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Why do we study quantum 
computing?

Computing speed up：Shor’s factorization algorithm、
Grover’s search algorithm

Security：Quantum cryptography (BB84—Bennett and 
Brassard in 1984)

Physical realization：Ion trap, optics, superconductivity, cavity 
quantum electrodynamics, nuclear magnetic resonance, etc.
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Development of Computers

Microcosmic world —
—Quantum effect
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微观世界——量子效应

计算机
加速

晶体管
密度

量子效
应

控制量
子效应

为何要控
制而不利
用量子效

应？

利用量
子效应

量子
计算
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Basic background

➢Discover more problems to show that 

quantum computing is more powerful than 

classical computing

➢These problems have the potential of 

applications in other areas such as 

cryptography.
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Peter Shor’s factorization 
algorithm

𝑛 = 𝑝 × 𝑞
Polynomial- Time

However, we can not prove that

it is strictly better than any

classical algorithm, since

we still do not know the classical

lower bound of factorization.

Is it better?

Shor’s Algorithm
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Search an unstructured 
database  Quadratic speed up

Quantum: 𝑂( 𝑁 ) queries

Classical:  Ω(𝑁) queriesIt is exactly better

Grover’s Algorithm

2018MPAIS



This Talk: TWO Problems

Deutsch-Jozsa Problem

Time-Space Complexity
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Abstract

In this talk, I would like to report a recent work

regarding:

1. An optimal exact quantum query algorithm

for generalized Deutsch-Jozsa problem

2. The characterization of all symmetric

partial Boolean functions with exact quantum

1-query complexity

3. A number of time-space complexity results

concerning quantum finite automata
9
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➢1. Motivations, Problems, Results

➢2. Preliminaries

➢3. Main Results

➢4. Methods of Proofs 

➢5. Conclusions & Further Problems 
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1. Motivations, Problems, 

Results

➢(1) Generalized Deutsch-Jozsa

➢(2) Problems with exact quantum 1-query 

complexity 

➢(3) Time-space complexity problems

112018MPAIS



Motivation I

12

➢ The Deutsch-Jozsa promise problem [DJ’92]:
𝑥 ∈ 0,1 𝑛, |x| is the Hamming weight of 𝑥,

𝐷𝐽 𝑥 = ቊ
0
1

𝑖𝑓 x = 0 𝑜𝑟 |x| = 𝑛
𝑖𝑓 |x| = 𝑛/2

𝑄𝐸 𝐷𝐽 = 1, 𝐷 𝐷𝐽 =
𝑛

2
+ 1

➢ 𝐷𝐽𝑛
1 = ቊ

0
1

𝑖𝑓|x| ≤ 1 𝑜𝑟|x| ≥ 𝑛 − 1
𝑖𝑓|x| = 𝑛/2

[MJM’15]

𝑄𝐸 𝐷𝐽𝑛
1 ≤ 2

[DJ’92] D. Deutsch, R. Jozsa, Rapid solution of problems by quantum 
computation,  In Proceedings of the Royal Society of London, 439A 
(1992): 553—558.
[MJM’15] A. Montanaro, R. Jozsa,  G. Mitchison, On exact quantum query 
complexity, Algorithmica419 (2015) 775--796.
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Problem I

13
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Motivation II

Deutsch-Jozsa problem that is a symmetric

partial Boolean function can be solved by DJ

algorithm (exact quantum 1-query algorithm).

Then how to characterize the other symmetric

partial Boolean functions with exact quantum 1-

query complexity? Can such functions be solved

by DJ algorithm?
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Problem II
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It is very hard to prove strictly that
quantum Turing machines have
advantages in time complexity over
classical ones.

Advantages of 

Quantum Turing 

Machines

Indeed, it is very hard to find out
lower bounds of time complexity

in classical Turing machines.

Lower Bounds

Motivation III (BPP and BQP)
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Some scholars have contributed it,
e.g., Borodin, Cook, Babai, Nisan,
Szegedy,etc.

For classical 

models

Klauck,  Spalek, de Wolf, SIAM J. 

