserting (3.17a) into (3.17b) and (3.17c), we obtain, for j = γ2, the linear systems of345

equations346

Ab1
+αb1

+,γ2
= gb1

+,γ2
, (3.18a)347

Ab1
−αb1

−,γ2
= gb1

−,γ2
, (3.18b)348

349

where αb1
+,γ2

= (α
k,k
β1,γ2

, . . . , α
k,k
γ1−1,γ2

)T, αb1
−,γ2

= (α
k,k
γ1+1,γ2

, . . . , α
k,k
β1−1,γ2

)T, gb1
+,γ2

=350

(g
k,k
β1+1,γ2

, . . . , gk,k
γ1,γ2

)T, gb1
−,γ2

= (g
k,k
γ1+1,γ2

, . . . , g
k,k
β1−1,γ2

)T, and the diagonally dominant351

matrices Ab1
+ , Ab1

− have been given in (3.13). Therefore, α
k,k
i,γ2

exists uniquely for i ∈ ZN1 .352
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Similarly, the conditions (3.9k) and (3.9l) together with (3.17a) produce, for i = γ1, the353

linear systems of equations354

Ab2
+αγ1,b2

+ = gγ1,b2
+ , (3.19a)355

Ab2
−αγ1,b2

− = gγ1,b2
− , (3.19b)356

357

where αγ1,b2
+ = (α

k,k
γ1,β2

, . . . , α
k,k
γ1,γ2−1)

T, αγ1,b2
− = (α

k,k
γ1,γ2+1, . . . , α

k,k
γ1,β2−1)

T, gγ1,b2
+ =358

(g
k,k
γ1,β2+1, . . . , gk,k

γ1,γ2
)T, gγ1,b2

− = (g
k,k
γ1,γ2+1, . . . , g

k,k
γ1,β2−1)

T, and Ab2
+ , Ab2

− have been given359

in (3.16). Therefore, α
k,k
γ1, j exists uniquely for j ∈ ZN2 .360

In what follows, we shall deal with some more complicated terms involving two weights361

in (3.9m)–(3.9p). Since the analysis to (3.9m)–(3.9p) are similar, we only take (3.9m) as an362

example. After rearranging terms, the condition (3.9m) yields, for i ∈ b1
+ and j ∈ b2

+, that363

θ1θ2α
k,k
i, j + θ1θ̃2(−1)kα

k,k
i, j+1 + θ̃1θ2(−1)kα

k,k
i+1, j + θ̃1θ̃2α

k,k
i+1, j+1 = g

k,k
i, j , (3.20)364

where365

g
k,k
i, j = −ψ

(θ1,θ2)

i+ 1
2 , j+ 1

2

− θ1θ2

⎛
⎝

k−1∑

ℓ2=0

α
k,ℓ2

i, j +

k−1∑

ℓ1=0

α
ℓ1,k
i, j

⎞
⎠

366

− θ1θ̃2

⎛
⎝

k−1∑

ℓ2=0

α
k,ℓ2

i, j+1(−1)ℓ2 +

k−1∑

ℓ1=0

α
ℓ1,k
i, j+1(−1)k

⎞
⎠

367

− θ̃1θ2

⎛
⎝

k−1∑

ℓ2=0

α
k,ℓ2

i+1, j (−1)k +

k−1∑

ℓ1=0

α
ℓ1,k
i+1, j (−1)ℓ1

⎞
⎠

368

− θ̃1θ̃2

⎛
⎝

k−1∑

ℓ2=0

α
k,ℓ2

i+1, j+1(−1)k+ℓ2 +

k−1∑

ℓ1=0

α
ℓ1,k
i+1, j+1(−1)k+ℓ1

⎞
⎠ (3.21)369

370

is known. If we now denote371

αb1
+,b2

+ = (α
k,k
β1,β2

, . . . , α
k,k
β1,γ2−1, . . . , α

k,k
γ1−1,β2

, . . . , α
k,k
γ1−1,γ2−1)

