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QI classification

Let G be a finitely generated group, then G can be view as a metric space
by considering its Cayley graph.

Definition

(Cayley graph) Let S be a finite generating set, then Γ � ΓpG ,Sq has
vertex set � G , moreover, for any g P G and s P S , g and gs are adjacent.

Different Cayley graphs of G are quasi-isometric.

Definition

f : X1 Ñ X2 is a quasi-isometry iff there are constants L,A ¡ 0 s.t.
(a)L�1dpx , yq � A ¤ dpf pxq, f pyqq ¤ Ldpx , yq � A for all x , y P X1.
(b)f pX1q is A-dense in X2.
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QI classification

(QI classification): classify finitely generated groups up to quasi-isometry.

(Gromov) Two f.g. G and H are quasi-isometric iff there exist commuting,
properly discontinuous actions of G and H on some locally compact space
X , such that the action of each of the groups G and H is cocompact.

X is the set of all pL,Aq quasi-isometrics from G to H, equipped with the
topology of pointwise convergence.

Definition

A topological coupling between G and H is an action of G � H on a
locally compact space X by homeomorphism such that the action of each
factor is properly discontinuous and cocompact.
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A topological coupling between G and H is an action of G � H on a
locally compact space X by homeomorphism such that the action of each
factor is properly discontinuous and cocompact.

Definition

A measure equivalent coupling between two countable groups G and H is
a measurable and measure-preserving action of G � H on some measure
space such that the action of each factor is free and admits finite measure
fundamental domains.
Two countable groups G and H are measure equivalent (ME) if there is a
ME coupling between them.

G is ME to its f.i. subgroup, as well as quotients of G by finite normal
subgroups.

Two lattices in the same Lie group are ME. (lattices are discrete
subgroups with finite covolume)

e.g. F2 and π1pSg q (g ¥ 2) are ME, as they are lattices in IsompH2q.
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ME from the viewpoint of ergodic theory

In this slide we consider probability measure preserving (p.m.p.), ergodic
action on probability measure space pX , µq.

Definition

Two p.m.p. actions H ñ pX , µq and G ñ pY , νq are orbit equivalence
(OE) if there is a measure space isomorphism T : pX , µq Ñ pY , νq sending
H-orbits to G -orbits.

Definition

Two countable groups are orbit equivalence (OE) if they admit free,
ergodic, p.m.p. actions on probability spaces that are OE.

Definition

Two p.m.p. actions H ñ pX , µq and G ñ pY , νq are stably orbit
equivalence (SOE) if there is positive measure subsets X 1 � X and
Y 1 � Y and a measure scaling isomorphism T 1 : X 1 Ñ Y 1 such that T 1

sends H-orbits in X 1 to G -orbit in Y 1.
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ME from the viewpoint of ergodic theory

(Furman): Two countable groups H and G are ME iff they admit free,
ergodic, p.m.p. actions H ñ pX , µq and G ñ pY , νq that are SOE.

More examples of ME:

Theorem (Ornstein-Weiss 1980)

Any two ergodic p.m.p. actions of any two infinite countable amenable
groups are OE.

Corollary: any two countable infinite amenable groups are ME. Z is ME to
Z2.
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Rigidity and invariants

Theorem (Furman 1999)

Let G 1 be a higher rank simple Lie group, and let G ¤ G 1 be an irreducible
lattice. Then any countable group H measure equivalent to G is virtually a
lattice in G 1.

e.g. take G 1 � SLpn,Rq and G � SLpn,Zq.

Theorem (Kida 2010)

Outside a few sporadic cases, any countable group ME to a mapping class
group G of a surface is virtually G .

Theorem (Guirardel-Horbez 2021)

Any countable group ME to OutpFnq pn ¥ 3q is virtually OutpFnq.

ME invariants: amenability, property (T), Haagerup property
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A strategy towards ME/QI rigidity

Let G be a countable group, with the choice of a collection of subgroups
tHλuλPΛ.

(Step 1) Reduce to the study of self-quasi-isometry or self
ME-coupling of G . (The ME case is a highly non-trivial result by
Furman)

(Step 2) Showing that each self-quasi-isometry or self ME-coupling
“preserves” elements in tHλuλPΛ, and “preserves” the intersection
pattern of these elements.

(Step 3) Show the intersection pattern of these subgroups is “rigid”
(combinatorial).

Summary: We need to find a robust collection of subgroups which are QI
or ME invariants.

C. Horbez and J. Huang Higman rigidity Harbin 8 / 22



A strategy towards ME/QI rigidity

Let G be a countable group, with the choice of a collection of subgroups
tHλuλPΛ.

(Step 1) Reduce to the study of self-quasi-isometry or self
ME-coupling of G . (The ME case is a highly non-trivial result by
Furman)

(Step 2) Showing that each self-quasi-isometry or self ME-coupling
“preserves” elements in tHλuλPΛ, and “preserves” the intersection
pattern of these elements.

(Step 3) Show the intersection pattern of these subgroups is “rigid”
(combinatorial).

Summary: We need to find a robust collection of subgroups which are QI
or ME invariants.

