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Why do we study quantum
computing?

Shor’s factorization algorithm.
Grover’s search algorithm

Quantum cryptography

lon trap, optics, superconductivity, cavity
gquantum electrodynamics, nuclear magnetic resonance, etc.
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Basic background

» Discover more problems to show that
guantum computing is more powerful than
classical computing

» These problems have the potential of
applications in other areas such as

cryptography.
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/ Shor’s Algorithm

Peter Shor’s factorization
algorithm
n=pxq

Polynomial- Time

" (0 g 7 3
However, we can not prove that
It Is strictly better than any

classical algorithm, since
we still do not know the classical
lower bound of factorization.

Is It better?
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Grover’s Algorithm

Search an unstructured
Quadratic speed up database

Quantum: O(+/N ) queries

It is exactly better Classical: Q(N) queries
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This Talk: TWO Problems

Deutsch-Jozsa Problem

Time-Space Complexity
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Abstract

In this talk, | would like to report a recent work
regarding:
1. An optimal exact quantum query algorithm
for generalized Deutsch-Jozsa problem

2. The characterization of all symmetric
partial Boolean functions with exact quantum
1-query complexity

3. A number of time-space complexity results

concerning quantum finite automata
9
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Outline

» 1. Motivations, Problems, Results

» 2. Preliminaries

» 3. Main Results

» 4. Methods of Proofs

» 5. Conclusions & Further Problems
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1. Motivations, Problems,
Results

» (1) Generalized Deutsch-Jozsa

» (2) Problems with exact quantum 1-query
complexity

» (3) Time-space complexity problems

2018MPAIS 11
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Motivation |

» The Deutsch-Jozsa promise problem [D]'92]:
x € {0,1}", |x| is the Hamming weight of x,
0 if|x| =0o0r|x|=n

bj(x) = {1 if |x| =n/2

0:(D)) = 1,D(D)) = +1

0 if|x[<1orlxl=zn—-1 ,
>D],1={1 TS sy [MIM1S]

Qe(DJp) <2

[D]'92] D. Deutsch, R. Jozsa, Rapid solution of problems by quantum
computation, In Proceedings of the Royal Society of London, 439A
(1992): 553—558.

[MIJM’15] A. Montanaro, R. Jozsa, G. Mitchison, On exact quantum query
complexity, Algorithmica419 (2015) 775--796.
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Problem |

k(0 iflxI<kor|x|zn—-k 9
> DJn = {1 if|x| =n/2 .

»Our result:
Theorem1 Qgz(DJ¥) =k +1andD(DJ¥) =n/2+k+ 1.

13




Motivation Il

Deutsch-Jozsa problem that i1s a symmetric
partial Boolean function can be solved by DJ
algorithm (exact quantum 1-query algorithm).

Then how to characterize the other symmetric
partial Boolean functions with exact quantum 1-
query complexity? Can such functions be solved
by DJ algorithm?

14
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Problem Il

» What can be solved with exact quantum 1-query
complexity?

> Our result:

» Theorem 2 Any symmetric partial Boolean function f has
Qr(f) = 1if and only if f can be computed by the Deutsch-
Jozsa algorithm.

15
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Motivation |11 (BPP and BQP)

Advantages of
Quantum Turing
Machines

Lower Bounds

It is very hard to prove strictly that
guantum Turing machines have
advantages in time complexity over
classical ones.

