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Part I. The classical Sobolev and Moser-Trudinger inequality



The classical Sobolev inequalities

Let Ω be a bounded domain in Rn and W 1,p
0 (Ω) Sobolev space.

Then

When p < n: for all 1 < q ≤ n∗ := np
n−p , there is constant C > 0,

such that

‖u‖Lq(Ω) ≤ C‖u‖W 1,p
0 (Ω)

, u ∈W 1,p
0 (Ω).

Moreover, the embedding map W 1,p
0 (Ω) ↪→ Lq(Ω) is compact

when q < n∗.

Remark. Poincare inequality

‖u‖Lp(Ω) ≤ C‖u‖W 1,p
0 (Ω)

, u ∈W 1,p
0 (Ω).
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The classical Moser-Trudinger inequality

When p = n:

∫
Ω

e
α

 |u|
‖u‖W 1,n

0 (Ω)


β

≤ C, u ∈W 1,n
0 (Ω)

for 0 < α ≤ α0, 1 ≤ β ≤ β0, where

α0 = nω
1

n−1
n−1, β0 =

n
n − 1

.

Remark. Moser’s proof used Schwarz symmetrization. Other
proof by blow-up.
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When p > n,

‖u‖Cα(Ω) ≤ C‖u‖W 1,p
0 (Ω)

, α <

[
n
p

]
+ 1− n

p
.



Generalizations to nonlinear equations

I k -Hessian equations.

I complex k -Hessian equations(including complex
Monge-Ampère).



The real Hessian operators

Let Ω be a bounded smooth domain in Rn and u ∈ C2(Ω).
I The k -Hessian operator is

Sk [u] = σk (λ(D2u)), 1 ≤ k ≤ n

where λ(D2u) = (λ1, ..., λn) are the eigenvalues of D2u,
and

σk (λ) =
∑

i1<···<ik

λi1 · · · λik .

I S1[u] = 4u; Sn[u] = det D2u.
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Admissible functions

A smooth function u is k -admissible(k -convex, k -subharmonic)
if Sj [u] ≥ 0 for all 1 ≤ j ≤ k , i.e., λ(D2u) ∈ Γ̄k where

Γk = {λ ∈ Rn | σi(λ) > 0, 1 ≤ i ≤ k}.

I when k = 1, subharmonic functions.

I when k = n, convex functions.

Let Φk (Ω) be the set of all smooth k -admissible functions.
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Remark.

The k -admissibility can be extended to U. S. C. functions
(denote by Φ

k
(Ω)) and

Φ
k

(Ω) ⊂W 1,q
loc

for q < nk
n−k . When k ≤ n

2 ,

Φ
k

(Ω) ⊂ Lp
loc ,p <

nk
n − 2k

.

The exponent is optimal.



A theory of geometric inequalities for real Hessian integrals
(Sobolev inequlity, the isoperimetric inequalities for
quermassintegrals, etc.) and the equation

Sk [u] = (−u)p

was developed by K. S. Chou, X. J. Wang and N. Trudinger.

Let Φk
0(Ω) be the subspace of functions in Φk (Ω) vanishing on

∂Ω. Assume that ∂Ω is (k − 1)-convex.
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The Hessian integrals(energies)

Denote
Ik (u) =

∫
Ω

(−u)Sk [u] dx .

I I0 =
∫

Ω−u;

I I1 =
∫

Ω |Du|2;

I In =
∫

Ω(−u) det D2u.

Denote
‖u‖Φk

0(Ω) = [Ik (u)]
1

k+1 .

One can easily verify that ‖ · ‖Φk
0(Ω) is a norm in Φk

0(Ω).
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The Hessian Sobolev inequality

Theorem(X. J. Wang, 1994). u ∈ Φk
0(Ω).

I If 1 ≤ k < n
2 ,

‖u‖Lp+1(Ω) ≤ C‖u‖Φk
0(Ω), ∀1 ≤ p + 1 ≤ γ(n, k),

where γ(n, k) = n(k+1)
n−2k , C depends on p, k , n and Ω.

