A class of Monge-Ampère equations on the sphere

Qi-Rui Li (Australian National University)

Geometric Analysis and Nonlinear PDEs

at Harbin Institute of Technology

4 May 2019

$$\det(\nabla^2 u + uI) = \frac{\sqrt{u^2 + |\nabla u|^{2^{n+1-q}}}}{u^{1-p}}\mu \quad \text{on } \mathbb{S}^n \qquad (MAE).$$

$$\det(\nabla^2 u + uI) = \frac{\sqrt{u^2 + |\nabla u|^2}^{n+1-q}}{u^{1-p}} \mu \quad \text{on } \mathbb{S}^n \qquad (MAE).$$

Positive convex weak solution to (MAE):

 $u \in C(\mathbb{S}^n)$, u > 0, is the support function of a convex body Ω in \mathbb{R}^{n+1} , such that Ω satisfies $d\widetilde{C}_{p,q}(\Omega, \cdot) = d\mu$.

$$\det(\nabla^2 u + uI) = \frac{\sqrt{u^2 + |\nabla u|^2}^{n+1-q}}{u^{1-p}} \mu \quad \text{on } \mathbb{S}^n \qquad (MAE).$$

Positive convex weak solution to (MAE):

 $u \in C(\mathbb{S}^n)$, u > 0, is the support function of a convex body Ω in \mathbb{R}^{n+1} , such that Ω satisfies $d\widetilde{C}_{p,q}(\Omega, \cdot) = d\mu$.

Non-negative convex weak solution to (MAE) when $p, q \ge 0$:

 $u \in C(\mathbb{S}^n)$, $u \ge 0$, is the support function of a convex body Ω in \mathbb{R}^{n+1} , such that

$$\det(\nabla^2 u + uI) = \frac{\sqrt{u^2 + |\nabla u|^2}^{n+1-q}}{u^{1-p}} \mu \quad \text{on } \mathbb{S}^n \qquad (MAE).$$

Positive convex weak solution to (MAE):

 $u \in C(\mathbb{S}^n)$, u > 0, is the support function of a convex body Ω in \mathbb{R}^{n+1} , such that Ω satisfies $d\widetilde{C}_{p,q}(\Omega, \cdot) = d\mu$.

Non-negative convex weak solution to (MAE) when $p, q \ge 0$:

 $u \in C(\mathbb{S}^n)$, $u \ge 0$, is the support function of a convex body Ω in \mathbb{R}^{n+1} , such that

• when $q \neq n + 1$: Ω satisfies $d\widetilde{C}_q(\Omega, \cdot) = u^p d\mu$;

$$\det(\nabla^2 u + uI) = \frac{\sqrt{u^2 + |\nabla u|^2}^{n+1-q}}{u^{1-p}} \mu \quad \text{on } \mathbb{S}^n \qquad (MAE).$$

Positive convex weak solution to (MAE):

 $u \in C(\mathbb{S}^n)$, u > 0, is the support function of a convex body Ω in \mathbb{R}^{n+1} , such that Ω satisfies $d\widetilde{C}_{p,q}(\Omega, \cdot) = d\mu$.

Non-negative convex weak solution to (MAE) when $p, q \ge 0$:

 $u \in C(\mathbb{S}^n)$, $u \ge 0$, is the support function of a convex body Ω in \mathbb{R}^{n+1} , such that

• when $q \neq n + 1$: Ω satisfies $d\widetilde{C}_q(\Omega, \cdot) = u^p d\mu$;

• when q = n + 1 and $p \ge 1$: Ω satisfies $dS(\Omega, \cdot) = u^{p-1}d\mu$;

• when q = n + 1 and p < 1: Ω satisfies $u^{1-p} d\mathcal{S}(\Omega, \cdot) = d\mu$.

- $\mathcal{S}(\Omega, \cdot)$ is the surface area measure: $\mathcal{S}(\Omega, \omega) = \mathcal{H}^n(\{z \in \partial \Omega : \nu_{\Omega}(z) \in \omega\}).$
- $\widetilde{C}_q(\Omega, \cdot)$ is the *q*-th dual curvature measure: $\widetilde{C}_q(\Omega, \omega) = \int_{\mathscr{A}_{\Omega}^*(\omega)} r^q(\xi) d\sigma_{\mathbb{S}^n}(\xi)$, introduced by Huang-Lutwak-Yang-Zhang [Acta Math. 2016].
- *C*_{p,q}(Ω, ·) is the L_p dual curvature measure: *C*_{p,q}(Ω, ω) = ∫_{𝔄_Ω^{*}(ω)} r^q(ξ)</sup>/_{ν^p(𝔄_Ω(ξ))} dσ_{Sⁿ}(ξ), introduced by Lutwak-Yang-Zhang [Adv. Math. 2018].
- Support function: $u = u_{\Omega} : \mathbb{S}^n \to \mathbb{R}$, defined by

$$u(x) = \max\{x \cdot z : z \in \Omega\}.$$

• Radial function: $r = r_{\Omega} : \mathbb{S}^n \to \mathbb{R}$, defined by

$$r(\xi) = \max\{t : t\xi \in \Omega\}.$$

- Radial mapping: $\vec{r} = \vec{r}_{\Omega} : \mathbb{S}^n \to \partial \Omega$, defined by $\vec{r}(\xi) = r_{\Omega}(\xi)\xi$.
- Radial Gauss mapping: $\mathscr{A} = \mathscr{A}_{\Omega}$, set-valued mapping,

$$\mathscr{A}(\omega) = \{ \nu_\Omega(ec{r}_\Omega(\xi)): \ \xi \in \omega \}, \ ext{for} \ \omega \subset \mathbb{S}^n.$$

• Reverse radial Gauss mapping: $\mathscr{A}^* = \mathscr{A}^*_{\Omega}$, set-valued mapping,

$$\mathscr{A}^*(\omega) = \{\xi \in \mathbb{S}^n \ : \ \nu_\Omega(\vec{r}_\Omega(\xi)) \in \omega\}, \ \text{for} \ \omega \subset \mathbb{S}^n.$$

$$\det(\nabla^2 u + uI) = \frac{\sqrt{u^2 + |\nabla u|^{2^{n+1-q}}}}{u^{1-p}}\mu \text{ on } \mathbb{S}^n \qquad (MAE)$$

$$\det(\nabla^2 u + uI) = \frac{\sqrt{u^2 + |\nabla u|^2}^{n+1-q}}{u^{1-p}} \mu \text{ on } \mathbb{S}^n \qquad (MAE)$$

- q = n + 1 & p = 1: the classical Minkowski problem (1900).
 - Nirenberg, Cheng-Yau, Pogorelov, Caffarelli.

$$\mathsf{det}(\nabla^2 u + uI) = \frac{\sqrt{u^2 + |\nabla u|^2}^{n+1-q}}{u^{1-p}} \mu \text{ on } \mathbb{S}^n \qquad (\mathsf{MAE})$$

- q = n + 1 & p = 1: the classical Minkowski problem (1900).
 - Nirenberg, Cheng-Yau, Pogorelov, Caffarelli.
- q = 0 & p = 0: the classical Aleksandrov problem (1940s).
 Pogorelov, Oliker.

$$\det(\nabla^2 u + uI) = \frac{\sqrt{u^2 + |\nabla u|^2}^{n+1-q}}{u^{1-p}} \mu \text{ on } \mathbb{S}^n \qquad (MAE)$$

is equivalent to the study of the following problems:

- q = n + 1 & p = 1: the classical Minkowski problem (1900).
 - Nirenberg, Cheng-Yau, Pogorelov, Caffarelli.
- q = 0 & p = 0: the classical Aleksandrov problem (1940s).
 Pogorelov, Oliker.