T,372

gb1
+,b2

+ = (g
k,k
β1,β2

, . . . , g
k,k
β1,γ2−1, . . . , g

k,k
γ1−1,β2

, . . . , g
k,k
γ1−1,γ2−1)

T,373

374

then (3.20) can be rewritten as375

Ab1
+ ⊗ Ab2

+ αb1
+,b2

+ = gb1
+,b2

+ , (3.22)376

where Ab1
+ , Ab2

+ have been defined in (3.13) and (3.16), and ⊗ is the Kronecker product of377

two matrices. Since Ab1
+ and Ab2

+ are invertible, we can deduce from378

(Ab1
+ ⊗ Ab2

+)−1 = A−1
b1
+ ⊗ A−1

b2
+379

that Ab1
+ ⊗Ab2

+ is also invertible. Therefore, α
k,k
i, j exists uniquely for i ∈ b1

+, j ∈ b2
+. Applying380

the same arguments as that for (3.9m) to (3.9n)–(3.9p), we conclude that α
k,k
i, j exists uniquely381

for i ∈ b1
+, j ∈ b2

− and i ∈ b1
−, j ∈ b2

+ ∪ b2
−.382

Till now, we have proved that α
ℓ1,ℓ2

i, j can be solved for ℓ1, ℓ2 = 0, . . . , k and i ∈ ZN1 , j ∈383

ZN2 ; then EK (x, y) and thus 	
θ1,θ2

h u is uniquely determined on each element K ∈ Ωh .384
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Step 5 Optimal approximation property. The optimal approximation property of 	
θ1,θ2

h can385

be derived from that of E , and, by (3.10), we need only to consider the bounds for α
k,ℓ2

i, j ,386

α
ℓ1,k
i, j and α

k,k
i, j with ℓ1, ℓ2 = 0, . . . , k − 1, i ∈ ZN1 , j ∈ ZN2 .387

Firstly, we estimate the coefficients in W1, i.e., α
k,ℓ2

i, j . To do that, we solve (3.12a) and use388

the special form of A−1
b1
+ in [15, Appendix A] (which is an upper triangular matrix) to get389

‖α
k,ℓ2

b1
+, j

‖2
2 ≤ θ̃2

1 ‖A−1
b1
+ ‖2

2 ‖g
k,ℓ2

b1
+, j

‖2
2 ≤ θ̃2

1 ‖A−1
b1
+ ‖1 ‖A−1

b1
+ ‖∞ ‖g

k,ℓ2

b1
+, j

‖2
2390

≤
q2

1

(1 − |q1|)
2

‖g
k,ℓ2

b1
+, j

‖2
2, (3.23a)391

392

where q1 = − θ̃1(−1)k

θ1
with |q1| < 1, and ‖·‖p denotes the ℓp norm for a vector or matrix393

with p = 1, 2,∞. Moreover, it follows from the Cauchy–Schwarz inequality and the change394

of variables that395

‖g
k,ℓ2

b1
+, j

‖2
2 ≤ Ch−1

∑

i∈b1
+

∫

J j

(ψ+

i+ 1
2 ,y

)2dy ≤ Ch−1
∑

i∈b1
+

‖ψ‖2
∂K R

, (3.23b)396

with K R = Ii+1 × J j . A combination of (3.23a) and (3.23b) gives us397

‖α
k,ℓ2

b1
+, j

‖2
2 ≤ Ch−1

∑

i∈b1
+

‖ψ‖2
∂K R

. (3.24a)398

Analogously, for (3.12b), we have399

‖α
k,ℓ2

b1
−, j

‖2
2 ≤

1

(1 − |q2|)
2

‖g
k,ℓ2

b1
−, j

‖2
2 ≤ Ch−1

∑

i∈b1
−

‖ψ‖2
∂K , (3.24b)400

where q2 = − θ̃2(−1)k

θ2
with |q2| < 1. If we now denote α

k,ℓ2

j = ((α
k,ℓ2

b1
+, j

)T, 0, (α
k,ℓ2

b1
−, j

)T)T with401

j ∈ ZN2 , ℓ2 = 0, . . . , k − 1, we arrive at402

‖α
k,ℓ2

j ‖2
2 = ‖α

k,ℓ2

b1
+, j

‖2
2 + ‖α

k,ℓ2

b1
−, j

‖2
2 ≤ Ch−1

N1∑

i=1

‖ψ‖2
∂K . (3.25)403

Secondly, performing the same procedure as that in deriving (3.25) to (3.15), we obtain404