I If k = n
2 ,

‖u‖Lp(Ω) ≤ C‖u‖Φk
0(Ω), ∀p <∞,

where C depends on p, n and Ω.

I If n
2 < k ≤ n,

‖u‖L∞(Ω) ≤ C‖u‖Φk
0(Ω)

where C depends on k , n and Ω.



Moser-Trudinger type inequality

Theorem(G. J. Tian-X. J. Wang, 2010). Let k = n
2 .

∫
Ω

e
α

 −u
‖u‖Φk

0(Ω)

β
≤ C, u ∈ Φk

0(Ω)

for 0 < α ≤ α0, 1 ≤ β ≤ β0, where

α0 = n
[
ωn−1

k

(
n − 1
k − 1

)] 2
n

, β0 =
n + 2

n
.



Poincare type inequalities

Theorem(Trudinger-Wang, 1998). For 0 ≤ l < k ≤ n, there
exists C > 0, such that

‖u‖Φl
0(Ω) ≤ C‖u‖Φk

0(Ω), u ∈ Φk
0(Ω).

The best constant C is attained by the solution of the Dirichlet
problem {

Sk [u]
Sl [u] = 1, Ω,

u = 0, ∂Ω

Remark. In particular, l = 0, k = 1

‖u‖L1(Ω) ≤ C‖∇u‖L2(Ω).
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Remark

I All these results were proved by using gradient flow.

I The Schwarz symmetrization fails. Actually, K.S. Chou
gave an example that Hessian integral may not diminish
after symmetrization.
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Part II. The Moser-Trudinger inequality of the complex
Monge-Ampère equation



Complex Hessian operators

Let Ω be a bounded domain in Cn, u ∈ C2(Ω).

I Let Hk [u] be the complex k -Hessian. H1[u] = 4u;
Hn[u] = det ui j̄ .

I A function u is k -plurisubharmonic if Hj [u] ≥ 0 for all
1 ≤ j ≤ k .

I Denote by PSHk (Ω) be the set of k -plurisubharmonic in
C2(Ω).
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Remark

The k -plurisubharmonicity can also be extended to U. S. C.
functions(denote by PSHk

(Ω)), and Blocki showed

PSHk
(Ω) ⊂ Lp

loc , p <
n

n − k
.

He also conjectured it for p < nk
n−k .



complex Hessian Integral

I Let PSHk
0(Ω) the subset of functions in PSHk (Ω) which

vanish on ∂Ω.

I Denote the complex Hessian energy

Ik (u) =

∫
Ω

(−u)Hk [u]

In particular, when k = 0, we define I0(u) = −
∫

Ω u.

I For simplicity, we denote by

‖ · ‖ = ‖ · ‖PSHk
0(Ω) := [Ik (u)]

1
k+1 .
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Poincare type inequality

Assume Ω is strong k -pseudoconvex.

Theorem(Z. L. Hou, 2008). For 0 ≤ l < k ≤ n, there exists
C > 0, such that

‖u‖PSHl
0(Ω) ≤ C‖u‖PSHk

0(Ω), u ∈ PSHk
0(Ω).



Sobolev type inequality

Theorem(Zhou, 2013). Let u ∈ PSHk
0(Ω), 1 < k < n. Then for

all
0 ≤ p + 1 ≤ γ̃(k ,n) =

n(k + 1)

n − 2
,

we have
‖u‖Lp+1(Ω) ≤ C‖u‖PSHk

0(Ω),

where C depends on n, k , p and Ω. Moreover, the embedding
map

PSHk
0(Ω) ↪→ Lp+1(Ω)

is compact when p < γ̃(k ,n).

