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Introduction

(M",w) — a compact Kahler manifold of complex dimension n
without boundary (closed);

X — a smooth closed real (1, 1) form in T'X.

I'% is the set of all the real (1,1) forms whose eigenvalue sets with
respect to w belong to k-positive cone in R”.



Introduction

We study the parabolic equations

ou XK A wnk
ot 18T A og Y, (1)

where ¢ € C°(M), 0 < /< k< nand

/o

1 -
Xu: =X+ 5 dou. (2)

To be nondegenerate elliptic, we seek the admissible solution u
such that x, € Fff} . Thus, we need to assume ¥ > 0.



Introduction

The study of the parabolic flows is motivated by complex equations
XEA TR =y AW Xu € TK. (3)
When 1 is constant, it must be ¢ defined by

C .= W

(4)

This is an extension of complex Monge-Ampére equation [Cao,
1985] and complex Monge-Ampeére type equation [Sun, 2015].
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Hermitian manifolds.

e In 2011, Gill gave a parabolic proof for the result.
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fMXn

¢ = fMXn—k/\wk'
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Donaldson’s problem
When x, w are both Kahler and v is a constant:

b = Jux"
T X" KA wk

In 2004, Chen used the parabolic flow to study the equation,
i.e. Jflow.

In 2006, Weinkove solved the equation by J-flow.

In 2008, Song and Weinkove proved a necessary and sufficient
condition for solvability, i.e. the cone condition.

@ In 2011, Fang, Lai and Ma extended the cone condition and
the solvability to all 1 < k< n .
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Subsolution condition is too strong for closed manifolds!

We study a priori estimates and the convergence under the cone
condition, that is,

there is a real-valued C? function u satisfying Xu € I‘f) and

kxﬁ_l A = thx/H_l Aw™!




For convenience, we adopt an equivalent definition of u due to
Székelyhidi, which is called C-subsolution.

We say that a C? function u is a C-subsolution if Xu € I’k and at
each point x € M, the set

{;z ek ‘ AWK < P! Aw'™ and § — xu > 0} (5)

is bounded.




Main Result

Main Result

Let (M",w) be a closed Kahler manifold of complex dimension n
and x a smooth closed real (1,1) form in T'X. Suppose that there
is a C-subsolution u and % > c for all x € M. Then there exists a
long time solution u. Moreover, the normalization & of uis C*°
convergent to a smooth function i, where i is defined later.
Consequently, there is a unique real number b such that the pair
(Uso, b) solves

X AW

_ b
W—e¢- (6)




J-functional

It is easy to see that for general 1), the solution u is probably
divergent. It is necessary to find an appropriate normalization. We
adapt the general J-functionals [Chen, 2000; Fang-Lai-Ma, 2011].
Let H be the space

H={ue C°(M) | xu € L} (7)

For any curve v(s) € H, we define the funtional J; by

1 ov
J(u :/ / —xL Aw™ds, 8
i(u) ], s (8)

where v(s) is an arbitrary path in H connecting 0 and w.

Those functionals are independent from choices of the path.
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J-functionals

Along the solution flow u(x, t), we have

d X Aw" I 1
E_J/(U) = Aﬂ (10g W — logib Xu A (.Un

< log c/ XL Aw™ = / logwxf, Aw™! )
M M
<0.
Let y
U=u— ﬁ. (10)
Jux Awn=l

By (9), we know that 0;i1 > O:u.
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We claim that

inf(or — u)(x,t) > =2 sup |0:u] — Gy, (11)
M Mx {0}

where Cy > 0 is to be determined later. Otherwise, there must be
time tg > 1 such that

inf(u— to) = inf (u— t)= -2 orul — Cy. (12
1,r\1/,(u u)(x, to) MiI[IO,to}(u u)(x; t) Ajf&' eul — Co. (12)
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Let v=10—u—e+¢€z® — e(t — ty) — infp (& — u)(x, ty) for some
small € > 0.
We may assume that € < A. It is easy to see that when t =ty — 1

v=1i—u+telz* - i&f(i] —u)(x,tg) >0, (13)

and when [z2 =1, t < ¢,

v=10U—u—e€(t—ty) —i%f(fl—g)(x, to) > 0. (14)
Moreover,
el ik Y Y0 = (1%

€ is chosen small enough, we obtain an bound |uz| < Cin I'_,.
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By Alexandroff-Bakelman-Pucci maximum principle, we have

T
e<C / —Otvdet(D)%v)dxdt]
I'_,n{v<0
S . ()

2n+1
<C / — 822" (det(vy))? dxdt .
r_,n{v<0}

Because of the boundedness of u; and O:u, it follows that

e < CI0_, N {v <0}z . (17)
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So

2l < C’M x [to —1,t0] N {a < inf(i— )(x to)}‘

o E ()l

<cC Y dt 18
= 1rme<u—u><x )] (18)
t
<" It
|1nfM U — u)(x, to)]
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C? estimate

|
>

C? estimate
There exists a constant C depending on supy, o, 1) |2/ such that

for any ¢ € [0, T),

sup [00u| < C( sup |Vul® + 1) (19)
M Mx[0,t]

at any time t € [0, t].
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Following the work of [Hou-Ma-Wu, 2010], we define

= log (Z X&) + o (IVul?) + pli =) (20)

1 s
©o(s) log (1 QK) , for0 <s< K-1,

2 t (21)
p(t):—Alog(lJrﬂ), for —L+1<t<L-—1,
with

K:= sup |Vul>+sup|Vu>+1,
Mx[0,t']

L:= sup |u|+suplul+1,
Mx[0,T) M

A= 3L(C0 + 1)

and ( is to be specified.
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C? estimate

Lemma

There is a constant 8 > 0 such that we have either

ZF” (uz — ug) <F(Xu)—log\11—9(1+zl:ﬁ), (22)

or

A>o(1+3 F),  Vi=1--,n (23)

v
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Without loss of generality, we may assume that X;7 > --- > X,
Thus ) B
FP > ... > FH (24)

If A > 0 is small enough, x — Aw and u still satisfy the definition of
C-subsolution.
Since M is compact, there are uniform constants N > 0 and ¢ > 0
such that

F(x') > log ¥ + o, (25)

where

N

Y =X At ) . (26)

nxn
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Direct calculation shows that
Z Fﬁ(u,-; —u7) = Z Fi7X,7 — Z F’TX:-; + NFT— ) Z F
< Flw) = FOX) + NPT =AY F (27)

< F(xu) —log\II—U—/\ZFﬁ—i- NFL,
i

Imfwwzwzwa (28)

we obtain (22); otherwise, inequality (23) has to be true.



Moreover, when (22) holds true, we have

ZF” <~ uz) < Flxu) — 1og\1/—9(1+ZF"7)
= Osls — 0(1 + Z Fi_i) (29)
§8tij—0<l+ZF’7).

When (23) holds true, we use the fact that

sup |0¢l| < 2sup |9ru(x, 0)] (30)
M



Thanks !