the bound for the coefficients in W2, namely α
ℓ1,k
i, j . It reads405

‖α
ℓ1,k
i ‖2

2 = ‖α
ℓ1,k

i,b2
+‖2

2 + ‖α
ℓ1,k

i,b2
−‖2

2 ≤ Ch−1

N2∑

j=1

‖ψ‖2
∂K , (3.26)406

where α
ℓ1,k
i = ((α

ℓ1,k

i,b2
+)T, 0, (α

ℓ1,k

i,b2
−)T)T with i ∈ ZN1 , ℓ1 = 0, . . . , k − 1.407

Thirdly, let us consider estimates to the coefficients in W3, i.e., α
k,k
i, j . By an argument408

similar to that in the proof of (3.24a), we deduce from (3.22) that409

‖αb1
+,b2

+‖2
2410

≤ ‖(Ab1
+ ⊗ Ab2

+)−1‖2
2 ‖gb1

+,b2
+‖2

2411

≤ ‖A−1
b1
+ ⊗ A−1

b2
+ ‖1 ‖A−1

b1
+ ⊗ A−1

b2
+ ‖∞ ‖gb1

+,b2
+‖2

2412
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≤
Cq2

1

(1 − |q1|)2(1 − |q2|)2

⎛
⎝ ∑

K∈Ωh

‖ψ‖2
∞,K +

k−1∑

ℓ2=0

N2∑

j=1

‖α
k,ℓ2

j ‖2
2 +

k−1∑

ℓ1=0

N1∑

i=1

‖α
ℓ1,k
i ‖2

2

⎞
⎠

413

≤ C
∑

K∈Ωh

(
h2k‖u‖2

k+1,K + h−1‖ψ‖2
∂K

)
= C(h2k‖u‖2

k+1 + h−1‖ψ‖2
∂Ωh

)414

≤ Ch2k, (3.27)415
416

where in the second line we have used the fact that (Ab1
+ ⊗Ab2

+)−1 = A−1
b1
+ ⊗A−1

b2
+ as well as the417

Hölder’s inequality for the matrix norm, in the third line we have utilized
( ∑k−1

ℓ2=0 α
k,ℓ2

i, j

)2
≤418

k
∑k−1

ℓ2=0

(
α

k,ℓ2

i, j

)2
and have substituted (3.25), (3.26) into (3.21), in the fourth line we have419

employed the property ‖ψ‖∞,K ≤ Chk‖u‖k+1,K implied by the Sobolev inequality, the420

Bramble–Hilbert lemma and scaling arguments in [2, Corollary 4.4.7], and in the last line421

we have taken into account the approximation result in (3.7). Similar bounds for ‖αb1
+,b2

−‖2
2,422

‖αb1
−,b2

+‖2
2, and ‖αb1

−,b2
−‖2

2 can also be shown.423

Finally, we are now ready to present the optimal approximation property for 	
θ1,θ2

h .424

Collecting (3.25)–(3.27) into (3.10), we have425

‖E‖2 ≤ Ch2

⎛
⎝ ∑

K∈Ωh

k−1∑

ℓ2=0

(α
k,ℓ2

i, j )2 +
∑

K∈Ωh

k−1∑

ℓ1=0

(α
ℓ1,k
i, j )2 + h2k

⎞
⎠

426

≤ Ch2
(

h−1‖ψ‖2
∂Ωh

+ h2k
)

427

≤ Ch2k+2,428
429

where we have also used the interpolation error estimate (3.7). This, together with the triangle430

inequality, leads to the desired result (3.8). Also, the boundary norm estimate can be derived431

by the inverse property (ii). The proof of Lemma 3.1 is complete. ⊓⊔432

Remark 3.1 For the special case that a(x) keeps its sign and b(y) changes its sign on I , we433

can modify the projection to be the tensor product of P⋆
h in [20, Lemma 2.6] and Ph in [15,434