• $q = n + 1 \& p \in \mathbb{R}$: the L_p Minkowski problem (by Lutwak [JDG 1993]).

• Chou-Wang [Adv Math 2006].

• (MAE) describes the self-similar solution to α -Gauss curvature flow $\partial_t X = -fK^{\alpha}\nu$. Andrews [Pacific J Math 2000] [JDG 1996]; Andrews-Guan-Ni [Adv Math 2016].

$$\det(\nabla^2 u + uI) = \frac{\sqrt{u^2 + |\nabla u|^2}^{n+1-q}}{u^{1-p}} \mu \text{ on } \mathbb{S}^n \qquad (MAE)$$

is equivalent to the study of the following problems:

- q = n + 1 & p = 1: the classical Minkowski problem (1900).
 - Nirenberg, Cheng-Yau, Pogorelov, Caffarelli.
- q = 0 & p = 0: the classical Aleksandrov problem (1940s).
 Pogorelov, Oliker.

• $q = n + 1 \& p \in \mathbb{R}$: the L_p Minkowski problem (by Lutwak [JDG 1993]).

• Chou-Wang [Adv Math 2006].

• (MAE) describes the self-similar solution to α -Gauss curvature flow $\partial_t X = -fK^{\alpha}\nu$. Andrews [Pacific J Math 2000] [JDG 1996]; Andrews-Guan-Ni [Adv Math 2016].

• $q \in \mathbb{R} \& p = 0$: the dual Minkowski problem (by Huang et al. [Acta Math 2016]).

$$\det(\nabla^2 u + uI) = \frac{\sqrt{u^2 + |\nabla u|^2}^{n+1-q}}{u^{1-p}} \mu \text{ on } \mathbb{S}^n \qquad (MAE)$$

- q = n + 1 & p = 1: the classical Minkowski problem (1900).
 - Nirenberg, Cheng-Yau, Pogorelov, Caffarelli.
- q = 0 & p = 0: the classical Aleksandrov problem (1940s).
 Pogorelov, Oliker.
- $q = n + 1 \& p \in \mathbb{R}$: the L_p Minkowski problem (by Lutwak [JDG 1993]).
 - Chou-Wang [Adv Math 2006].
 - (MAE) describes the self-similar solution to α -Gauss curvature flow $\partial_t X = -fK^{\alpha}\nu$. Andrews [Pacific J Math 2000] [JDG 1996]; Andrews-Guan-Ni [Adv Math 2016].
- $q \in \mathbb{R} \& p = 0$: the dual Minkowski problem (by Huang et al. [Acta Math 2016]).
- $p, q \in \mathbb{R}$: the L_p dual Minkowski problem (by Lutwak et al. [Adv Math 2018]).

Theorem 1 (H.Chen-Li, 2018)

Let p > 0 and $q \neq n + 1$. Let $\mu \in NCH$ (finite, not concentrated on any closed hemisphere).

- if p > q, then (MAE) admits a positive convex weak solution.
- if p = q, then (MAE) admits a non-negative convex weak solution with μ replaced by λμ for some constant λ > 0.
- if p < q, then (MAE) admits a non-negative convex weak solution.

Moreover if $d\mu = fd\sigma_{\mathbb{S}^n}$ with $f > 0, \in C^{\infty}(\mathbb{S}^n)$, and $p \ge q$, then (MAE) has a positive, smooth, uniformly convex classical solution u.

Theorem 1 (H.Chen-Li, 2018)

Let p > 0 and $q \neq n + 1$. Let $\mu \in NCH$ (finite, not concentrated on any closed hemisphere).

- if p > q, then (MAE) admits a positive convex weak solution.
- if p = q, then (MAE) admits a non-negative convex weak solution with μ replaced by λμ for some constant λ > 0.
- if p < q, then (MAE) admits a non-negative convex weak solution.

Moreover if $d\mu = fd\sigma_{\mathbb{S}^n}$ with $f > 0, \in C^{\infty}(\mathbb{S}^n)$, and $p \ge q$, then (MAE) has a positive, smooth, uniformly convex classical solution u.

Remark

• For *q* = *n* + 1, such result was known: Chou-Wang [Adv Math 2006]; Aleksandrov, Nirenberg, Cheng-Yau for the classical Minkowski problem.

Theorem 1 (H.Chen-Li, 2018)

Let p > 0 and $q \neq n + 1$. Let $\mu \in NCH$ (finite, not concentrated on any closed hemisphere).

- if p > q, then (MAE) admits a positive convex weak solution.
- if p = q, then (MAE) admits a non-negative convex weak solution with μ replaced by λμ for some constant λ > 0.
- if p < q, then (MAE) admits a non-negative convex weak solution.

Moreover if $d\mu = fd\sigma_{\mathbb{S}^n}$ with $f > 0, \in C^{\infty}(\mathbb{S}^n)$, and $p \ge q$, then (MAE) has a positive, smooth, uniformly convex classical solution u.

Remark

- For q = n + 1, such result was known: Chou-Wang [Adv Math 2006]; Aleksandrov, Nirenberg, Cheng-Yau for the classical Minkowski problem.
- If f > 0, ∈ C[∞](Sⁿ), then the multiplier λ (when p = q) is unique. Solution u is unique (p > q), and is unique up to a dilation (p = q).

We only deal with the case $d\mu = f d\sigma_{\mathbb{S}^n}$ with $f > 0, \in C^{\infty}$.

We only deal with the case $d\mu = f d\sigma_{\mathbb{S}^n}$ with $f > 0, \in C^{\infty}$. For general $\mu \in NCH$, one uses an approximation argument $d\mu_i = f_i d\sigma_{\mathbb{S}^n} \rightarrow d\mu$.

We only deal with the case $d\mu = f d\sigma_{\mathbb{S}^n}$ with $f > 0, \in C^{\infty}$.

For general $\mu \in NCH$, one uses an approximation argument $d\mu_j = f_j d\sigma_{\mathbb{S}^n} \rightharpoonup d\mu$.

For this, C^0 -estimate under the assumption μ not concentrated on any closed hemisphere is required.

We only deal with the case $d\mu = fd\sigma_{\mathbb{S}^n}$ with $f > 0, \in C^{\infty}$.

For general $\mu \in NCH$, one uses an approximation argument $d\mu_j = f_j d\sigma_{\mathbb{S}^n} \rightharpoonup d\mu$.

For this, C^0 -estimate under the assumption μ not concentrated on any closed hemisphere is required.

• p > q: it was proved by Huang-Zhao [Adv Math 2018].

We only deal with the case $d\mu = f d\sigma_{\mathbb{S}^n}$ with $f > 0, \in C^{\infty}$.

For general $\mu \in NCH$, one uses an approximation argument $d\mu_j = f_j d\sigma_{\mathbb{S}^n} \rightarrow d\mu$. For this, C^0 -estimate under the assumption μ not concentrated on any closed hemisphere

is required.

• p > q: it was proved by Huang-Zhao [Adv Math 2018].

• *p* = *q*:

We only deal with the case $d\mu = f d\sigma_{\mathbb{S}^n}$ with $f > 0, \in C^\infty$.