I For real k -Hessian equation(k < n
2 ), γ(k ,n) = n(k+1)

n−2k .
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Radially symmetric functions
Let Ω = BR and u = u(r) is radially symmetric, where r = |z|.
Assume u(R) = 0. Then

ui j̄ = urδij + urr z̄izj ,

Hk [u] =

(
n − 1
k − 1

)
k

· (uk
r rn)r r1−n,

Ik [u] =

ω2n−1

(
n − 1
k − 1

)
2k(k + 1)

·
∫ R

0
uk+1

r rn−1 dr .

Let R = {u ∈ C1([0,R]) : u(R) = 0}. Then for all
0 ≤ p + 1 ≤ n(k+1)

n−k ,(∫ R

0
|u|1+prn−1 dr

) 1
1+p

≤ C

(∫ R

0
uk+1

r rn−1 dr

) 1
1+k

, u ∈ R.
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Critical exponent

Consider the equation{
Hk [u] = (−u)p in BR,

u = 0 on ∂BR.

Theorem(C. Li, 2013).

(i) When p + 1 ≥ n(k+1)
n−k , the above equation has no nontrivial

nonpositive solution in C2(B̄R) ∩ C4(BR);

(ii) When 1 < p + 1 < n(k+1)
n−k and p 6= k , the above equation has

a negative solution in C2(B̄R), which is radially symmetric.
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Now we focus on the complex Monge-Ampère equation(k = n).

The classical case(In complex dim 1): Suppose Ω ⊂ R2. Then

Moser-Trudinger inequality(M-T):∫
Ω

e
4π −u
‖∇u‖

L2(Ω) dx ≤ C

for u with vanishing boundary value.

Brezis-Merle inequality(B-M):∫
Ω

e
(4π−δ) −u

‖4u‖
L1(Ω) dx ≤ 4π2

δ
(diam(Ω))2.
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In general dimension: Let Ω ∈ Cn and u ∈ PSH(Ω) ∩ C2
0(Ω̄).

complex Monge-Ampere integral(energy):

E(u) =
1

n + 1

∫
Ω

(−u)(ddcu)n

=
n!

(n + 1)πn

∫
Ω

(−u) det(ui j̄)

complex Monge-Ampere mass:

M(u) =

∫
Ω

(ddcu)n

= n!

∫
Ω

det(ui j̄)
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Aubin’s conjecture

There exists C > 0, such that

∫
Ω

e
n
(

−u
E(u)1/(n+1)

) n+1
n

≤ C

for u ∈ PSH(Ω) ∩ C2
0(Ω̄), or∫

Ω
en(−u)

n+1
n ≤ C

for u ∈ PSH(Ω) ∩ C2
0(Ω̄) with E(u) = 1.

Remark: It is equivalent to∫
Ω

e−(n+1)u ≤ e
n!

(n+1)n E(u)+Cn .
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Quasi Moser-Trudinger inequality

Theorem(Berman-Berndtsson 2011). For any δ > 0,∫
Ω

e−(n+1−δ)u ≤ Cδ−(n−1)en!(n+1−δ)E(u)

for u ∈ PSH(Ω) ∩ C2
0(Ω).

I It is equivalent to

∫
Ω

e
(1−δ)n

(
−u

E(u)1/(n+1)

) n+1
n

≤ C
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Optimal constant

I The optimal constant is open.

I The optimal constant holds for S1-invariant functions.
(f (eiθz1, · · · ,eiθzn) = f (z1, · · · , zn))

I The Schwarz symmetrization works for S1-invariant
functions.



Remark

The proof also gives a Brezis-Merle type inequality∫
Ω

e−nu ≤ A(1−M(u))−1, M(u) < 1.

I It implies the following Quasi Brezis-Merle inequality∫
Ω

e−(n−δ)u ≤ Aδ−(n−1)

for u ∈ PSH(Ω) ∩ C2
0(Ω) withM(u) = 1.