Lemma 3.1], and similar conclusions as that in Lemma 3.1 can be obtained. ⊓⊔435

3.3 A Sharp Bound for Projection Error Terms436

Due to the lack of degrees of freedom in defining projections, the projection error terms437

cannot be eliminated. However, the following sharp bound of the projection 	
θ1,θ2

h helps438

to recover the order for the leading term of the projection error. Denote by aL a piecewise439

constant with aL |Ii
= a(xi ) � ai ; likewise for bL .440

Lemma 3.2 Assume that u ∈ H k+2(Ω) and vh ∈ Vh . Then we have441

∣∣Hx (aL(u − 	
θ1,θ2

h u), vh) + H
y(bL(u − 	

θ1,θ2

h u), vh)
∣∣ ≤ Chk+1‖u‖k+2‖vh‖, (3.28)442

where C is independent of h.443

Proof The proof is similar to that in [4] in which linear convection–diffusion equations with444

alternating fluxes are considered. We only point out the main differences. Without loss of445

generality, in what follows we only concentrate on the bound for H
x (aL(u − 	

θ1,θ2

h u), vh).446

In contrast to a local identity in [7, Lemma 3.6], here we have a global inequality447

H
x (aL(w − 	

θ1,θ2

h w), vh) ≤ Chk+ 3
2 ‖vh‖ ∀w ∈ Pk+1(Ωh), vh ∈ Qk(Ωh), (3.29)448
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since the one-dimensional projection P
θ
h u does not enforce any collocation condition at the449

point xβ− 1
2
. Noting that H

x (aL(w − 	
θ1,θ2

h w), vh) = 0 for w ∈ Pk(K ), as 	
θ1,θ2

h is a450

polynomial preserving operator, to prove (3.29) we need only to consider w|K = xk+1 and451

w|K = yk+1. Specifically, for w|K = xk+1, since 	
θ1,θ2

h reduces to a one-dimensional projec-452

tion P
θ1

hx
for the univariate function w = xk+1 and, by (3.5c)–(3.5d), (w−	

θ1,θ2

h w)β1−
1
2 ,y =453

(w − P
θ1

hx
w)β1−

1
2

�= 0, we conclude that454

H
x
Iβ1

×J j
(aL(w − 	

θ1,θ2

h w), vh) = aβ1(w − P
θ1

hx
w)

(θ1)

β1−
1
2

∫

J j

(vh)+
β1−

1
2 ,y

dy,455

H
x
Iβ1−1×J j

(aL(w − 	
θ1,θ2

h w), vh) = −aβ1−1(w − P
θ1

hx
w)

(θ1)

β1−
1
2

∫

J j

(vh)−
β1−

1
2 ,y

dy,456

457

and for other elements, i.e. ∀K ∈ Ωh\{(Iβ1 ∪ Iβ1−1) × J j },458

H
x
K (aL(w − 	

θ1,θ2

h w), vh) = 0.459

In addition, for w|K = yk+1, after using integration by parts460

H
x
K (aL(w − 	

θ1,θ2

h w), vh) = 0, ∀K ∈ Ωh .461

For more details, see [4, Appendix A]. Therefore, summing over all K , we obtain for w ∈462

Pk+1(K )463

H
x (aL(w − 	

θ1,θ2

h w), vh) = H
x
(Iβ1

∪Iβ1−1)×J j
(aL(w − 	

θ1,θ2

h w), vh)464

≤ Chhk+ 1
2 h

1
2 ‖vh‖∂Ωh

465

≤ Chk+ 3
2 ‖vh‖,466

467

where C = C(‖w‖k+1) with ‖w‖k+1 being the broken Sobolev norm of w and in the second468

step we have used the approximation result for P
θ1

hx
, the Cauchy–Schwarz inequality and the469

fact that |aβ1 | + |aβ1−1| ≤ Ch, and in the last step we have employed the inverse property470