For general $\mu \in NCH$, one uses an approximation argument $d\mu_j = f_j d\sigma_{\mathbb{S}^n} \rightarrow d\mu$. For this, C^0 -estimate under the assumption μ not concentrated on any closed hemisphere is required.

• p > q: it was proved by Huang-Zhao [Adv Math 2018].

• p = q: let u_{ε} be the solution to (MAE) for p and $q = p - \varepsilon =: q_{\varepsilon}$; let Ω_{ε} be the convex body whose support function is u_{ε} .

We only deal with the case $d\mu = f d\sigma_{\mathbb{S}^n}$ with $f > 0, \in C^{\infty}$. For general $\mu \in NCH$, one uses an approximation argument $d\mu_j = f_j d\sigma_{\mathbb{S}^n} \rightarrow d\mu$. For this, C^0 -estimate under the assumption μ not concentrated on any closed hemisphere is required.

• p > q: it was proved by Huang-Zhao [Adv Math 2018].

• p = q: let u_{ε} be the solution to (MAE) for p and $q = p - \varepsilon =: q_{\varepsilon}$; let Ω_{ε} be the convex body whose support function is u_{ε} . Choosing λ_{ε} , such that $\widetilde{\Omega}_{\varepsilon} := \lambda_{\varepsilon}^{-\frac{1}{\varepsilon}} \Omega_{\varepsilon}$ satisfies

$$\int_{\mathbb{S}^n} r^{q_{\varepsilon}}_{\widetilde{\Omega}_{\varepsilon}} = 1$$

Let $\widetilde{u}_{\varepsilon}$ be the support function of $\widetilde{\Omega}_{\varepsilon}$.

We only deal with the case $d\mu = f d\sigma_{\mathbb{S}^n}$ with $f > 0, \in C^{\infty}$. For general $\mu \in NCH$, one uses an approximation argument $d\mu_j = f_j d\sigma_{\mathbb{S}^n} \rightharpoonup d\mu$. For this, C^0 -estimate under the assumption μ not concentrated on any closed hemisphere is required.

• p > q: it was proved by Huang-Zhao [Adv Math 2018].

• p = q: let u_{ε} be the solution to (MAE) for p and $q = p - \varepsilon =: q_{\varepsilon}$; let Ω_{ε} be the convex body whose support function is u_{ε} . Choosing λ_{ε} , such that $\widetilde{\Omega}_{\varepsilon} := \lambda_{\varepsilon}^{-\frac{1}{\varepsilon}} \Omega_{\varepsilon}$ satisfies

$$\int_{\mathbb{S}^n} r^{q_{\varepsilon}}_{\widetilde{\Omega}_{\varepsilon}} = 1$$

Let $\widetilde{u}_{\varepsilon}$ be the support function of $\widetilde{\Omega}_{\varepsilon}$.

We show that $(\Omega_{\varepsilon}, \lambda_{\varepsilon})$ converges to (u_{∞}, λ) as $\varepsilon \to 0$, and u_{∞} satisfies (MAE) with μ replaced by $\lambda \mu$.

• We then focus on the case q > p > 0.

• We then focus on the case q > p > 0.

Firstly observe that (MAE) is (up to a rescale) the Euler equation of

$$\mathcal{J}_{p,q}(\Omega) = \frac{1}{p} \log \int_{\mathbb{S}^n} u_\Omega^p f d\sigma_{\mathbb{S}^n} - \frac{1}{q} \log \int_{\mathbb{S}^n} r_\Omega^q d\sigma_{\mathbb{S}^n}.$$

• We then focus on the case q > p > 0.

Firstly observe that (MAE) is (up to a rescale) the Euler equation of

$$\mathcal{J}_{p,q}(\Omega) = rac{1}{p}\log \int_{\mathbb{S}^n} u^p_\Omega f d\sigma_{\mathbb{S}^n} - rac{1}{q}\log \int_{\mathbb{S}^n} r^q_\Omega d\sigma_{\mathbb{S}^n}.$$

One attempts to use variational argument:

$$\inf_{\Omega} \Big\{ \int_{\mathbb{S}^n} u_{\Omega}^p f d\sigma_{\mathbb{S}^n} : \int_{\mathbb{S}^n} r_{\Omega}^q d\sigma_{\mathbb{S}^n} = 1 \Big\}.$$

• We then focus on the case q > p > 0.

Firstly observe that (MAE) is (up to a rescale) the Euler equation of

$$\mathcal{J}_{p,q}(\Omega) = \frac{1}{p} \log \int_{\mathbb{S}^n} u_\Omega^p f d\sigma_{\mathbb{S}^n} - \frac{1}{q} \log \int_{\mathbb{S}^n} r_\Omega^q d\sigma_{\mathbb{S}^n}.$$

One attempts to use variational argument:

$$\inf_{\Omega} \Big\{ \int_{\mathbb{S}^n} u_{\Omega}^p f d\sigma_{\mathbb{S}^n} : \int_{\mathbb{S}^n} r_{\Omega}^q d\sigma_{\mathbb{S}^n} = 1 \Big\}.$$

<u>Good news</u>: Take a minimising sequence Ω_j , then

$$C \geq \int_{\mathbb{S}^n} u_{\Omega_j}^p f d\sigma_{\mathbb{S}^n} \geq \delta_{n,f} (\max_{\mathbb{S}^n} u_{\Omega_j})^p \text{ (using } p > 0).$$

Hence Ω_i converges to a limit Ω , which minimises the extreme problem.

• We then focus on the case q > p > 0.

Firstly observe that (MAE) is (up to a rescale) the Euler equation of

$$\mathcal{J}_{p,q}(\Omega) = \frac{1}{p} \log \int_{\mathbb{S}^n} u_\Omega^p f d\sigma_{\mathbb{S}^n} - \frac{1}{q} \log \int_{\mathbb{S}^n} r_\Omega^q d\sigma_{\mathbb{S}^n}.$$

One attempts to use variational argument:

$$\inf_{\Omega}\Big\{\int_{\mathbb{S}^n}u_{\Omega}^pfd\sigma_{\mathbb{S}^n}:\ \int_{\mathbb{S}^n}r_{\Omega}^qd\sigma_{\mathbb{S}^n}=1\Big\}.$$

<u>Good news</u>: Take a minimising sequence Ω_j , then

$$C \geq \int_{\mathbb{S}^n} u^p_{\Omega_j} f d\sigma_{\mathbb{S}^n} \geq \delta_{n,f} (\max_{\mathbb{S}^n} u_{\Omega_j})^p \ (ext{using } p > 0).$$

Hence Ω_j converges to a limit Ω , which minimises the extreme problem. <u>Difficulty</u>: It is possible that $o \in \partial \Omega$. If this occurs, then we are in trouble to show the minimiser Ω is a solution to the problem.

To overcome the difficulty, we study a modified problem and use an approximation.