Indeed, it is very hard to find out
lower bounds of time complexity

in classical Turing machines.
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Problem: Another way to show the advantages of

guantum computing---Time-Space Complexity

Some scholars have contributed it,

For classical e.g., Borodin, Cook, Babai, Nisan,
models Szegedy,etc.
For quantum Klauck, Spalek, de Wolf, SIAM J.

models Comput. 36 (2007) 1472-1493
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/

Problem |11

Time—Space complexity:
quantum finite automata

VS
probabilistic Turing machines
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Our Results

For recognizing some languages, concerning the
time-space complexity:
» Two-way probabilistic finite automata (2PFA)

are strictly better than deterministic Turing
machines (DTM)

» Two-way finite automata with quantum and
classical states (2QCFA) are strictly better
than probabilistic Turing machines (PTM)

19
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Preliminaries

» Symmetric partial Boolean functions
» Classical query complexity

» Quantum query complexity

» Multilinear polynomials

» Quantum finite automata

» Communication complexity

20




Symmetric partial
Boolean functions

» Let f be a Boolean function from D < {0,1}" to {0, 1}. If
D = {0,1}", then f is called a total Boolean function.
Otherwise, f is called a partial Boolean function or a
promise problem.

» A Boolean function f is called symmetric if f (x) only
depends on the Hamming weight (i.e. |x|) of x, that is, if
x| = [y[, then f(x) = f(¥).

» (Given a partial Boolean function f with its domain of
definition D < {0,1}", if for any x € D, and y € {0,1}",
with x| = |y|, we have y € D, and f(x) = f(y),then fis
called a symmetrical partial Boolean function.

21




Representation of symmetric
partial Boolean functions

» Given a partial symmetric function f:{0,1}"* -
{0,1}, with the domain D of definition, it can be
equivalently described by a vector (by, by, ..., b,) € {0,1,*
}**1, where f(x) = by, i.e. by is the value of f(x) when
|x| =k, and f(x) is undefined' for bj,| =x.

» Example
f(X) = X1 V X9 b = (bo, bl! bz) = (0,1,1)
f(X) = X1 N\ Xy b = (bO!bl! bz) = (0,0,1)

22




Isomorphism of symmetric
partial Boolean functions

» Two symmetric partial functions f and g over
{0,1}" are isomorphic if they are equal up to
negations and permutations of the input variables,

and negation of the output variable.
» Concerning the n-bit symmetric partial functions, it is clear that the
following four functions are isomorphic to each other:

(bo» b1, s bn) s (bpybpcay s bo);

(bg, by, ..., by); (b, byy_1, -, Do)
Another simple example:
f(x) =x1Vx, b = (by, b1, b;) = (0,1,1)
g(x) = x; Ax; b = (by, by, bz) = (0,0,1)

23
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Classical query complexity

» An exact classical (deterministic) query algorithm to
compute a Boolean function f:{0,1}"* —» {0,1} can be
described by a decision tree.

» If the output of a decision tree is f (x), for all x €
{0,1}", the decision tree is said to "compute" f. The
depthof a tree is the maximum number of queries that
can happen before a leaf is reached and a result
obtained.

» D(f), the deterministic decision tree complexity of f is
the smallest depth among all deterministic decision trees
that compute f.

24
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Example

> Deterministic query complexity
(how many times we need to query the input bits)

= Example: 0 1
f(x1,x3) = x1 D x5 x x
2 2

> Decision tree
The minimal depth over all decision trees computing

f is the exact classical query complexity (deterministic
query complexity, decision tree complexity) D (f).

2017/1/2
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Quantum query algorithms

» Quantum T -query algorithm (its complexity is T')

f:10,1}" - {0,1}, input bit string x = x4 -** xp,

We consider a Hilbert space H with basis state |, j) for

i €{0,1,...,n},j €{1,...,m} (m can be chosen arbitrarily)
A T-query quantum algorithm:

|¢f) = UrQxUr—10Qyx - QxU10QxUy |¢S>;

Uo — Q U

il
i
O
&
il
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Black box

A T-query quantum algorithm:

|1/Jf) = UrQxUr—1Qyx - QxU10QxUy |1/Js);
and then the algorithm performs a measurement,

where
Qli,j) = (—1)*%i|i,j)fori € {1,...,n}
Qx10,j) =10,j)

li, jy—> Qx — (—=1)¥ii, )

= Deutsch-Jozsa’s query box, Grover’s query box
1) = Q, — (=1)™[i)

27
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Quantum query complexity

The final state is then measured with a measurement {M, , M4}.