(ii).471

Next, we use the inverse inequalities (i) and (ii) in combination with the optimal approx-472

imation property for 	
θ1,θ2

h with k = 0 in (3.8) to get473

∣∣∣Hx (aL(u − 	
θ1,θ2

h u), vh)

∣∣∣ ≤ C‖u‖1‖vh‖. (3.30)474

Consequently,475

∣∣∣Hx (aL(u − 	
θ1,θ2

h u), vh)

∣∣∣476

≤
∣∣∣Hx (aL((u − w) − 	

θ1,θ2

h (u − w)), vh)

∣∣∣ +
∣∣∣Hx (aL(w − 	

θ1,θ2

h w), vh)

∣∣∣477

≤ C inf
w∈Pk+1(Ωh)

‖u − w‖1‖vh‖ + Chk+ 3
2 ‖vh‖478

≤ Chk+1‖u‖k+2‖vh‖,479
480

where we in the first step we have added and subtracted H
x (aL(w − 	

θ1,θ2

h w), vh) for all481

w ∈ Pk+1(Ωh), and in the second step we have taken into account (3.30) and (3.29), and in482

the last step we have employed the standard approximation theory. This finishes the proof of483

Lemma 3.2. ⊓⊔484
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3.4 Optimal Error Estimates485

Let us now show our main result regarding the optimal error estimates. Denote e = u −uh =486

u − 	
θ1,θ2

h u + 	
θ1,θ2

h u − uh � η + ξ with ξ ∈ Vh .487

Theorem 3.1 (Error estimate) Assume that u ∈ H k+2(Ω), ut ∈ H k+1(Ω). Let uh be the488

numerical solution of the DG scheme (2.1) with upwind-biased numerical fluxes (2.2a),489

(2.2b). For any regular mesh, if the discontinuous finite element space Vh of degree k is used,490

then there holds the error estimate491

‖u(t) − uh(t)‖ ≤ Chk+1, ∀t ∈ (0, T ], (3.31)492

where C is independent of the mesh size h.493

Proof By Galerkin orthogonality and using the DG operator in (2.3), we have the cell error494

equation495 ∫

K

etvhdxdy = H
x
K (ae, vh) + H

y
K (be, vh)496

for any vh ∈ Vh and K ∈ Ωh . Taking vh = ξ and summing over all K , we get497

1

2

d

dt
‖ξ‖2 +

∫

Ωh

ηtξdxdy = H
x (aξ, ξ) + H

y(bξ, ξ) + H
x (aη, ξ) + H

y(bη, ξ). (3.32)498

Using the same arguments as that in the proof of the stability property in Proposition 2.1,499

we have that500

H
x (aξ, ξ) + H

y(bξ, ξ) ≤ C‖ξ‖2, (3.33a)501

since θ1, θ2 > 1
2
.502

Let us now consider the estimate to H
x (aη, ξ) + H

y(bη, ξ). Using a local linearization503

for a(x) = a(x) − aL + aL and b(y) = b(y) − bL + bL , we obtain504

H
x (aη, ξ) + H

y(bη, ξ)505

= H
x ((a − aL)η, ξ) + H

y((b − bL)η, ξ) + H
x (aLη, ξ) + H

y(bLη, ξ)506

≤ Ch
(
‖η‖(‖ξx‖ + ‖ξy‖) + ‖η‖∂Ωh

‖ξ‖∂Ωh

)
+ Chk+1‖ξ‖507

≤ C
(
‖η‖ + h

1
2 ‖η‖∂Ωh

)
‖ξ‖ + Chk+1‖ξ‖508

≤ Chk+1‖ξ‖, (3.33b)509
510

where we have also used the inverse inequalities (i), (ii), the sharp bound in Lemma 3.2 and511

the optimal approximation property for 	
θ1,θ2

h in (3.8).512

Collecting (3.33a) and (3.33b) into (3.32) together with the fact that the projection 	
θ1,θ2

h513

is linear and independent of t , namely ‖ηt‖ ≤ Chk+1‖ut‖k+1, we have514

1

2

d

dt
‖ξ‖2 ≤ C‖ξ‖2 + Ch2k+2,515

where we have also used the Cauchy–Schwarz inequality and Young’s inequality. Since the516

numerical initial condition is taken as an L2 projection of u0, then a simple application of517