C. Horbez and J. Huang Higman rigidity Harbin 8 / 22



A strategy towards ME/QI rigidity

Let G be a countable group, with the choice of a collection of subgroups
tHλuλPΛ.

(Step 1) Reduce to the study of self-quasi-isometry or self
ME-coupling of G . (The ME case is a highly non-trivial result by
Furman)

(Step 2) Showing that each self-quasi-isometry or self ME-coupling
“preserves” elements in tHλuλPΛ, and “preserves” the intersection
pattern of these elements.

(Step 3) Show the intersection pattern of these subgroups is “rigid”
(combinatorial).

Summary: We need to find a robust collection of subgroups which are QI
or ME invariants.

C. Horbez and J. Huang Higman rigidity Harbin 8 / 22



A strategy towards ME/QI rigidity

Let G be a countable group, with the choice of a collection of subgroups
tHλuλPΛ.

(Step 1) Reduce to the study of self-quasi-isometry or self
ME-coupling of G . (The ME case is a highly non-trivial result by
Furman)

(Step 2) Showing that each self-quasi-isometry or self ME-coupling
“preserves” elements in tHλuλPΛ, and “preserves” the intersection
pattern of these elements.

(Step 3) Show the intersection pattern of these subgroups is “rigid”
(combinatorial).

Summary: We need to find a robust collection of subgroups which are QI
or ME invariants.

C. Horbez and J. Huang Higman rigidity Harbin 8 / 22



A strategy towards ME/QI rigidity

Let G be a countable group, with the choice of a collection of subgroups
tHλuλPΛ.

(Step 1) Reduce to the study of self-quasi-isometry or self
ME-coupling of G . (The ME case is a highly non-trivial result by
Furman)

(Step 2) Showing that each self-quasi-isometry or self ME-coupling
“preserves” elements in tHλuλPΛ, and “preserves” the intersection
pattern of these elements.

(Step 3) Show the intersection pattern of these subgroups is “rigid”
(combinatorial).

Summary: We need to find a robust collection of subgroups which are QI
or ME invariants.

C. Horbez and J. Huang Higman rigidity Harbin 8 / 22



Preservation of subgroups

Given a group G and a collection of subgroups tHλuλPΛ. What does it
mean by a self ME-coupling “preserve” these subgroups?

Given two free, p.m.p., ergodic ρ1 : G ñ X and ρ2 : G ñ Y that are SOE
(we assume OE for simplicity). We want to show the SOE “preserves” the
collection tHλuλPΛ.

Simplifying assumption: OE instead of SOE, X � Y .

Let R be the orbit equivalence relation arising from G ñ X . Take
subgroup Hλ, then it gives a sub-equivalence relation R1 by considering
pρ1q|Hλ

.

Hope: R1 also comes from ρ2-action when restricting to an subgroup Hλ1 .

Actually... one can only hope this is true up to a countable partition of the
base space X .
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Definition: A countable group G is ME-superrigid if another countable
group ME to G is virtually G .

Question (vague): are there natural examples of ME-superrigid groups
obtained by “gluing” amenable groups together in a complicated pattern?

Group theoretic setting: G acts on a cell-complex X with amenable
cell-stabilizers.

Goal of this talk:

1 A general criterion guarantee vertex stabilizers are ME-invariants (in
an appropriate sense) when X is “negatively curved” and the action
of G on X is acylindrical.

2 A ME-superrigid result for most generalized Higman groups.
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Higman groups

Recall that the Baumslag–Solitar group BSpn,mq � xa, b | abna�1 � bmy
When n � 1,m � 2; BSp1, 2q � xa, b | aba�1 � b2y.
When n � m � 1, BSp1, 1q � xa, b | aba�1 � by.

For each integer k ¥ 4, Higman defined the following group:

Higk � xa1, . . . , ak |taiai�1a
�1
i � a2

i�1uiPZ{kZy

When k � 3, the group is trivial.

1 Higman groups are the first examples of infinite finitely presented
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Main results

Generalized Higman groups: Let k ¥ 4, and let
σ � ppm1, n1q, . . . , pmk , nkqq be a k-tuple of pairs of non-zero integers.

Higσ � xa1, . . . , ak |taia
mi
i�1a

�1
i � anii�1uiPZ{kZy.

When pmi , ni q � p1, 2q for all i , we recover the classical Higman groups.

Theorem (Horbez-H. 2022)

Suppose k ¥ 5 and |mi | � |ni | for all i . Then Higσ is ME-superrigid, i.e.
any countable group ME to Higσ is virtually Higσ.

Speculations: the theorem should still be true when k � 4.
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Counterexample with mi � ni � 1

The theorem fails if mi � ni � 1.

H � xa1, . . . , ak |trai , ai�1s � 1uiPZ{kZy.

G � �Gi{trGi ,Gi�1s � 1 for i P Z{kZu

Observation: as long as each Gi is infinite and amenable, then H is OE to
G . Hence H is ME to G .
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Corollary of the main theorem

Corollary

(under the same assumption as before) Let Higσ ñ X be a free, ergodic,
p.m.p. action on X . Let Γñ Y be a free, ergodic, p.m.p. action on Y . If
these two actions are SOE, then they are virtually conjugate.

