
Symmetrization with respect to Mixed Volumes

Chao Xia
Xiamen University

(joint with Della Pietra and Navitone (Naples))

Workshop on GA and Nonlinear PDEs
IAS for Mathematics, Harbin Instute of Technology

May 3-5, 2019

1 / 28



Table of Contents

Schwarz symmetrization

Symmetrization w.r.t. quermassintegral (Talenti-Tso)

Convex symmetrization (Alvino-Ferone-Lions-Trombetti)

Symmetrization w.r.t. mixed volumes (Main results)

Sketch of proof

2 / 28



Schwarz symmetrization

Let Ω be an open bounded set of Rn and let u : Ω→ R be a
measurable function.

Symmetric rearrangement Ω] of Ω is the centered open ball
having the same volume as Ω, i.e.

Ω] = BR(0), where ωnR
n = |Ω|.

Schwarz Symmetrization (symmetric decreasing
rearrangement) u] of u is

u] : Ω] → R,
u](x) = u](|x |) = sup{t < 0 : {−|u| < t} ≤ ωn|x |n}.

By definition,

Vol({u] < t}) = Vol({−|u| < t}).
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Schwarz symmetrization

Properties of Schwarz symmetrization:

(Cavalieri’s principle)∫
Ω
|u|pdx =

∫
Ω]

|u]|pdx .

(Polya-Szego’s principle)∫
Ω
|∇u|pdx ≥

∫
Ω]

|∇u]|pdx .

(Hardy-Littlewood’s inequality)∫
Ω
uvdx ≤

∫
Ω]

u]v ]dx .
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Schwarz symmetrization

Applications of Schwarz symmetrization I:

(Rayleigh-Faber-Krahn’s inequality for first Dirichlet
eigenvalue)

λ1(Ω) ≥ λ1(Ω]).

(Saint-Venant’s principle for torsional rigidity)

τ(Ω) ≤ τ(Ω]).

Because of the variational property

λ1(Ω) = inf
u 6=0

∫
Ω |∇u|

2∫
Ω |u|2

, τ(Ω) = sup
u 6=0

(∫
Ω u
)2∫

Ω |∇u|2
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Schwarz symmetrization

Applications of Schwarz symmetrization II:

(Talenti ’76) Let u be the solution to

∆u = f in Ω, u = 0 on ∂Ω,

and
∆v = f ] in Ω], v = 0 on ∂Ω],

Then
|u]| ≤ v in Ω].

Because sup |u| = sup |u]|, this gives a sharp estimate for |u|.
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Tatenti-Tso symmetrization

Talenti-Tso symmetrization (Symmetrization w.r.t.
Quermassintegral)
(Talenti ’81 n = k = 2 and Tso ’89 any n and k)

Let Ω ⊂ Rn be a bounded, convex domain with C 2 boundary.

Steiner’s formula:

Vol (Ω + tB) =
n∑

k=0

(
n

k

)
tkWk(Ω),

where Wk(Ω) is k-th quermassintegral given by

Wk(Ω) =
1

n

∫
∂Ω

1(n−1
k−1

)σk−1(κ)dHn−1.

Let ζk(Ω) be k-mean radius given by

ζk(Ω) :=

(
Wk(Ω)

ωn

) 1
n−k

.
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Tatenti-Tso symmetrization

Define the following class of admissible functions

Φ0(Ω) :=
{
u ∈ C 2(Ω̄) : u = 0 on ∂Ω, u strictly convex

}
.

Let Ω]
k−1 be the centered open ball having the same Wk as Ω,

i.e.
Ω]
k−1 = BR(0), where R = ζk(Ω).

For u ∈ Φ0(Ω),

u]k−1(x) = sup {t ≤ 0 : ζk−1({u ≤ t}) ≤ |x |} .

Namely,
ζk−1({u ≤ t}) = ζk−1({u]k−1 ≤ t}).