For an input x € {0,1}", we denote A(x) the output of the
guantum query algorithm A.

» We say that the quantum query algorithm A computes f

within an error ¢ if for every input x € {0,1}" it holds that
PrlA(x) =f(x)] = 1 —=.

» If €=0, we says that the quantum algorithm is exact.

> Q:(f),0(f),Qr(f) are the smallest T among all quantum
query algorithms that compute f (with error &, bounded-
error, exact, respectively).

28
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Multilinear polynomials

Every Boolean function f: {0,1}" - {0,1} has a unique
representation as an n-variate multilinear polynomial over
the reals, i.e., there exist real coefficients as such that

fO )= ) as| |
Scn]

LES

The degree of f is the degree of its largest monomial:
deg(f) = max{|S|:as # 0}.
For example, AND,(x{,x,) = x{ - x, and
OR,(x1,x2) = x1+ X5 — X1+ Xo.

29




Multilinear polynomials representinglés;
symmetric partial Boolean functions

> Let f be a partial function with a domain of definition
D < {0,1}*. For 0 < ¢ < 1/2, we say a real multilinear
polynomial p approximates f with error ¢ if:

(1) |p(x) — f(x)| < eforall x € D;

(2) 0 <p(x)<1forallx € {0,1}".

» The approximate degree of f with error ¢, denoted by
dege(f), is the minimum degree among all real
multilinear polynomials that approximate f with error €.

In particular,
degqo(f) £ deg(f)

30



Quantum Finite Automata (QFA)

» QFA—simpler models

» Here we employ two-way finite automata
with quantum and classical states (2QCFA)

first proposed by Ambainis and Watrous

» We also appropriately compare with
classical Turing machines

2018MPAIS 31




2QCFA---Semi—quantum finite

automata

Jl JE ...... J
| |____|__I |
- L
| —l || | —l » Accept

S] I ~ & > SZ _l_A"T’ S?n — Sr: | ~ & ..Sn+] >

| 0 | B — | o » Reject
I | I

I | (! | | (I_: | | (I_:

g, v v 0 Uy ¥ 0 2 o v v J_ "
©] ¥, e ¥, C] 4

2QCFA---simpler than quantum Turing machines
2QCFA---more complicated than one-way
quantum finite automata

2018MPAIS 32
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Time and space complexity of QFA

» Time complexity T(|x]): For input x, T(|x]|) Is
the steps of the machines operating, where |X|
denotes the length of x with Binary coding
mode.

» Space complexity (state complexity) S:
The number of (qu)bits required to represent
the automaton states.

33
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Time-Space complexity of QFA

Time-Space complexity---The product
of Time and Space:

T(Time) - S(Space)

Similarly, Time-Space complexity for Turing
machines, but the space complexity depends
on the amount of memory consumed by the
computation.

34




Communication complexity =

» (Two-way) Communication complexity model

Inputs: x € {0,1}" y €{0,1}"

| l

messages
P
Bob
] > ]

! !

Output: f(z,y) € {0,1} flz,y) € {0,1)

» There are three kinds of communication complexities according to
the models (or protocols) used by Alice and Bob

® Deterministic
® Probabilistic
® Quantum

2018/1/1 33



. o) F X #
Two most studied problems

x,y € {0,1}"
»Equality
EQ(X,y)=1 if x=y and 0 otherwise.

> Intersection

INT(X,y)=1 if there is an index I such that
x;=7y; = 1 and O otherwise.

2018MPAIS
2018/1/1 36
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Methods of Proofs

We would like to outline the basic
Ideas and methods for the proofs of
main results.

37




pJk — 0 iflx| <kor|x|=>n—k
"1 if|x| =n/2

Theorem 1 QE(D]f,f) =k +1and D(D],’,f) = 2 + k + 1.