To overcome the difficulty, we study a modified problem and use an approximation. Given $\varepsilon > 0$, let $\delta = q - p > 0$ and let $\widehat{F}_{\varepsilon}, F_{\varepsilon} \in C^{\infty}(\mathbb{R}_+)$, $F_{\varepsilon} = \widehat{F}'_{\varepsilon}$, $F_{\varepsilon}(z) > 0$ for z > 0,

$$\widehat{F}_{arepsilon}(z) = \left\{egin{array}{cc} rac{1}{p}z^{
ho}, & ext{if } z\geq 2arepsilon, \ rac{z^{
ho+\delta+arepsilon}}{p+\delta+arepsilon}, & ext{if } 0\leq z$$

To overcome the difficulty, we study a modified problem and use an approximation. Given $\varepsilon > 0$, let $\delta = q - p > 0$ and let $\widehat{F}_{\varepsilon}, F_{\varepsilon} \in C^{\infty}(\mathbb{R}_+)$, $F_{\varepsilon} = \widehat{F}'_{\varepsilon}$, $F_{\varepsilon}(z) > 0$ for z > 0,

$$\widehat{F}_{arepsilon}(z) = \left\{egin{array}{cc} rac{1}{p}z^{
ho}, & ext{if } z\geq 2arepsilon, \ rac{z^{
ho+\delta+arepsilon}}{p+\delta+arepsilon}, & ext{if } 0\leq z$$

Consider the flow

$$\partial_t X = \left(\phi(t)u - fuF_{\varepsilon}(u)r^{n+1-q}K\right)\nu$$
 (flow)

with $X(\cdot,0)$ a C^{∞} , uniformly convex hypersurface, enclosing the origin, where

$$\phi(t) := \Big(\int_{\mathbb{S}^n} f u F_{\varepsilon}(u) d\sigma_{\mathbb{S}^n}\Big) \Big/ \Big(\int_{\mathbb{S}^n} r^q(\cdot, 0) d\sigma_{\mathbb{S}^n}\Big)$$

such that $\int_{\mathbb{S}^n} r^q(\cdot, t) d\sigma_{\mathbb{S}^n} = \text{const.}$ under the (flow).

Let Ω_t be the convex body with support function $u(\cdot, t)$. Consider

$$\mathcal{J}_{\varepsilon}(\Omega_t) = \int_{\mathbb{S}^n} \widehat{F}_{\varepsilon}(u) f d\sigma_{\mathbb{S}^n} - \frac{1}{q} \int_{\mathbb{S}^n} r^q d\sigma_{\mathbb{S}^n}.$$

Let Ω_t be the convex body with support function $u(\cdot, t)$. Consider

$$\mathcal{J}_{\varepsilon}(\Omega_t) = \int_{\mathbb{S}^n} \widehat{F}_{\varepsilon}(u) f d\sigma_{\mathbb{S}^n} - \frac{1}{q} \int_{\mathbb{S}^n} r^q d\sigma_{\mathbb{S}^n}.$$

It can be verified that $\frac{d}{dt}\mathcal{J}_{\varepsilon} \leq 0$ under the (flow), and equality holds iff

$$\mathsf{det}(\nabla^2 u + uI) = \lambda f \sqrt{u^2 + |\nabla u|^2}^{n+1-q} \mathcal{F}_{\varepsilon}(u). \quad \textbf{(soliton)}$$

Let Ω_t be the convex body with support function $u(\cdot, t)$. Consider

$$\mathcal{J}_{\varepsilon}(\Omega_t) = \int_{\mathbb{S}^n} \widehat{F}_{\varepsilon}(u) f d\sigma_{\mathbb{S}^n} - \frac{1}{q} \int_{\mathbb{S}^n} r^q d\sigma_{\mathbb{S}^n}.$$

It can be verified that $\frac{d}{dt}\mathcal{J}_{\varepsilon} \leq 0$ under the (flow), and equality holds iff

$$\det(\nabla^2 u + uI) = \lambda f \sqrt{u^2 + |\nabla u|^2}^{n+1-q} F_{\varepsilon}(u). \quad \text{(soliton)}$$

<u>*C*⁰-estimates:</u>By the monotonicity of $\mathcal{J}_{\varepsilon}$,

$$C \geq \int_{\mathbb{S}^n} \widehat{F}_{\varepsilon}(u) f d\sigma_{\mathbb{S}^n} \Longrightarrow \max_{\mathbb{S}^n} u(\cdot, t) \leq C, \ \forall t.$$

Let Ω_t be the convex body with support function $u(\cdot, t)$. Consider

$$\mathcal{J}_{\varepsilon}(\Omega_t) = \int_{\mathbb{S}^n} \widehat{F}_{\varepsilon}(u) f d\sigma_{\mathbb{S}^n} - \frac{1}{q} \int_{\mathbb{S}^n} r^q d\sigma_{\mathbb{S}^n}.$$

It can be verified that $\frac{d}{dt}\mathcal{J}_{\varepsilon}\leq 0$ under the (flow), and equality holds iff

$$\det(
abla^2 u + uI) = \lambda f \sqrt{u^2 + |
abla u|^2}^{n+1-q} F_{\varepsilon}(u).$$
 (soliton)

<u>*C*⁰-estimates:</u>By the monotonicity of $\mathcal{J}_{\varepsilon}$,

$$C \geq \int_{\mathbb{S}^n} \widehat{F}_{\varepsilon}(u) f d\sigma_{\mathbb{S}^n} \Longrightarrow \max_{\mathbb{S}^n} u(\cdot, t) \leq C, \ \forall t.$$

By applying the maximum principle to the parabolic equation of u(x, t),

$$\min_{\mathbb{S}^n} u(\cdot, t) \geq \min\left\{\left[\frac{\phi(t)}{\max_{\mathbb{S}^n} f}\right]^{\frac{1}{\varepsilon}}, \varepsilon, \min_{\mathbb{S}^n} u(\cdot, 0)\right\}.$$

Let Ω_t be the convex body with support function $u(\cdot, t)$. Consider

$$\mathcal{J}_{\varepsilon}(\Omega_t) = \int_{\mathbb{S}^n} \widehat{F}_{\varepsilon}(u) f d\sigma_{\mathbb{S}^n} - \frac{1}{q} \int_{\mathbb{S}^n} r^q d\sigma_{\mathbb{S}^n}.$$

It can be verified that $\frac{d}{dt}\mathcal{J}_{\varepsilon} \leq 0$ under the (flow), and equality holds iff

$$\det(\nabla^2 u + uI) = \lambda f \sqrt{u^2 + |\nabla u|^2}^{n+1-q} F_{\varepsilon}(u). \quad \text{(soliton)}$$

<u>*C*⁰-estimates:</u>By the monotonicity of $\mathcal{J}_{\varepsilon}$,

$$C \geq \int_{\mathbb{S}^n} \widehat{F}_{\varepsilon}(u) f d\sigma_{\mathbb{S}^n} \Longrightarrow \max_{\mathbb{S}^n} u(\cdot, t) \leq C, \ \forall t.$$

By applying the maximum principle to the parabolic equation of u(x, t),

$$\min_{\mathbb{S}^n} u(\cdot, t) \geq \min\left\{\left[\frac{\phi(t)}{\max_{\mathbb{S}^n} f}\right]^{\frac{1}{\varepsilon}}, \varepsilon, \min_{\mathbb{S}^n} u(\cdot, 0)\right\}.$$

By $\int_{\mathbb{S}^n} r^q d\sigma_{\mathbb{S}^n} = \text{const.}$, we derive a lower bound of $\max_{\mathbb{S}^n} u(\cdot, t)$, which gives a positive lower bound of $\phi(t)$. Hence

$$\min_{\mathbb{S}^n} u(\cdot,t) \geq C_{\varepsilon}, \quad \forall t.$$

 $\underline{C^{2}\text{-estimates:}} \ 1/C_{\varepsilon} \leq \kappa_{i}(\cdot,t) \leq C_{\varepsilon}, \ \forall t. \ (\mathsf{i}) \ \mathcal{K}(\cdot,t) \leq C_{\varepsilon}, \ \forall t; \ (\mathsf{ii}) \ \frac{1}{\kappa_{i}}(\cdot,t) \leq C_{\varepsilon}, \ \forall t.$

<u>C²-estimates:</u> $1/C_{\varepsilon} \leq \kappa_i(\cdot, t) \leq C_{\varepsilon}, \forall t.$ (i) $K(\cdot, t) \leq C_{\varepsilon}, \forall t;$ (ii) $\frac{1}{\kappa_i}(\cdot, t) \leq C_{\varepsilon}, \forall t.$ Higher order estimates: u_t satisfies uniformly parabolic equation.