The case k = 1 is Schwarz symmetrization.
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Talenti-Tso symmetrization

The k-Hessian integral

Ik [u,Ω] =

∫
Ω

(−u)σk(∇2u)dx

Theorem (Talenti, Tso)

For u ∈ Φ0(Ω),

Ik [u,Ω] ≥ Ik [u]k−1,Ω
]
k−1].

Equality holds if and only if Ω is a ball and u is radial.

The proof used crucially Alexandrov-Fenchel’s inequality
between quermassintegrals for convex domains and Reilly’s
work on Hessian operators.
Trudinger ’97 generalized this to k-convex domains and u
having k-convex level sets, however, used his
Alexandrov-Fenchel’s inequality between quermassintegrals for
k-convex domains, whose proof has gap.

9 / 28



Convex symmetrization

Let F be a norm on Rn, i.e., positive, convex and
1-homogenous.

Let F 0 be its dual norm, i.e.,

F 0(ξ) = sup
x 6=0

〈x , ξ〉
F (ξ)

.

The set WF := {F 0(ξ) ≤ 1} is called unit Wulff ball and
∂WF is unit Wulff shape. Denote κn = |W| and WR the
centered Wulff ball with radius R.

Anisotropic Dirichlet integral
∫

Ω F (∇u)2

Anisotropic Laplacian

∆Fu = div(∇ξ(
1

2
F 2)(∇u))
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Convex symmetrization

Alvino-Ferone-Lions-Trombetti ’97 introduces the convex
symmetrization which diminishes the anisotropic Dirichlet integral

Convex symmetrization Ω∗ of Ω

Ω∗ =WR , where |WR | = κnR
n = |Ω|.

The convex symmetrization of

u∗ : Ω∗ → R,
u∗(x) = u∗(F 0(x)) = sup{t < 0 : {−|u| < t} ≤ κn(F 0(x))n}.
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Convex symmetrization

Theorem (Alvino-Ferone-Lions-Trombetti ’97)∫
Ω
F (∇u)2 ≥

∫
Ω∗

F (∇u∗)2.

Equality holds if and only if Ω is a Wulff ball and u is radial w.r.t.
F , namely, u(x) = u(F 0(x)).

Corollary

Let u be the solution to

∆Fu = f in Ω, u = 0 on ∂Ω,

and
∆F v = f ∗ in Ω∗, v = 0 on ∂Ω∗,

Then
|u∗| ≤ v in Ω∗.
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Symmetrization w.r.t. mixed volumes

Our aim is to study the Talenti-Tso symmetrization in the
anisotropic case.

Motivation: Alexandrov-Fenchel’s inequality holds for mixed
volumes for two convex bodies.
To be precise, Let F be a given norm whose Wulff ball is
given by WF , Let Ω be a convex domain, then

Vol((1− t)Ω + tWF ) =
n∑

k=0

(
n

k

)
(1− t)n−ktkWk(Ω,WF ).

Denote

ζk,F (Ω) =

(
Wk(Ω,WF )

κn

) 1
n−k

Then
ζk,F (Ω) ≥ ζl ,F (Ω), for 0 ≤ l < k ≤ n − 1.
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Symmetrization w.r.t. mixed volumes

Let F ∈ C 3(Rn \ {0}) be a strongly convex norm on Rn,
strongly convex means Hess( 1

2F
2) is positive definite.

Denote by AF [u] = ((AF )ij [u]) the matrix

(AF )ij [u] := ∂xj

[
∂ξi

(
1

2
F 2

)
(∇u)

]
=

∑
l

(
1

2
F 2

)
il

(∇u)ulj , when ∇u 6= 0.

We regard AF [u] = 0 when ∇u = 0, in the case that F is not
the Euclidean norm.

In case F is the Euclidean norm, AF [u] = ∇2u.
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Symmetrization w.r.t. mixed volumes

The anisotropic k-Hessian operator of u is defined as

Sk,F [u] := Sk(AF [u]).