I A different proof is given by
Ahag-Cegrell-Kołodziej-Pham-Zeriahi.
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Compare with Tian’s α-invariant

Let (M, ωg) be a Kähler manifold. Define

P(M,g) = {φ ∈ C2(M,R) | ωφ := ωg +
√
−1∂∂̄φ > 0, sup

M
φ = 0}.

Theorem (Tian, 87’)
There exists α > 0 and C > 0 depending on (M, ωg) such that∫

M
e−αφωn

g ≤ C, ∀φ ∈ P(M,g). (1)

I In a fixed Kähler class,
∫

M ωn
φ = [ωg]n is a constant.
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A PDE proof of the weak Moser-Trudinger inequality

Theorem
Let Ω be a hyperconvex domain. There exist α > 0, and a
constant C > 0 depending on n, α, and diam(Ω), such that∫

Ω
e
α −u
‖u‖PSH0(Ω) ≤ C, u ∈ PSH0(Ω) ∩ C2(Ω̄), u 6≡ 0.

I We use the gradient flow method.

I The constant C depends on the diam(Ω).
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The Sobolev inequality

Theorem
Let u ∈ PSH0(Ω). Then for all p > 0,

‖u‖Lp(Ω) ≤ C‖u‖PSH0(Ω), u ∈ PSH0(Ω) ∩ C2(Ω̄)

where C depends on n, p and Ω.



Denote
Tp,Ω =: inf

u∈PSH0(Ω)

E(u)

‖u‖n+1
Lp+1(Ω)

.

It suffices to prove
Tp,Ω ≥ λ

for some small constant λ > 0.



Proof of Sobolev inequality

Step 1: Assume the Sobolev inequality

‖u‖Lp(B) ≤ C0‖u‖PSH0(B), u ∈ PSH0(B) ∩ C∞(B̄)

holds for p > 0 on any ball B ⊂ Cn−1. Then the following
inequality(∫

Ω
|u|p

) 1
p

≤ C · C0

(∫
Ω

(ddcu)n
) 1

n

, u ∈ PSH0(Ω) ∩ C∞(Ω̄).

holds on any ball Ω ⊂ Cn with the same radius as B. Here C
depends on the radius and is independent of p.



A relation between MA energy and MA mass

Assume the balls are all centered at the origin.

Write z = (w , ξ) ∈ Cn−1 × C. Let D be the disk in C with the
same radius as B. For any ξ = t +

√
−1s ∈ D, denote

Dξ := {w ∈ Cn−1 | |w |2 ≤ 1− |ξ|2}.

For u(z) ∈ PSH0(Ω) ∩ C∞0 (Ω̄), Then denote

v(ξ) =

∫
Dξ

(−u)(dwdc
wu)n−1.

Then it holds ∫
D
| − 4ξv(ξ)|dt ds ≤ 2

∫
Ω

(ddcu)n.
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By the Sobolev inequality in dimension n − 1,

(∫
Ω
|u|p

) 1
p

=

(∫
|ξ|2≤1

∫
Dξ
|u|p dµw dµξ

) 1
p

≤ C0

(∫
|ξ|2≤1

(∫
B

(−u) det(uw i w̄ j )

) p
n

dµξ

) 1
p

= C0

(∫
|ξ|2≤1

[v(ξ)]
p
n dµξ

) 1
p

≤ C · C0

(∫
|ξ|2≤1

| − 4ξv(ξ)|

) 1
n

≤ C · C0

(∫
Ω

(ddcu)n
) 1

n

.

The Brezis-Merle inequality in real dimension 2 is used in the
last inequality.



Proof of Sobolev inequality

Step 2: We show the Sobolev inequality holds for any smooth
pseudo-convex domain Ω ⊂ Cn under the assumption(∫

Ω
|u|p

) 1
p

≤ C
(∫

Ω
(ddcu)n

) 1
n

, u ∈ PSH0(Ω) ∩ C2(Ω̄)

holds.