Proof method:

® Using the exact quantum query algorithms for computing
EXACTF and due to Ambainis et al. (TQC’13), we can give
an exact quantum (k + 1)-query algorithm for computing
DJX

® On the other hand, we will prove that deg(DJ¥) > 2k + 2,
and therefore

Qz(DJ¥) = deg(DJ})/2 =k + 1

38
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Qr(DJ¥) <k +1

Subroutine: Xquery(m,x) [from Ambainis et al. (TQC’13)
]

Input: x = x4, X5, ..., X
Output: (0,0) = |x| # %

(l,]) = X; F Xj

39




Algorithm 2 Algorithm for DJ':;

. procedure DJ(integer n, integer k, array x)

1

2 integer [:=1

3: while [ < k do —_—
4 Output < Xquery(n, x)

if Output=(0,0) then return 0

ut

6: end if

T if Output=(i, j) then

8: x <+ x\ {x;x;}

9: [ «— 1+ 1

10: T — 1n — 2

11: end if

12: end while

13: Output < Xquery(n, x)

14: if Output=(0,0) then return 0O
15: end if

16: if Output=(i, j) then return 1
17: end if

18: end procedure

40
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deg(DJX) = 2k + 2

Lemma: For any symmetrically partial Boolean function f over
{0,1}™ with domain of definition D, suppose deg.(f) = d
Then there exists a real multilinear polynomial g approximates f
with error € and g can be written as

q(x) =co+c Vi + Vo + -+ c4Vy,
where ¢; ER,V; = x1 + -+ x, Vo = x1Xp + XyX3+ -+
Xy 1 X "

Suppose that deg(DJX) < 2k + 1. Then we can get a
contradiction. So, deg(D]fl) > 2k + 2 follows.

41




Theorem:Qr(f) = 1if and only if f canbe\(\ X
computed by DJ algorithm

Lemmal Letn > 1andlet f:{0,1}"* = {0,1} be an n-bit symmetrically
partial Boolean function. Then:

(1) deg(f) = 1iff f is isomorphic to the function frf;)
(2) deg(f) = 2 iff f is isomorphic to one of the functions

1) _ 0 if || =0, (3) z) = [ 0 if |£C| =0 or |£I7| =n,
— = 4
fn,k(m) { 1 ]_f |fE| — k, ‘fnvl( ) \ ]_ if |Qj| o l,
0 if |z| =0, [0 if |z =0 or |z| =n
i 1 if Jz| =k or x| =k+1, Ju” (@) | 1 if [z] = [n/2] or |2| = [n/2],

wheren—12> k >|n/2],and [n/2] =1 = [n/2].

42
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Two Lemmas

» Lemma. Let n be even. Then QE(f) = 1 if
and only if f is isomorphic to one of

these functions: f,(ll,)( and fnn/z K 2%

» Lemma. Let n be odd. Then QE(f) = 1 if
and only if f is isomorphic to one of

these functions: f k> [n/2].

nk’

43
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Equivalence transformation

» Indeed, these functions with exact quantum 1-
query complexity can be essentially transtormed
into DJ problem by padding some zeros into the
input string. So, QE(f) = 1 if and only if f can
be computed by DJ algorithm.

44




Results concerning time-
space complexity

Due to the previous results of Grover, Buhrman,
Klauck, Ambainis, Watrous, and Cleve etc., | would
like to report a number of results regarding Time-
Space complexity of probabilistic automata and
gquantum automata for recognizing the following

languages:

1. Lgq(n) = {x#"y[x,y € {0,1}", EQ(x, y) = 1}
2. Lint(n) = {x#"y|x,y € {0,1}",INT(x,y) = 1}

3. Lye(n) = {x#"y|x,yv € {0,1}", REN(%,y) = 1}

45
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> Lgq(n) = {x#"y|x,y € {0,1}", EQ(x y) = 1}

» There is a 2PFA that accepts the language Lgq(n) In
the time T using the space SsuchthatT - S =
O(n -logn). Let A be a DTM that accepts the
language Lgq(n) in time T’ using space S . Then,

> T'-S" = Q(n?).