- *u_t* is space-time Hölder (Krylov-Safonov);
- $det(\nabla^2 u + uI)^{\frac{1}{n}} = G(u, \nabla u, u_t) \in C^{\alpha} \Longrightarrow u$ is spatial $C^{2,\alpha}$ (Evans-Krylov);
- Hölder estimate for $\nabla^2 u$ in t follows by Tian-Wang [IMRN 2013].

<u>C²-estimates:</u> $1/C_{\varepsilon} \leq \kappa_i(\cdot, t) \leq C_{\varepsilon}, \forall t.$ (i) $K(\cdot, t) \leq C_{\varepsilon}, \forall t;$ (ii) $\frac{1}{\kappa_i}(\cdot, t) \leq C_{\varepsilon}, \forall t.$ Higher order estimates: u_t satisfies uniformly parabolic equation.

- *u_t* is space-time Hölder (Krylov-Safonov);
- $\det(\nabla^2 u + uI)^{\frac{1}{n}} = G(u, \nabla u, u_t) \in C^{\alpha} \Longrightarrow u$ is spatial $C^{2,\alpha}$ (Evans-Krylov);
- Hölder estimate for $\nabla^2 u$ in t follows by Tian-Wang [IMRN 2013].

Convergence: the a-priori estimates imply that the flow exists for all time. Hence

$$\mathcal{C}_arepsilon \geq \mathcal{J}_arepsilon(\Omega_0) - \lim_{t o \infty} \mathcal{J}_arepsilon(\Omega_t) = \int_0^\infty \Big(- rac{d}{dt} \mathcal{J}_arepsilon \Big)$$

Hence there is a subsequence $t_j \to \infty$ such that $\frac{d}{dt} \mathcal{J}_{\varepsilon}(\Omega_{t_j}) \to 0$, and so $u(\cdot, t_j)$ converges to a u_{ε} solves

$$\det(\nabla^2 u_{\varepsilon} + u_{\varepsilon}I) = f\sqrt{u_{\varepsilon}^2 + |\nabla u_{\varepsilon}|^2}^{n+1-q} F_{\varepsilon}(u_{\varepsilon})$$

<u>C²-estimates:</u> $1/C_{\varepsilon} \leq \kappa_i(\cdot, t) \leq C_{\varepsilon}, \forall t.$ (i) $K(\cdot, t) \leq C_{\varepsilon}, \forall t;$ (ii) $\frac{1}{\kappa_i}(\cdot, t) \leq C_{\varepsilon}, \forall t.$ Higher order estimates: u_t satisfies uniformly parabolic equation.

- *u_t* is space-time Hölder (Krylov-Safonov);
- $det(\nabla^2 u + uI)^{\frac{1}{n}} = G(u, \nabla u, u_t) \in C^{\alpha} \Longrightarrow u$ is spatial $C^{2,\alpha}$ (Evans-Krylov);
- Hölder estimate for $\nabla^2 u$ in t follows by Tian-Wang [IMRN 2013].

Convergence: the a-priori estimates imply that the flow exists for all time. Hence

$$\mathcal{C}_arepsilon \geq \mathcal{J}_arepsilon(\Omega_0) - \lim_{t o \infty} \mathcal{J}_arepsilon(\Omega_t) = \int_0^\infty \Big(- rac{d}{dt} \mathcal{J}_arepsilon \Big)$$

Hence there is a subsequence $t_j \to \infty$ such that $\frac{d}{dt} \mathcal{J}_{\varepsilon}(\Omega_{t_j}) \to 0$, and so $u(\cdot, t_j)$ converges to a u_{ε} solves

$$\det(\nabla^2 u_{\varepsilon} + u_{\varepsilon}I) = f\sqrt{u_{\varepsilon}^2 + |\nabla u_{\varepsilon}|^2}^{n+1-q} F_{\varepsilon}(u_{\varepsilon})$$

Approximation: Denote by Ω_{ε} the convex body whose support function is u_{ε} .

$$\int_{\mathscr{A}_{\Omega_{\varepsilon}}^{*}(\omega)} r_{\varepsilon}^{q} d\sigma_{\mathbb{S}^{n}} = \int_{\omega} u_{\varepsilon} F_{\varepsilon}(u_{\varepsilon}) f d\sigma_{\mathbb{S}^{n}}.$$

Since $u_{\varepsilon} \leq C$ uniformly, $u_{\varepsilon} \rightarrow u$ (as $\varepsilon \rightarrow 0$) which solves (MAE) in weak sense.

10/19

• The above theorem gives a comprehensive study of (MAE) when p > 0.

- The above theorem gives a comprehensive study of (MAE) when p > 0.
- For p = 0, the study of (MAE) is equivalent to the study of dual Minkowski problem proposed by Huang-Lutwak-Yang-Zhang [Acta Math 2016].
 - Böröczky-Henk-Pollehn [JDG 2018] for symmetric case;
 - Li-Sheng-Wang [J Euro Math Soc, to appear] by parabolic argument;
 - S. Chen-Li [Adv Math 2018] for a comprehensive discussion of the planar case.

- The above theorem gives a comprehensive study of (MAE) when p > 0.
- For p = 0, the study of (MAE) is equivalent to the study of dual Minkowski problem proposed by Huang-Lutwak-Yang-Zhang [Acta Math 2016].
 - Böröczky-Henk-Pollehn [JDG 2018] for symmetric case;
 - Li-Sheng-Wang [J Euro Math Soc, to appear] by parabolic argument;
 - S. Chen-Li [Adv Math 2018] for a comprehensive discussion of the planar case.
- For p < 0, we have the following result

Theorem 2 (H.Chen-Li, 2018)

Let p < 0.

- For p > q, (MAE) admits a positive and convex weak solution u, if μ ∈ NCH. Moreover if dμ = fdσ_{Sⁿ} with f > 0, ∈ C[∞](Sⁿ), then the solution u ∈ C[∞] and is uniformly convex, and is unique.
- For p = q, if $d\mu = fd\sigma_{\mathbb{S}^n}$ with $f > 0, \in C^{\infty}(\mathbb{S}^n)$, then there is a unique $\lambda > 0$ such that (MAE) has a unique positive, smooth and uniformly convex solution u, with f replaced by λf .

For origin-symmetric case, we can prove the existence below by variational argument.

Theorem 3 (H.Chen-S.Chen-Li, 2018)

Let $d\mu = fd\sigma_{\mathbb{S}^n}$, f be an even function on \mathbb{S}^n , and $1/C \le f \le C$. Suppose q > 0 and $-q^* , where <math>q^* > 0$ is defined as

$$q^* = \begin{cases} \frac{q}{q-n} & \text{if } q > n+1, \\ n+1 & \text{if } q = n+1, \\ \frac{nq}{q-1} & \text{if } 1 < q < n+1, \\ +\infty & \text{if } 0 < q \le 1. \end{cases}$$

Then (MAE) has an even, positive, weak solution u, and $\Omega = \Omega_u$ is origin-symmetric and has a strictly convex and $C^{1,\alpha}$ boundary. Moreover, if f is additionally smooth, then (MAE) has an even, positive, smooth and uniformly convex solution u.