Proof of Sobolev inequality

We denote

f (t) =
{ |t |p |t | ≤ M,

e−M t−2 |t | ≥ M + e−M ,

where M > 1 is a large constant. Denote

J(u) =

∫
Ω

(−u) det(ui j̄) dV − λ
[
(p + 1)

∫
Ω

F [u]
] n+1

p+1
.

Here F (t) =
∫ t

0 f (s) ds.

If the Sobolev inequality is not true, then for a small λ > 0 and
large M, we have

inf
u∈PSH0(Ω)∩C2(Ω̄)

J(u) < −1.



Proof of Sobolev inequality
Introduce a descent gradient flow for the functional J.

{ut − log det(ui j̄) = − logλβ(u)f (u) in Q = Ω× (0,∞),

u(x ,0) = wε, and u = 0 on ∂Ω× (0,∞),

where wε is chosen such that

J(wε) ≤ inf
u∈PSH0(Ω)∩C2(Ω̄)

J(u) + ε < −1,

and

β(u) =
[
(p + 1)

∫
Ω

F (u)
] n−p

p+1
.

The solution to the flow converges to u = uε, which solves

det(ui j̄) = λβ(u)f (u) in Ω,

u = 0 on ∂Ω.
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Proof of Sobolev inequality

Claim: We have

f (u) = (1 + o(1))|u|p,

β(u) = (1 + o(1))
[ ∫

Ω
|u|p+1

](n−p)/(p+1)
≈ ‖u‖n−p

Lp+1

when M goes to infinity.

We have

‖u‖Lp+1 ≤ C
(∫

Ω
(ddcu)n

) 1
n

= C
(∫

Ω
λβ(u)f (u)

) 1
n

≤ Cλ
1
nβ

1
n ‖u‖

p
n
Lp+1 .

We get λ ≥ C. This is a contradiction to that λ is small.
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Proof of Sobolev inequality

Step 3: For any pseudoconvex domains Ω1, Ω2 with
Ω1 ⊂ Ω2 ⊂ Cn, We have

Tp,Ω1 ≥ Tp,Ω2 .

Similar to the Hessian equation.



Proof of Sobolev inequality

Step 4: Induction arguments:

I By the Sobolev inequality in real dimension 2, i.e., complex
dimension 1,(∫

Ω
|u|p

) 1
p

≤ C
(∫

Ω
(ddcu)n

) 1
n

, u ∈ PSH0(Ω) ∩ C2(Ω̄)

holds for any ball in C2.

I By Step 1, we have Sobolev inequality for any ball in C2.

I By Step 2, the Sobolev inequality for any hyperconvex
domain Ω ⊂ C2 follows.

I all dimensions.



Proof of Moser-Trudinger inequality
Let Cn,p+1 be the Sobolev constant in dimension n, i.e.,

‖u‖Lp(Ω) ≤ Cn,p · ‖u‖PSH0(Ω).

Equivalently, it holds∫
Ω

(
|u|

‖u‖PSH0(Ω)

)p

dµ ≤ Cp
n,p+1.

By checking the proof of Sobolev inequality, we have
Cn,p ≤ C · Cn−1,p for some constant indpendent of p.

Hence, by the Moser-Trudinger inequality when n = 1(real
dimension 2), there exists α > 0,∫

Ω
e
α −u
‖u‖PSH0(Ω) dµ =

∫
Ω

∞∑
j=1

1
j!

(
α

−u
‖u‖PSH0(Ω)

)j

dµ ≤ C.
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About Brezis-Merle type inequality

The proof above also implies a PDE proof to Brezis-Merle type
inequality:

Suppose Ω is a hyper-convex domain. There exists a constant
α > 0 such that ∫

Ω
eα(−u) ≤ C, M(u) = 1.



Part III. Applications in regularity of the complex
Monge-Ampère equation



Let Ω ∈ Cn and ϕ : ∂Ω −→ R be a given function. We considerdet(ui j̄) = (ddcu)n = f in Ω,

u = ϕ on ∂Ω.
(2)

I Caffarelli-Kohn-Nirenberg-Spruck: smooth data on f , ϕ, Ω.