46
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Result 1

Leq(n) = x#"y|x,y € {0,1}", EQ(x,y) = 1}

- ] - ]
» (Time complexity) 2DFA recognize Lgq(n) with
O(n) time.

» (Space complexity) It is clear that 2DFA
recognize Lgqo(n) with O(n?) states, i.e.
O(log n) space.

> Itis clear that 2PFA will use the same time and
space complexity to recognize the language.

2018/1/1 v



Proof idea of Result 1

Lgqo(n) = {x#"y|x,y € {0,1}", EQ(x,y) = 1}

» Time-space complexity (T - S) for 2PFA
Proof (main idea)
1. Choose randomly a prime p
. Calculate Num(x) with the mput “X-reglon”_

3. Skip the “#-region”

4. Calculate Num(y) with the input “y-region”

5. If Num(x) = Num(y), accept the input.

O.W reject

All the steps can be done in a 2PFA

Time: O(n) Space: O(log n) (no more than n® states)

48

2018/1/1



Proof ideas of Result 1

Lgo(n) = {x#"ylx,y € {0,1},EQ(x,y) = 1}
» Time-space complexity (T - S) for 2PFA

All the steps can be done in a 2PFA

Time: O‘n‘ Space: O(log n)  (no more than n® states‘
Lower bound for DTM

The deterministic communication complexity for
EQ(x,y) IS Q(n).
Assuming that the DTM use T time, there is most T' /n

rounds that “x-region” communicate with “y-region”.
Suppose the space using by the DTM is S, therefore

%xS=Q(n)=>T><S=Q(n2)

49
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2018MPAIS Result 2 ‘I’J‘:K-?

> LINT(n) — {X #nY|X,y € {Oil}n: INT(X, Y) — 1}

» There i1s a 2QCFA that accepts the language
Lyt (n) In the time T using the space S such that

> T-S=0(n%2-logn).

> Let Abe a PTM that accepts the language Liyt(n) In
time T’ using space S’ . Then, T' - S" = Q (n?).

50
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Result 2 @1tuxe

» Lint(n) = {x#%y|x,y € {0,1} INT(x,y) = 1}
» Proof main idea

We will use the 2QCFA to simulate guantum query
algorithm.

Theorem 7. The computation of a quantum query algorithm A for a Boolean
function f:{0,1}" — {0,1} can be simulated by a 2QCFA M. Moreover, if the
quantum query algorithm A wuses t queries and | quantum basis states, then the

2QCFA M uses O(l) quantum basis states, O(n?) classical states, and O(t - n)
time.

2018/1/1 >



Result 2

> LINT(n) — {X #nY|X'y € {O'l}n' INT(X, Y) — 1}

» Proof main idea
We will use the 2QCFA to simulate quantum query
algorithm.
Letz = x A y be abit-wise AND of x and y, run the
guantum search (Grover) algorithm on z. We can find out
there iIs a 2QCFA recognizing Lyt (n).

52
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Result 2

> LINT(n) — {X #nY|X'y € {O,l}n, INT(X' Y) — 1}
» Proof main idea
We will use the 2QCFA to simulate guantum query algorithm.

] - ]
« Letz = x A yisabit-wise AND of xand y, run the
guantum search (Grover) algorithm on z. We can find out

there Is a 2QCFA recognizing Lyr(n).

e Grover algorithm:
0(+/n) queries, O(n) quantum basis states

Time for 2QCFA: 0(v/n) x 0(n) = 0(n3/?)
Space for ZQCFA classical states O(n?), quantum states O(n),
S O(logn® +logn) = O(logn)

T-S=0(n%2"logn)

53
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Result 2

» Lint(n) = {x#"y[x,y € {0,1}", INT(x,y) = 1}

» Lower bound for PTM

» The probabilistic communication complexity for
INT(x,y) IS Q(n).