Given Γñ Y , there is a cross-product von Neumann algebra, namely the
weak closure in bounded operators on L2pΓ � Y q of the algebra generated
by the operators tf pg , xq Ñ f pγg , γxq : γ P Γu and
tf pg , xq Ñ φpxqf pg , xq : φ P L8pX , µqu. Combing our result with work of
Adrian Ioana, we have the following:

Corollary

(under the same assumption as before) Let Higσ ñ X be a free, ergodic,
p.m.p. action on X . Let Γñ Y be a free, ergodic, p.m.p. action on Y . If
the cross-product von Neumann algebra of Higσ ñ X and Γñ Y are
isomorphic, then they are virtually conjugate.
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Proof sketch

G � xa1, . . . , ak |taia
mi
i�1a

�1
i � anii�1uiPZ{kZy

A BS-subgroup of G is a conjugate of xai , ai�1y for some i .

1 Prove BS-subgroups are ME-invariants in the sense explained before.

2 Show the intersection pattern of these BS-subgroups are rigid.

(Martin’s graph) Let Λ be a graph whose vertices are in 1-1
correspondence with BS-subgroups of G . Two vertices are adjacent iff the
corresponding BS-subgroups have infinite intersection.

Theorem (Horbez-H.)

Suppose k ¥ 4 and |mi | � |ni | for any i . Then the natural map
G Ñ AutpΛq has finite index image.

Rmk: The assumption k ¥ 5 is used in Step 1.
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An auxiliary complex for generalized Higman groups

Suppose G � xa1, . . . , a5|taiai�1a
�1
i � a2

i�1uiPZ{5Zy

Note that π1X � G . Let rX be the universal cover of X . We collapse each
vertex space of rX into a point, collapse each r0, 1s � R (which is a lift a
cylinder in X ) into the r0, 1s factor. The resulting space is denoted by K̂ .

1 K̂ is a union of pentagons;
2 there is a map rX Ñ K̂ .
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Negative curvature of K̂

Observation: If we metric each pentagon of K̂ as a right-angled regular
pentagon in the hyperbolic plane, then K̂ is CAT(-1).

A geodesic metric space X is CAT p�1q if triangles in X are thinner than
those in the hyperbolic plane.
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A general criterion for invariance of vertex groups

Theorem

[Horbez-H.] Let X be a connected CATp�1q piecewise hyperbolic
polyhedral complex with countably many cells in finitely many isometry
types. Let G be a torsion-free countable group acting by cellular isometries
on X . Assume that

1) (Vertex stabilizers). The stabilizer of every vertex of X is amenable.

2) (Edge stabilizers). Edge stabilizers for the G -action on X are of
infinite index in the incident vertex stabilizers.

3) (Weak acylindricity). The G -action on X is weakly acylindrical.

4) (Non-isolation of amenable vertex stabilizers). For each vertex v ,
there exists an infinite subgroup of StabG pvq which fixes two distinct
vertices of X which are different from v .

Then the collection of vertex group of G are SOE invariants in the sense
explained before.
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vertices of X which are different from v .

Then the collection of vertex group of G are SOE invariants in the sense
explained before.
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Non-isolation

Consider G � Z2 � Z2. Then G acts on the Bass-Serre tree with amenable
stabilizers. Any tree is CAT(-1).

The vertex groups can not be OE invariants in the sense mentioned before,
as G is orbit equivalent to Z � Z.

Thus we want the vertex groups to be non-isolated (avoid relative
hyperbolic situation).

Another example to have in mind: uniform lattice and non-uniform lattice
acting on Hn are ME.
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Characterization of vertex stabilizer sub-relation

Key statement: Under the assumption of the previous theorem, given a
free, p.m.p., ergodic action on a probability measure space ρ : G ñW
with orbit equivalence relation R, then subrelations arising from action of
vertex stabilizers can be characterized as maximal amenable subrelations
which are not isolated. (up to countable partition of W )

Note: maximal amenable subrelation could either loxodromic or elliptic.
For this to work, we need to ensure that the loxodromic ones are isolated.

Let H be a group acting on a metric space Z . The H-action on Z is said
to be weakly acylindrical if there exist L ¡ 0,N ¡ 0 such that for any two
points x , y P Z with dpx , yq ¥ L, the common stabilizer of x and y has
cardinality at most N.
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A modified Adam style argument

Let A ¤ G be an maximal infinite amenable subgroup which is not
isolated. Need to show: A fixes a vertex of X .

Strategy: promote invariant probability measure into fixed points.
Let K � X Y B8X . Añ K . If K is compact, then we have a measure µ
invariant under A-action.

Case 1: If µ is supported on X . Select using countability.
Case 2: Suppose µ is supported on B8X .

1 If the support has ¥ 3 pts. There is a Borel G -equivariant barycentric
map from three distinct points of B8X to points of X . This reduces
to Case 1.

2 If every A-invariant µ has support at most 2 pts. Then the weak
acylindricity implies that A is isolated, contradiction.
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Thank you!
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