I f ∈ L2(Ω): L∞-estimate by Cheng-Yau, Cegrell-Persson,
Bedford, Blocki, etc.

Question: Assume f ∈ Lp, p > 1?
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Theorem (Kolodziej)
Suppose f ∈ Lp(Ω), p > 1 and ϕ ∈ L∞(Ω). Let
u ∈ C2(Ω) ∩ C0(Ω) be a plurisubharmonic solution to (2). Then
there is a constant C > 0 depending on n, p and Ω such that

| inf
Ω

u| ≤ | inf
Ω
ϕ|+ C‖f‖

1
n
Lp(Ω). (3)



Remark

I Kolodziej’s proof used capacity theory(Bedford-Taylor)

cap(K ,Ω) := sup
{∫

K
(ddcu)n : u ∈ PSH(Ω), −1 ≤ u < 0

}
.

I The L∞-estimate holds when L1 log Ln+ε(Lorenz-Zygmumd
space)

L1(log L)q(Ω) :=

{
f |
∫

Ω
|f |(log(e + |f |))q dx <∞

}
.



Remark

I Kolodziej’s proof used capacity theory(Bedford-Taylor)

cap(K ,Ω) := sup
{∫

K
(ddcu)n : u ∈ PSH(Ω), −1 ≤ u < 0

}
.

I The L∞-estimate holds when L1 log Ln+ε(Lorenz-Zygmumd
space)

L1(log L)q(Ω) :=

{
f |
∫

Ω
|f |(log(e + |f |))q dx <∞

}
.



Question(Blocki-Kolodziej): Find a PDE proof for the L∞

estimate.

References:
Dinew-Guedj-Zeriahi, Open problems in pluripotential theory,
2016.

AIM problem lists, available at
http://aimath.org/pastworkshops/mongeampereproblems.pdf.

We establish a PDE approach based on the Sobolev type
inequality

(1). L∞-estimate

(2). Stability theorem

(3). Hölder regularity
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(1). L∞-estimate



Recall: L∞-estimate in elliptic PDE theory

I Linear elliptic equation: De Giorgi, Moser, Stampaccia, etc.

I p-Laplacian: Boccardo-Murat-Puel.

I real Hessian equation(σk [λ(D2u)] = f ): Chou-Wang.
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PDE Proof of the L∞-estimate: preparation

I By quasi M-T,

‖u‖Lp+1(Ω) ≤ C[E(u)]
1

n+1 , u ∈ PSH0(Ω) ∩ C2
0(Ω).

Key: The constant C depends on diam(Ω).

I Assume ‖f‖Lp(Ω) = 1.

I Replacing the boundary function by infΩ ϕ, it suffices to
prove the estimate for ϕ = 0 by the comparison principle.
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Proof of the L∞-estimate

Claim: For any s > 0, let Ωs = {u ∈ Ω | u < −s},

|Ωs| ≤ C
1
s
|Ω|1+δ, (4)

where δ = 1
np∗ −

1
β (1 + 1

np∗ ) > 0 when choosing β > 1 + p∗k .



Proof of the claim

E(u) =
n!

(n + 1)πn

∫
Ω

(−u)f

≤ n!

(n + 1)πn ‖f‖Lp(Ω)‖u‖Lp∗ (Ω)

≤ C|Ω|
1

p∗ (1− 1
β

)‖u‖Lβp∗ (Ω)

≤ C|Ω|
1

p∗ (1− 1
β

)
[E(u)]

1
n+1 ,

where p∗ is conjugate to p and β > 1. It follows that

[E(u)]
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n+1 ≤ C|Ω|
1

np∗ (1− 1
β

)
.