Comput. 36 (2007) 1472–1493

For quantum 

models

Problem: Another way  to show the advantages of 
quantum computing---Time-Space Complexity
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Problem III

Time-Space complexity:
quantum finite automata
vs
probabilistic Turing machines
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Our Results

For recognizing some languages, concerning the

time-space complexity:

➢ Two-way probabilistic finite automata (2PFA) 
are strictly better than  deterministic Turing 
machines (DTM)

➢ Two-way finite automata with quantum and 
classical states (2QCFA) are strictly better 
than probabilistic Turing machines (PTM)

19
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Preliminaries

➢Symmetric partial Boolean functions

➢Classical query complexity 

➢Quantum query complexity 

➢Multilinear polynomials

➢Quantum finite automata

➢Communication complexity

20
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Symmetric partial 

Boolean functions

21



Representation of symmetric 

partial Boolean functions
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Isomorphism of symmetric 

partial Boolean functions
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Classical query complexity

24

➢ An exact classical (deterministic) query algorithm  to 
compute a Boolean function 𝑓: {0,1}𝑛 → {0,1} can be 
described by a decision tree.

➢ If the output of a decision tree is 𝑓(𝑥), for all 𝑥 ∈
{0,1}𝑛, the decision tree is said to "compute" 𝑓. The 
depthof a tree is the maximum number of queries that 
can happen before a leaf is reached and a result 
obtained.

➢ 𝐷(𝑓), the deterministic decision tree complexity of 𝑓 is 
the smallest depth among all deterministic decision trees 
that compute 𝑓.
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Example

25

➢ Deterministic query complexity 

(how many times we need to query the input bits)

▪ Example:  

    𝑓 𝑥1, 𝑥 = 𝑥1  𝑥 

➢ Decision tree

The minimal depth over all decision trees computing 
𝑓 is the exact classical query complexity (deterministic 
query complexity, decision tree complexity) 𝐷(𝑓) 

2017/1/2 1

𝑥1

𝑥 

0 1

0 1

𝑥 

1 0

1 1
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Quantum query algorithms
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U0 Q QU1 UT…
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Black box

27

𝑄𝑥

𝑄𝑥
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Quantum query complexity

28
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Multilinear polynomials

29
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Multilinear polynomials representing 

symmetric partial Boolean functions
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Quantum Finite Automata (QFA)

➢ QFA—simpler models 

➢ Here we employ two-way finite automata 

with quantum and classical states (2QCFA)  

first proposed by Ambainis and Watrous

➢We also appropriately compare with 

classical Turing machines

312018MPAIS



2QCFA---Semi-quantum finite 
automata

32
2018MPAIS

2QCFA---simpler than quantum Turing machines 
2QCFA---more complicated than one-way 
quantum finite automata



Time and space complexity of QFA

➢Time complexity T(|x|): For input x, T(|x|) is 

the steps of the machines operating, where |x| 

denotes the length of x with Binary coding 

mode.

➢Space complexity (state complexity) S: 

The number of (qu)bits required to represent 

the automaton states.

33
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Time-Space complexity of QFA

Time-Space complexity---The product 
of Time and Space：

𝐓(𝐓𝐢𝐦𝐞) ⋅ 𝐒(Space)

Similarly, Time-Space complexity for Turing
machines, but the space complexity depends
on the amount of memory consumed by the
computation.

34
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➢ (Two-way) Communication complexity model

➢ There are three kinds of communication complexities according to 
the models (or protocols) used by Alice and Bob

 Deterministic 

 Probabilistic 

 Quantum

35
2018/1/1
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Communication complexity



Two most studied problems

𝑥, 𝑦 ∈ 0,1 𝑛

➢Equality

EQ(x,y)=1 if x=y and 0 otherwise.

➢ Intersection

INT(x,y)=1  if there is an index i such that 

𝑥𝑖= 𝑦𝑖 = 1 and 0 otherwise.