Solve the optimisation problem

$$\min_{\Omega\in\mathcal{K}_{0}^{e}}\left\{\widehat{\Phi}_{p,f}(\Omega):\ \int_{\mathbb{S}^{n}}r_{\Omega}^{q}d\sigma_{\mathbb{S}^{n}}=1\right\},\quad (\textit{Min Prob})$$

where $\widehat{\Phi}_{p,f}(\Omega) = \frac{1}{p} \int_{\mathbb{S}^n} f u_{\Omega}^p d\sigma_{\mathbb{S}^n}$.

Solve the optimisation problem

$$\min_{\Omega\in\mathcal{K}_0^e}\left\{\widehat{\Phi}_{\rho,f}(\Omega):\ \int_{\mathbb{S}^n}r_\Omega^qd\sigma_{\mathbb{S}^n}=1\right\},\quad (\textit{Min Prob})$$

where $\widehat{\Phi}_{p,f}(\Omega) = \frac{1}{p} \int_{\mathbb{S}^n} f u_{\Omega}^p d\sigma_{\mathbb{S}^n}$. Given q > 0, and $\gamma \in (0, q^*]$, $\gamma \neq +\infty$, there is a $C_{n,q,\gamma} > 0$ such that

$$\left(\int_{\mathbb{S}^n} r_{\Omega}^{q} d\sigma_{\mathbb{S}^n}\right)^{\frac{1}{q}} \left(\int_{\mathbb{S}^n} u_{\Omega}^{-\gamma} d\sigma_{\mathbb{S}^n}\right)^{\frac{1}{\gamma}} \leq C_{n,q,\gamma}, \quad \forall \ \Omega \in \mathcal{K}_0^e.$$

Solve the optimisation problem

$$\min_{\Omega\in\mathcal{K}_0^e}\left\{\widehat{\Phi}_{\rho,f}(\Omega):\ \int_{\mathbb{S}^n}r_\Omega^qd\sigma_{\mathbb{S}^n}=1\right\},\quad (\textit{Min Prob})$$

where $\widehat{\Phi}_{p,f}(\Omega) = \frac{1}{p} \int_{\mathbb{S}^n} f u_{\Omega}^p d\sigma_{\mathbb{S}^n}$. Given q > 0, and $\gamma \in (0, q^*]$, $\gamma \neq +\infty$, there is a $C_{n,q,\gamma} > 0$ such that

$$\left(\int_{\mathbb{S}^n} r_{\Omega}^{q} d\sigma_{\mathbb{S}^n}\right)^{\frac{1}{q}} \left(\int_{\mathbb{S}^n} u_{\Omega}^{-\gamma} d\sigma_{\mathbb{S}^n}\right)^{\frac{1}{\gamma}} \leq C_{n,q,\gamma}, \quad \forall \ \Omega \in \mathcal{K}_0^e.$$

Let Ω_j be a minimising sequence. Let $\gamma = -p$. Then $0 < \gamma < q^*$.

Solve the optimisation problem

$$\min_{\Omega\in\mathcal{K}_0^e}\left\{\widehat{\Phi}_{\rho,f}(\Omega):\ \int_{\mathbb{S}^n}r_\Omega^qd\sigma_{\mathbb{S}^n}=1\right\},\quad (\textit{Min Prob})$$

where $\widehat{\Phi}_{p,f}(\Omega) = \frac{1}{p} \int_{\mathbb{S}^n} f u_{\Omega}^p d\sigma_{\mathbb{S}^n}$. Given q > 0, and $\gamma \in (0, q^*]$, $\gamma \neq +\infty$, there is a $C_{n,q,\gamma} > 0$ such that

$$\left(\int_{\mathbb{S}^n} r_{\Omega}^q d\sigma_{\mathbb{S}^n}\right)^{\frac{1}{q}} \left(\int_{\mathbb{S}^n} u_{\Omega}^{-\gamma} d\sigma_{\mathbb{S}^n}\right)^{\frac{1}{\gamma}} \leq C_{n,q,\gamma}, \quad \forall \ \Omega \in \mathcal{K}_0^e.$$

Let Ω_j be a minimising sequence. Let $\gamma = -p$. Then $0 < \gamma < q^*$.

$$\begin{aligned} \widehat{\Phi}_{\rho,f}(\Omega_j) &= -\frac{1}{\gamma} \bigg[\int_{\{u_{\Omega_j} \text{ very small}\}} + \int_{\{u_{\Omega_j} \text{ not small, not large}\}} + \int_{\{u_{\Omega_j} \text{ very large}\}} \bigg] u_{\Omega_j}^{-\gamma} f d\sigma_{\mathbb{S}^n} \\ &\to 0 \text{ as max } u_{\Omega_j} \to +\infty. \end{aligned}$$

Solve the optimisation problem

$$\min_{\Omega\in\mathcal{K}_0^e}\left\{\widehat{\Phi}_{\rho,f}(\Omega):\ \int_{\mathbb{S}^n}r_\Omega^qd\sigma_{\mathbb{S}^n}=1\right\},\quad (\textit{Min Prob})$$

where $\widehat{\Phi}_{p,f}(\Omega) = \frac{1}{p} \int_{\mathbb{S}^n} f u_{\Omega}^p d\sigma_{\mathbb{S}^n}$. Given q > 0, and $\gamma \in (0, q^*]$, $\gamma \neq +\infty$, there is a $C_{n,q,\gamma} > 0$ such that

$$\left(\int_{\mathbb{S}^n} r_{\Omega}^{q} d\sigma_{\mathbb{S}^n}\right)^{\frac{1}{q}} \left(\int_{\mathbb{S}^n} u_{\Omega}^{-\gamma} d\sigma_{\mathbb{S}^n}\right)^{\frac{1}{\gamma}} \leq C_{n,q,\gamma}, \quad \forall \ \Omega \in \mathcal{K}_0^e.$$

Let Ω_j be a minimising sequence. Let $\gamma = -p$. Then $0 < \gamma < q^*$.

$$\begin{aligned} \widehat{\Phi}_{\rho,f}(\Omega_j) &= -\frac{1}{\gamma} \bigg[\int_{\{u_{\Omega_j} \text{ very small}\}} + \int_{\{u_{\Omega_j} \text{ not small, not large}\}} + \int_{\{u_{\Omega_j} \text{ very large}\}} \bigg] u_{\Omega_j}^{-\gamma} f d\sigma_{\mathbb{S}^n} \\ &\to 0 \text{ as max } u_{\Omega_j} \to +\infty. \end{aligned}$$

Note that $\widehat{\Phi}_{p,f}(\Omega_j) \leq \widehat{\Phi}_{p,f}(B_1) = -\frac{1}{\gamma} \int_{\mathbb{S}^n} f < 0.$