Using Sobolev inequality again, we have

‖u‖L1(Ω) ≤ |Ω|
1− 1

β ‖u‖Lβ(Ω) ≤ C|Ω|1+δ.
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Iteration argument

Choose s0 sufficiently large such that for Ω0 = Ωs0 , |Ω0| ≤ 1
2 |Ω|.

For any k ∈ Z+, define

sk = s0 +
k∑

j=1

2−δj , Ωk := Ωsk , uk = u + sk .

Then uk satisfies det(ui j̄) = f in Ωk ,

u = 0 on ∂Ωk .

Then
‖u‖L1(Ωk ) ≤ C|Ωk |1+δ.

Hence the constants depend on the diameters of the domains,
are uniform for k .
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We claim that |Ωk+1| ≤ 1
2 |Ωk | for any k .

(proof: By induction, we assume the inequality holds for k ≤ l .

|Ωl+1| ≤ C2δ(l+1)|Ωl |1+δ ≤ C2δ(l+1)

(
|Ω0|
2l

)δ
· |Ωl |

≤ C
1
sδ0
|Ω|δ(1+δ)|Ωl | ≤

1
2
|Ωl |

provided s0 is sufficiently large.) This implies that the set

{u ∈ Ω | u < −s0 −
∞∑

j=1

(
1
2δ

)j}

has measure zero. Hence,

| inf
Ω

u| ≤ s0 +
∞∑

j=1

(
1
2δ

)j = s0 +
1

2δ − 1
≤ C.
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(2). The stability theorem



Theorem
Assume ψ ∈ C0(∂Ω). Let v ∈ L∞(Ω) be a PSH solution to{

(ddcv)n = gµ in Ω,
v = ψ on ∂Ω.

(5)

Then there exists a constant C depending on ‖f‖Lp(Ω), ‖g‖Lp(Ω)

and n, and the upper bound of the diameter of Ω, such that

‖u − v‖L∞(Ω) ≤ C
{
‖f − g‖

1
n

δ
1+δ

L1(Ω)
+ ‖ϕ− ψ‖

δ
1+δ

L∞(∂Ω)

}
where δ is defined as before.



(3). Hölder regularity



The Hölder continuity

Theorem (Guedj-Kolodziej-Zeriahi 08’)
Suppose Ω is strictly pseudo-convex. Assume 0 ≤ f ∈ Lp(Ω),
p > 1 and ϕ ∈ C0,2α(∂Ω). Let û be the solution to the Dirichlet
problem with (ddc û)n = 0 and boundary data ϕ, if 4û has finite
mass in Ω, then

u ∈ C0,α′ , for all α′ < min(α,
2

p∗n + 1
).

Remark:

I The Hölder continuity was first proved by Bedford-Taylor
under the assumption that f

1
n ∈ Cα(Ω) and φ ∈ C2α(∂Ω).

I The technical condition of û is satisfied when ϕ ∈ C1,1(∂Ω).

I We give a PDE proof without using capacity theory.
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Part IV. Futher question: The manifold case



Manifold case

Assume (M, ωg) is a Kähler manifold.

Question. Are there Sobolev and Moser-Trudinger typed
inequalities for Kahler potentials φ ∈ [ωg] in terms of the
Monge-Ampère energy

E(φ) = − 1
(n + 1)!

∑
i

∫
M
φωi

φ ∧ ωn−i
g ?

On the two-sphere the inequality was first shown by Moser with
sharp constant. Subsequently, the general Riemann surface
case was settled by Fontana with the same sharp constant.
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On general Kähler manifold

Theorem(Berman-Berndtsson). Assume [ωg] is an integral
class. Then there exsit c,C > 0, such that

∫
M

e
c
(

−φ
E1/(n+1)(φ)

) n+1
n

≤ C

for φ ∈ [ωg].

I When [ωg] ∈ H2(M,Z)(integral class), the metric can be
identified with the curvature of a metric on an ample line
bundle L→ M.

I The proof used convexity properties of certain functionals
along geodesics.
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Thank you for your attention!