» We can prove that the time-space complexity for
Lint(n) is Q(n?).

54
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Result 3 Fux s

> It has been proved (Klauck, STOC'00) that the exact
one-way quantum finite automata have no advantage
over the classical finite automata in recognizing
languages.

» How about exact two-way quantum finite automata ?

55
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Result 3

» We will show that exact 2QCFA have time-space
advantages over their classical counterparts.

Let us consider the sequence of functions studied in
(STOC’13).
- ] - ]
Let us first recall the function NE (x4, x,, x3) as follows:
» NE(xq,x5,x3) = 0if x;y = x, = x5 and
» NE(xq,x5,x3) = 1otherwise. Now we can define a
sequence of functions NE¢ as follows:
> (1) NE°(x;) = x; and
> (QNE%(xq, ., %q0) = NE(NE4Y(xy, ., Xga-1),
NEd_l(XSd—1+1, e X2,3d—1), NE%-1 (X2.3d—1+1, ,X3d))

56
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Result 3

» We will show that exact 2QCFA have advantage
over their classical counterparts.

Let n = 3¢, we now define the function
RNE(x,y) — NEd(xl N Vi) ) X A :Vn)»

where x,y € {0,1}", and let us consider the
following language

LNE(n) — {x#ny | T,y € {03 ].}n,RNE(CU,y) — 1}

57
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Result 3

» There Is an exact 2QCFA that accepts the language
Lyg(n) In the time T using the space S such that T -
S =0(n'% -logn).

» Let Abe a PTM that accepts the language Lyg(n) in
time T’ using space S’ . Then, T' - S’ = Q (n?).

» Proof (main idea)

Using the idea of Ambainis’s exact query algorithm in
(SOTC’13)

58
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Result 3

» There is an exact 2QCFA that accepts the language
Lyg(n) In the time T using the space S such that T -
S =0(n'% -logn).

» Let Abe a PTM that accepts the language Lyg(n) in
time T’ using space S’ . Then, T' - S’ = Q (n?).

» Lower bound for PTM

» The probabilistic communication
complexity for RNE(x,y) is Q(n).

» We can prove that the time-space
complexity for RNE(x,y) is Q(n?).

2018/1/1
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Conclusions

0 ifIx|]<kor|x|=n—k

k _
> D = {1 if|x| =n/2
Theorem. QE(D] ) k+1and D(D] ) =n/2+k+ 1.

Theorem. Any symmetric partial Boolean function f has

Qr(f) = 1ifand only if f can be computed by the Deutsch-
Jozsa algorithm.

Theorem. Two-way probabilistic finite automata (2PFA) are
strictly better than deterministic Turing machines (DTM);

Two-way finite automata with quantum and classical states

(2QCFA) are strictly better than probabilistic Turing machines
(PTM).



Problems

> Let f:{0,1}" - {0,1} be an n-bit symmetric partial
Boolean function with domain of definition D, and let
0<k< [gj . Then, for 2k + 1 <deg(f) < 2(k + 1),
how to characterize f by giving all functions with
degrees from 2k + 1 to 2k + 27

» For the function DWnk’ldefined as:

0 if x| =k,

can we give optimal exact quantum query algorithms for
any k and [?

2018/1/12

61



2018MPAIS

 We have studied the time-space complexity of 2PFA
vs DTM, and of 2QCFA vs PTM, but their definitions
for space complexity are different, so these results
need be further considered.

* How about for 2PFA vs exact
2QCFA?

* How about for PTM vs QTM?

62
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A useful reference

 H. Buhrman and R. de Wolf, Complexity
measures and decision tree complexity: a
survey, Theoretical Computer Science, 288
(2002) 1-43.
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Thank you for your attention!
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