36
2018/1/1
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Methods of Proofs

We would like to outline the basic 

ideas and methods for the proofs of 

main results.
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𝑫𝑱𝒏
𝒌 = ቊ

𝟎
𝟏

𝒊𝒇 𝒙 ≤ 𝒌 𝒐𝒓 |𝐱| ≥ 𝒏 − 𝒌
𝒊𝒇|𝐱| = 𝒏/𝟐

38



𝑄𝐸 𝐷𝐽𝑛
𝑘 ≤ 𝑘 + 1

39
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deg 𝐷𝐽𝑛
𝑘 ≥ 2𝑘 + 2

41
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Theorem:𝑸𝑬(𝒇) = 𝟏 𝒊𝒇 𝒂𝒏𝒅 𝒐𝒏𝒍𝒚 𝒊𝒇 𝒇 can be 
computed by DJ algorithm 

42

where 𝑛 − 1 ≥ 𝑘 ≥ ⌊𝑛/2⌋, and 𝑛/2 ≥ 𝑙 ≥ ⌊𝑛/2⌋ 



Two Lemmas

43
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Equivalence transformation
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Results concerning time-

space complexity

Due to the previous results of Grover, Buhrman,

Klauck, Ambainis, Watrous, and Cleve etc., I would

like to report a number of results regarding Time-

Space complexity of probabilistic automata and

quantum automata for recognizing the following

languages:

1. LEQ n = x #𝑛y x, y ∈ 0,1 𝑛, EQ(x, y) = 1}

2. LINT n = x #𝑛y x, y ∈ 0,1 𝑛, INT(x, y) = 1}

3. LNE n = x #𝑛y x, y ∈ 0,1 𝑛, REN(x, y) = 1}

45



Result 1

46
2018/1/1
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➢ LEQ n = x #𝑛y x, y ∈ 0,1 𝑛, EQ(x, y) = 1}

➢ There is a 2PFA  that accepts the language LEQ(n) in 

the time T using the space S such that T ⋅ S =

𝐎 n ⋅ log n  Let A be a DTM that accepts the 

language LEQ(n) in time T′ using space S′ . Then,

➢ T′ ⋅ S′ = 𝛀 (𝑛 ).

2018MPAIS



Result 1
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LEQ n = x #𝑛y x, y ∈ 0,1 𝑛, EQ(x, y) = 1}

➢ (Time complexity) 2DFA recognize LEQ n with 

O(n) time.

➢ (Space complexity) It is clear that 2DFA 

recognize LEQ n with 𝑂(𝑛 ) states, i.e. 

𝑂(log n) space. 

➢ It is clear that 2PFA will use the same time and 

space complexity to recognize the language.



Proof idea of Result 1
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LEQ n = x #𝑛y x, y ∈ 0,1 𝑛, EQ(x, y) = 1}

➢ Time-space complexity (T ⋅ S) for 2PFA

Proof (main idea)

1. Choose randomly a prime 𝑝

2. Calculate Num(x) with the input “x-region”                

3. Skip the “#-region”

4. Calculate Num(y) with the input “y-region” 

5. If Num x = Num(y), accept the input. 

O.W  reject

All the steps can be done in a 2PFA

Time: O(n)    Space: O(log n)    (no more than  𝑛6 states )  



Proof ideas of Result 1
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LEQ n = x #𝑛y x, y ∈ 0,1 𝑛, EQ(x, y) = 1}

➢ Time-space complexity (T ⋅ S) for 2PFA

All the steps can be done in a 2PFA

Time: O(n)    Space: O(log n)    (no more than  𝑛6 states ) 

➢ Lower bound for DTM  

The deterministic communication complexity for  

EQ(x, y) is 𝛀(𝑛) 

Assuming that the DTM use 𝑇 time, there is most 𝑇/𝑛
rounds that “x-region” communicate with “y-region”.  

Suppose the space using by the DTM is 𝑆,  therefore

𝑇

𝑛
× 𝑆 = 𝛀 𝑛 ⇒ 𝑇 × 𝑆 = 𝛀 𝑛 



Result 2
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➢ LINT n = x #𝑛y x, y ∈ 0,1 𝑛, INT(x, y) = 1}

➢ There is a 2QCFA  that accepts the language 

LINT(n) in the time T using the space S such that 

➢ T ⋅ S = 𝐎 n3/ ⋅ log n  

➢ Let A be a PTM that accepts the language LINT(n) in 

time T′ using space S′ . Then, T′ ⋅ S′ = 𝛀 (𝑛 ).