The anisotropic k-Hessian integral of u is defined by

Ik,F [u,Ω] =

∫
Ω

(−u)Sk,F [u] dx =

∫
Ω

(−u)Sk(AF [u]) dx

=

∫
Ω
S ij
k,F [u]FFiuj dx .

The second line follows from ∂jS
ij
k,F = 0.

In case F is the Euclidean norm,

AF [u] = ∇2u, Sk,F [u] = Sk(∇2u), Ik,F [u,Ω] = Ik [u,Ω].
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Symmetrization w.r.t. mixed volumes

Let Ω∗k−1 be the centered open ball having the same ζk,F as
Ω, i.e.

Ω∗k−1 =WR , where R = ζk,F (Ω).

For u ∈ Φ0(Ω),

u∗k−1(x) = sup
{
t ≤ 0 : ζk−1,F ({u ≤ t}) ≤ F 0(x)

}
.

Namely,

ζk−1,F ({u ≤ t}) = ζk−1,F ({u∗k−1 ≤ t}).
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Symmetrization w.r.t. mixed volumes

Theorem (Della Pietra-Gavitone ’15, Della Pietra-Gavitone-X. ’19)

For u ∈ Φ0(Ω), ∫
Ω
|u|pdx ≤

∫
Ω∗k−1

|u∗k−1|pdx ,

Ik,F [u,Ω] ≥ Ik,F [u∗k−1,Ω
∗
k−1].

Equality holds if and only if Ω is a Wulff ball and u is radial w.r.t.
F , namely, u(x) = u(F 0(x)).

Della Pietra-Gavitone ’15 proved the case n = k = 2 by direct
computation.

Difficulty for general case, compare to the case of Euclidean
norm, is the study of Sk on non-symmetric matrix AF [u].
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Symmetrization w.r.t. mixed volumes

Define anisotropic Lp k−Hessian integral

Ik,p,F [u,Ω] =

∫
Ω
S ij
k [u]F p−kFiuj dx .

In particular,

Ik,k+1,F = k Ik,F , I1,p,F =

∫
Ω
F p(∇u) dx .

Theorem (Della Pietra-Gavitone-X. ’19)

For u ∈ Φ0(Ω), p ≥ 1,

Ik,p,F [u,Ω] ≥ Ik,p,F [u∗k−1,Ω
∗
k−1].

Equality holds if and only if Ω is a Wulff ball and u is radial w.r.t.
F , namely, u(x) = u(F 0(x)).
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Symmetrization w.r.t. mixed volumes

Corollary (Anisotropic Sobolev type inequality)

For u ∈ Φ0(Ω),

if p < n − k + 1, then

‖u‖p
L

np
n−k+1−p (Ω)

≤ C (n, k , p,F )Ik,p,F [u,Ω],

if p > n − k + 1, then

‖u‖pL∞(Ω) ≤ C (n, k , p,F )Ik,p,F [u,Ω],

if p = n − k + 1, then

‖u‖p
LΨ(Ω)

≤ CIp,k,F [u; Ω].

where LΨ(Ω) is the Orlicz space associated to the function

Ψ(t) = e |t|
p

p−1 − 1.
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Symmetrization w.r.t. mixed volumes

Theorem (A priori estimate for anisotropic Hessian equation)

Let u ∈ Φ0(Ω) be a solution of the following Dirichlet problem{
Sk,F [u] = f (x) a.e. in Ω

u = 0 on ∂Ω.

Then
u∗k−1(x) ≥ v(x) in Ω∗k−1,

where v is the unique anisotropic radially symmetric solution of the
following symmetrized problem:{

Sk,F [v ] = f ∗0 (x) in Ω∗k−1,F

v = 0 on Ω∗k−1,F .
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Important ingredients

A study of Sk for non-symmetric matrix

Sk(A) =
1

k!

∑
1≤i1,··· ,ik ,j1,··· ,jk≤n

δj1···jki1···ik Ai1j1 · · ·Aik jk ,

S ij
k (A) =

∂Sk(A)

∂Aij

=
1

(k − 1)!