Gronwall’s inequality and the triangle inequality gives us (3.31). This completes the proof518

of Theorem 3.1. ⊓⊔519

Remark 3.2 For the case of a(x) or b(y) having more zeros, we can use the same approach520

as that in [15, Lemma 3.3] to construct a special projection for 2D equations. The optimal521
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Table 1 The errors ‖u − uh‖ and orders for Example 4.1 using Qk polynomials with different (θ1, θ2) on a

random mesh of N1 × N2 cells. T = 1. C F L = 0.1

N1 × N2 (θ1, θ2) = (0.7, 0.7) (θ1, θ2) = (0.7, 1.5) (θ1, θ2) = (1.5, 1.5)

L2 error Order L2 error Order L2 error Order

Q1

10 × 10 3.71E−02 – 2.45E−02 – 1.90E−02 –

20 × 20 1.09E−02 1.87 7.50E−02 1.81 4.68E−03 2.14

40 × 40 2.95E−03 1.94 2.14E−03 1.86 1.20E−03 2.02

80 × 80 7.55E−04 2.03 5.60E−04 2.00 2.94E−04 2.10

160 × 160 1.89E−04 2.01 1.47E−04 1.99 7.27E−05 2.03

Q2

10 × 10 1.05E−03 – 1.75E−03 – 2.05E−03 –

20 × 20 1.30E−04 3.20 2.03E−04 3.29 2.69E−04 3.10

40 × 40 1.71E−05 3.02 2.66E−05 3.03 3.39E−05 3.08

80 × 80 2.00E−06 3.20 3.28E−06 3.12 4.15E−06 3.14

160 × 160 2.61E−07 3.03 4.28E−07 3.04 5.32E−07 3.06

approximation result as well as a sharp bound for projection error terms will also be obtained.522

The optimal error estimates will still hold. Details are omitted to save space. ⊓⊔523

4 Numerical Experiments524

In this section, a numerical example is given to demonstrate the sharpness of optimal error525

estimates in Theorem 3.1. To reduce time errors, the five stage fourth order strong stability526

preserving Runge–Kutta discretizations [14] are employed and ∆t = C F L hmin. A nonuni-527

form mesh is used, which is a 10% random perturbation of the uniform mesh. Periodic528

boundary conditions are considered.529

Example 4.1

ut + (a(x, y)u)x + (b(x, y)u)y = g(x, y, t), (x, y, t) ∈ [0, 2π]2 × (0, T ],

u(x, y, 0) = u0(x, y), (x, y) ∈ [0, 2π]2,
(4.1)530

where a(x, y) = sin(x + y), b(x, y) = cos(x + y), g(x, y, t) is chosen such that the exact531

solution of (4.1) is532

u(x, y, t) = sin (x + y − 2t) .533

Different combinations of the weights (θ1, θ2) are taken, and the results for the L2 errors are534

given in Table 1, from which we can observe the expected optimal (k +1)th order. Moreover,535

for the fixed mesh, it seems that for even (odd) values of k, smaller (bigger) weights would536

lead to a better approximation with a smaller magnitude of the error. This may come from537

the different dispersive and diffusive errors of the DG scheme with upwind-biased fluxes.538
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5 Concluding Remarks539

In this paper, we analyze the DG scheme with upwind-biased fluxes for two-dimensional540

linear hyperbolic equations with variable coefficients on Cartesian meshes. By constructing541

a special piecewise global projection, we derive the existence and optimal approximation542

property of the projection. The main technicality is an elaborate treatment for the boundary543

collocation terms, for which couplings from different directions should be clarified and544

estimated. Moreover, due to the tensor product structure of the mesh and basis functions,545

a sharp bound for the leading error of projection error terms is shown. Therefore, optimal546

error estimates are obtained. Numerical experiments are presented to verify the theoretical547

results. Extensions to multivariate linear variable coefficient equations and the 2D nonlinear548

equations are challenging, which constitute of our future work.549
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