Solve the optimisation problem

$$\min_{\Omega\in\mathcal{K}_0^e}\left\{\widehat{\Phi}_{\rho,f}(\Omega):\ \int_{\mathbb{S}^n}r_\Omega^qd\sigma_{\mathbb{S}^n}=1\right\},\quad (\textit{Min Prob})$$

where $\widehat{\Phi}_{p,f}(\Omega) = \frac{1}{p} \int_{\mathbb{S}^n} f u_{\Omega}^p d\sigma_{\mathbb{S}^n}$. Given q > 0, and $\gamma \in (0, q^*]$, $\gamma \neq +\infty$, there is a $C_{n,q,\gamma} > 0$ such that

$$\left(\int_{\mathbb{S}^n} r_{\Omega}^q d\sigma_{\mathbb{S}^n}\right)^{\frac{1}{q}} \left(\int_{\mathbb{S}^n} u_{\Omega}^{-\gamma} d\sigma_{\mathbb{S}^n}\right)^{\frac{1}{\gamma}} \leq C_{n,q,\gamma}, \quad \forall \ \Omega \in \mathcal{K}_0^e.$$

Let Ω_j be a minimising sequence. Let $\gamma = -p$. Then $0 < \gamma < q^*$.

$$\begin{aligned} \widehat{\Phi}_{\rho,f}(\Omega_j) &= -\frac{1}{\gamma} \bigg[\int_{\{u_{\Omega_j} \text{ very small}\}} + \int_{\{u_{\Omega_j} \text{ not small, not large}\}} + \int_{\{u_{\Omega_j} \text{ very large}\}} \bigg] u_{\Omega_j}^{-\gamma} f d\sigma_{\mathbb{S}^n} \\ &\to 0 \text{ as max } u_{\Omega_j} \to +\infty. \end{aligned}$$

Note that $\widehat{\Phi}_{p,f}(\Omega_j) \leq \widehat{\Phi}_{p,f}(B_1) = -\frac{1}{\gamma} \int_{\mathbb{S}^n} f < 0$. Hence Ω_j is uniformly bounded and so converges to a limit Ω_0 solving (Min Prob).

Solve the optimisation problem

$$\min_{\Omega\in\mathcal{K}_0^e}\left\{\widehat{\Phi}_{\rho,f}(\Omega):\ \int_{\mathbb{S}^n}r_\Omega^qd\sigma_{\mathbb{S}^n}=1\right\},\quad (\textit{Min Prob})$$

where $\widehat{\Phi}_{p,f}(\Omega) = \frac{1}{p} \int_{\mathbb{S}^n} f u_{\Omega}^p d\sigma_{\mathbb{S}^n}$. Given q > 0, and $\gamma \in (0, q^*]$, $\gamma \neq +\infty$, there is a $C_{n,q,\gamma} > 0$ such that

$$\left(\int_{\mathbb{S}^n} r_{\Omega}^{q} d\sigma_{\mathbb{S}^n}\right)^{\frac{1}{q}} \left(\int_{\mathbb{S}^n} u_{\Omega}^{-\gamma} d\sigma_{\mathbb{S}^n}\right)^{\frac{1}{\gamma}} \leq C_{n,q,\gamma}, \quad \forall \ \Omega \in \mathcal{K}_0^e.$$

Let Ω_j be a minimising sequence. Let $\gamma = -p$. Then $0 < \gamma < q^*$.

$$\begin{aligned} \widehat{\Phi}_{\rho,f}(\Omega_j) &= -\frac{1}{\gamma} \bigg[\int_{\{u_{\Omega_j} \text{ very small}\}} + \int_{\{u_{\Omega_j} \text{ not small, not large}\}} + \int_{\{u_{\Omega_j} \text{ very large}\}} \bigg] u_{\Omega_j}^{-\gamma} f d\sigma_{\mathbb{S}^n} \\ &\to 0 \text{ as max } u_{\Omega_j} \to +\infty. \end{aligned}$$

Note that $\widehat{\Phi}_{p,f}(\Omega_j) \leq \widehat{\Phi}_{p,f}(B_1) = -\frac{1}{\gamma} \int_{\mathbb{S}^n} f < 0$. Hence Ω_j is uniformly bounded and so converges to a limit Ω_0 solving (Min Prob).

Since Ω_0 contains the origin in its interior, we show that $\partial \Omega_0$ is strictly convex and $C^{1,\alpha}$. We then verify that u_{Ω_0} solves (MAE). A key ingredient for studying (MAE) is its variational property: (MAE) is the Euler equation (up to a rescale) of

$$\mathcal{J}_{p,q,f,1}(\Omega) = \Phi_{p,f}(u_{\Omega}) + \Psi_{q,1}(r_{\Omega}),$$

where

$$\Phi_{p,f}(u) = \begin{cases} \frac{1}{p} \log \int_{\mathbb{S}^n} f u^p d\sigma_{\mathbb{S}^n}, & \text{if } p \neq 0, \\ \int_{\mathbb{S}^n} f \log u d\sigma_{\mathbb{S}^n}, & \text{if } p = 0, \end{cases}$$

and

$$\Psi_{q,g}(r) = \left\{ egin{array}{l} -rac{1}{q}\log \int_{\mathbb{S}^n}gr^qd\sigma_{\mathbb{S}^n}, & ext{if } q
eq 0, \ -\int_{\mathbb{S}^n}g\log rd\sigma_{\mathbb{S}^n}, & ext{if } q = 0. \end{array}
ight.$$

By studying the second variation of $\mathcal{J}_{p,q}$, we obtain a non-uniqueness result.

By studying the second variation of $\mathcal{J}_{p,q}$, we obtain a non-uniqueness result.

Theorem 4 (H.Chen-S.Chen-Li, 2018)

If p and q satisfy one of the following (A1)-(A3), then

$$\det(\nabla^2 u + uI) = \frac{\sqrt{u^2 + |\nabla u|^{2^{n+1-q}}}}{u^{1-p}} \quad on \ \mathbb{S}^n$$

has at least two solutions: $u_1 \equiv 1$, $u_2 \not\equiv 1$.

(A1)
$$q - 2n - 2 > p \ge 0$$
,
(A2) $p + 2n + 2 < q \le 0$,
(A3) $q > 0$ and $-q^* , where$

$$q^* = \begin{cases} \frac{q}{q-n} & \text{if } q > n+1, \\ n+1 & \text{if } q = n+1, \\ \frac{nq}{q-1} & \text{if } 1 < q < n+1, \\ +\infty & \text{if } 0 < q \le 1. \end{cases}$$

For any even function $\eta \in C^{\infty}(\mathbb{S}^n)$, $\eta \neq \text{const.}$,

$$\Omega^{\eta}_t := \{z \in \mathbb{R}^{n+1} : x \cdot z \le 1 + t\eta(x), \ x \in \mathbb{S}^n\} \in \mathcal{K}^e_0.$$

For any even function $\eta \in C^{\infty}(\mathbb{S}^n)$, $\eta \neq \text{const.}$,

$$\Omega^{\eta}_t := \{z \in \mathbb{R}^{n+1} : x \cdot z \leq 1 + t\eta(x), \ x \in \mathbb{S}^n\} \in \mathcal{K}^e_0.$$

When |t| is sufficiently small, Ω_t^{η} has support function $u(x, t) = 1 + t\eta(x)$.