∑
1≤i1,··· ,ik ,j1,··· ,jk≤n

δ
j1···jk−1j
i1···ik−1i

Ai1j1 · · ·Aik−1jk−1
.

21 / 28



Important ingredients

Proposition

For an n × n matrix A = (Aij), we have

S ij
k (A) = Sk−1(A)δij −

∑
l

S il
k−1(A)Ajl .

Proposition

For an n × n matrix A = (Aij), we have∑
j

∂jS
ij
k,F [u] = 0.
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Important ingredients

A study of anisotropic curvatures of level sets

Let M be a smooth closed hypersurface in Rn and ν be the
unit Euclidean outer normal of M. The anisotropic outer
normal of M is defined by

νF = ∇F (ν).

The anisotropic principal curvatures
κF = (κF1 , . . . , κ

F
n−1) ∈ Rn−1 are defined as the eigenvalues of

the map
dνF : TpM → TνF (p)WF .

For k = 1, . . . , n the anisotropic k-th mean curvature of M is
Sk(κF ).
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Important ingredients

Proposition

Assume Σt is a non-degenerate level set of u, i.e., ∇u 6= 0 along
Σt . Then the anisotropic k-th mean curvature σk(κF ) of Σt

σk(κF ) = Sk

(∑
l

Filulj

)
=

1

F k+1

∑
i ,j

S ij
k+1,F [u]ujFi ,

In the case F is the Euclidean norm, it reduces to (Reilly ’70s)

σk(κ) =
∑
i ,j

S ij
k+1(∇2u)uiuj

|∇u|k+2
,

In the case k = 1, it reduces to (Wang-X. ’11)

HF =
∑
i ,j

Fijuij =
1

F

(
∆Fu −

∑
i ,j

FiFjuij

)
.
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Important ingredients

Proposition (Reilly ’73, ’76)

d

dt
Wk,F (Ωt) =

1(n
k

) ∫
Σt

Sk(κF )F (ν)

F (∇u)
dHn−1.

d

dt
ζk,F (Ωt) =

1

(n − k)κn
(n
k

) 1

[ζk,F (Ωt)]n−k−1

∫
Σt

Sk(κF )F (ν)

F (∇u)
dHn−1.
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Important ingredients

A study of anisotropic Hessian integral on anisotropic radial
function

Proposition

Let u(x) = v(r), where r = F 0(x). Then

Sk,F [u] =

(
n − 1

k − 1

)
v ′′(r)

r

(
v ′(r)

r

)k−1

+

(
n − 1

k

)(
v ′(r)

r

)k

=

(
n − 1

k − 1

)
r−(n−1)

(
rn−k

k
(v ′(r))k

)′
.

Ik,F [u,WR ] = κn

(
n

k

)∫ R

0
rn−kv ′(r)k+1 dr .
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Sketch of proof

Cn,k [ζk−1(Ωt)](n−k)(k+1) ≤ Cn,k [ζk(Ωt)](n−k)(k+1)

=

(∫
Σt

Sk−1(κF )F (ν)dHn−1

)k+1

≤
(∫

Σt

Sk−1(κF )

F (∇u)
F (ν)dHn−1

)k ∫
Σt

Sk−1(κF )F (∇u)kF (ν)dHn−1

=

{
C̃n,k [ζk−1(Ωt)]n−k

d

dt
ζk−1(Ωt)

}k ∫
Σt

Sk−1(κF )F (∇u)kF (ν)dHn−1.

Ik [u,Ω] =
1

k

∫ 0

m

∫
Σt

Sk−1(κF )F k(∇u)F (ν) dHn−1dt

≥ κn

(
n

k

)∫ 0

m

[ζk−1(Ωt)]n−k[
d
dt ζk−1(Ωt)

]k dt

= κn

(
n

k

)∫ R

0
rn−k(ρ′k−1(r))k+1 dr = Ik,F [u∗k−1,WR ].

27 / 28



Thank you for your attention!
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