For any even function $\eta \in C^{\infty}(\mathbb{S}^n)$, $\eta \neq \text{const.}$,

$$\Omega^{\eta}_t := \{z \in \mathbb{R}^{n+1} : x \cdot z \leq 1 + t\eta(x), \ x \in \mathbb{S}^n\} \in \mathcal{K}^e_0.$$

When |t| is sufficiently small, Ω_t^{η} has support function $u(x, t) = 1 + t\eta(x)$. We have

$$\left. rac{d}{dt}
ight|_{t=0} \mathcal{J}_{
ho,q,1,1}(\Omega^\eta_t) = 0$$

For any even function $\eta \in C^{\infty}(\mathbb{S}^n)$, $\eta \neq \text{const.}$,

$$\Omega^\eta_t := \{z \in \mathbb{R}^{n+1} : x \cdot z \leq 1 + t\eta(x), \ x \in \mathbb{S}^n\} \in \mathcal{K}^e_0.$$

When |t| is sufficiently small, Ω_t^{η} has support function $u(x, t) = 1 + t\eta(x)$. We have

$$\left. rac{d}{dt}
ight|_{t=0} \mathcal{J}_{
ho,q,1,1}(\Omega^\eta_t) = 0$$

$$\frac{d^2}{dt^2}\Big|_{t=0}\mathcal{J}_{p,q,1,1}(\Omega^{\eta}_t) = \int_{\mathbb{S}^n} |\nabla \eta|^2 d\sigma_{\mathbb{S}^n} - (q-p) \int_{\mathbb{S}^n} (\eta - \bar{\eta})^2 d\sigma_{\mathbb{S}^n}$$

where $\bar{\eta}:=\int_{\mathbb{S}^n}\eta d\sigma_{\mathbb{S}^n}$ is the mean value of $\eta.$

For any even function $\eta \in C^{\infty}(\mathbb{S}^n)$, $\eta \neq \text{const.}$,

$$\Omega^\eta_t := \{z \in \mathbb{R}^{n+1} : x \cdot z \leq 1 + t\eta(x), \ x \in \mathbb{S}^n\} \in \mathcal{K}^e_0.$$

When |t| is sufficiently small, Ω_t^{η} has support function $u(x, t) = 1 + t\eta(x)$. We have

$$\left. rac{d}{dt}
ight|_{t=0} \mathcal{J}_{
ho,q,1,1}(\Omega^\eta_t) = 0$$

$$\frac{d^2}{dt^2}\Big|_{t=0}\mathcal{J}_{p,q,1,1}(\Omega^\eta_t) = \int_{\mathbb{S}^n} |\nabla \eta|^2 d\sigma_{\mathbb{S}^n} - (q-p) \int_{\mathbb{S}^n} (\eta - \bar{\eta})^2 d\sigma_{\mathbb{S}^n}$$

where $\bar{\eta} := \int_{\mathbb{S}^n} \eta d\sigma_{\mathbb{S}^n}$ is the mean value of η . The Poincaré inequality on the sphere said

$$\inf\Big\{\frac{\int_{\mathbb{S}^n}|\nabla\eta|^2d\sigma_{\mathbb{S}^n}}{\int_{\mathbb{S}^n}\eta^2d\sigma_{\mathbb{S}^n}}:\ \eta\in C^\infty(\mathbb{S}^n) \text{ is even},\ \int_{\mathbb{S}^n}\eta d\sigma_{\mathbb{S}^n}=0,\eta\not\equiv 0\Big\}=2n+2;$$

Therefore if q > p + 2n + 2 then there is an η_0 such that

$$\left. rac{d^2}{dt^2}
ight|_{t=0} \mathcal{J}_{
ho,q,1,1}(\Omega_t^{\eta_0}) < 0.$$

Therefore if q > p + 2n + 2 then there is an η_0 such that

$$\left. rac{d^2}{dt^2}
ight|_{t=0} \mathcal{J}_{p,q,1,1}(\Omega_t^{\eta_0}) < 0.$$

Consequently

$$\begin{aligned} \mathcal{J}_{\rho,q,1,1}(\Omega_t^{\eta_0}) &= \mathcal{J}_{\rho,q,1,1}(B_1) + t \frac{d}{dt} \Big|_{t=0} \mathcal{J}_{\rho,q,1,1}(\Omega_t) + \frac{1}{2} t^2 \frac{d^2}{dt^2} \Big|_{t=0} \mathcal{J}_{\rho,q,1,1}(\Omega_t) + o(t^2) \\ &< \mathcal{J}_{\rho,q,1,1}(B_1), \text{ for } t \in (0, \varepsilon_0'), \end{aligned}$$

This shows that B_1 is not a minimiser.

Therefore if q > p + 2n + 2 then there is an η_0 such that

$$\left. rac{d^2}{dt^2}
ight|_{t=0} \mathcal{J}_{p,q,1,1}(\Omega_t^{\eta_0}) < 0.$$

Consequently

$$\begin{aligned} \mathcal{J}_{\rho,q,1,1}(\Omega_t^{\eta_0}) &= \mathcal{J}_{\rho,q,1,1}(B_1) + t \frac{d}{dt} \Big|_{t=0} \mathcal{J}_{\rho,q,1,1}(\Omega_t) + \frac{1}{2} t^2 \frac{d^2}{dt^2} \Big|_{t=0} \mathcal{J}_{\rho,q,1,1}(\Omega_t) + o(t^2) \\ &< \mathcal{J}_{\rho,q,1,1}(B_1), \ \text{ for } t \in (0, \varepsilon_0'), \end{aligned}$$

This shows that B_1 is not a minimiser.

But under the condition (A1)-(A3), we can show that there is a $\Omega \in \mathcal{K}_0^e$ minimising $\mathcal{J}_{p,q,1,1}$, and u_Ω is a solution to (MAE).

So $u_{\Omega} \not\equiv 1$, completing the proof.

Remark. Poincaré inequality on the sphere

$$\inf\left\{\frac{\int_{\mathbb{S}^n}|\nabla\eta|^2d\sigma_{\mathbb{S}^n}}{\int_{\mathbb{S}^n}\eta^2d\sigma_{\mathbb{S}^n}}:\ \eta\in C^\infty(\mathbb{S}^n) \text{ is even},\ \int_{\mathbb{S}^n}\eta d\sigma_{\mathbb{S}^n}=0, \eta\not\equiv 0\ \right\}=2n+2;$$

$$\inf\left\{\frac{\int_{\mathbb{S}^n}|\nabla\eta|^2d\sigma_{\mathbb{S}^n}}{\int_{\mathbb{S}^n}\eta^2d\sigma_{\mathbb{S}^n}}:\eta\in C^\infty(\mathbb{S}^n),\ \int_{\mathbb{S}^n}\eta d\sigma_{\mathbb{S}^n}=0,\eta\not\equiv 0\ \right\}=n.$$

Compute the second variation of the functionals

$$\widetilde{\mathcal{J}}_{p,n+1,1,1}(\Omega) = rac{1}{p}\log \int_{\mathbb{S}^n} u^p d\sigma_{\mathbb{S}^n} - rac{1}{n+1}\log \int r^{n+1}d\sigma_{\mathbb{S}^n},$$

for even case; and for non-even case,

$$\widetilde{\mathcal{J}}_{\rho}(\Omega,z) = rac{1}{
ho} \log \int_{\mathbb{S}^n} u_z^p d\sigma_{\mathbb{S}^n} - rac{1}{n+1} \log \int r_z^{n+1} d\sigma_{\mathbb{S}^n}$$

The functional is decreasing under flow

$$\partial_t X = -K^{\alpha} \nu, \alpha > \frac{1}{n+2},$$

which deforms hypersurfaces into a round point (Andrews-Guan-Ni [Adv Math 2016]; Brendle-Daskalopoulos-Choi [Acta Math 2017]).

Thank you for your attention.