2018MPAIS



Result 2
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➢ LINT n = x #𝑛y x, y ∈ 0,1 𝑛, INT(x, y) = 1}

➢ Proof main idea

We will use the 2QCFA to simulate quantum query 

algorithm.  



Result 2
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➢ LINT n = x #𝑛y x, y ∈ 0,1 𝑛, INT(x, y) = 1}

➢ Proof main idea

We will use the 2QCFA to simulate quantum query 
algorithm.  

Let 𝑧 = 𝑥 ∧ 𝑦 be a bit-wise AND of x and y,  run the 
quantum search (Grover) algorithm on z.  We can find out 
there is a 2QCFA recognizing LINT n . 



Result 2
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➢ LINT n = x #𝑛y x, y ∈ 0,1 𝑛, INT(x, y) = 1}
➢ Proof main idea

We will use the 2QCFA to simulate quantum query algorithm. 

• Let 𝑧 = 𝑥 ∧ 𝑦 is a bit-wise AND of x and y,  run the 
quantum search (Grover) algorithm on z.  We can find out 
there is a 2QCFA recognizing LINT n . 

• Grover algorithm:

𝐎( 𝑛) queries,  O(n) quantum basis states

Time for 2QCFA: 𝐎 𝑛 × 𝐎 𝑛 = 𝐎 𝑛3/ 

Space for 2QCFA:  classical states 𝐎 𝑛 , quantum states 𝐎 𝑛 ,
𝑆 = 𝑂 log 𝑛 + log 𝑛 = 𝑂 log 𝑛

T ⋅ S = 𝐎 n3/ ⋅ log n



Result 2
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➢ LINT n = x #𝑛y x, y ∈ 0,1 𝑛, INT(x, y) = 1}

➢ Lower bound for PTM 

➢ The probabilistic communication complexity for  

INT(x, y) is 𝛀(𝑛) 

➢ We can prove that the time-space complexity for 

LINT n is 𝛀(𝑛 ) 



Result 3
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➢ It has been proved (Klauck, STOC'00) that the exact

one-way quantum finite automata have no advantage 

over the classical finite automata in recognizing 

languages.  

➢ How about exact two-way quantum finite automata ?



Result 3
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➢ We will show that exact 2QCFA have time-space 
advantages over their classical counterparts.

Let us consider the sequence of functions studied in 
(STOC’13). 

Let us first recall  the function 𝑁𝐸(𝑥1, 𝑥 , 𝑥3) as follows:

➢ 𝑁𝐸(𝑥1, 𝑥 , 𝑥3) = 0 𝑖𝑓 𝑥1 = 𝑥 = 𝑥3 and

➢ 𝑁𝐸(𝑥1, 𝑥 , 𝑥3) = 1 otherwise.  Now we can define a 
sequence of functions 𝑁𝐸𝑑 as follows:

➢ (1) 𝑁𝐸0(𝑥1) = 𝑥1 and

➢ (2)𝑁𝐸𝑑 𝑥1, … , 𝑥3𝑑 = 𝑁𝐸(𝑁𝐸𝑑−1 𝑥1, … , 𝑥3𝑑−1 ,

𝑁𝐸𝑑−1 𝑥3𝑑−1+1, … , 𝑥 ⋅3𝑑−1 , 𝑁𝐸𝑑−1 𝑥 ⋅3𝑑−1+1,… , 𝑥3𝑑 )

2018MPAIS



Result 3
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➢ We will show that exact 2QCFA have advantage 

over their classical counterparts.

Let 𝑛 = 3𝑑, we now define the function

𝑅𝑁𝐸(𝑥, 𝑦) = 𝑁𝐸𝑑(𝑥1 ∧ 𝑦1, … , 𝑥𝑛 ∧ 𝑦𝑛),

where 𝑥, 𝑦 ∈ {0,1}𝑛, and let us consider the 

following language



Result 3
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➢ There is an exact 2QCFA  that accepts the language 

LNE(n) in the time T using the space S such that T ⋅
S = 𝐎 n1 87 ⋅ log n  

➢ Let A be a PTM that accepts the language LNE(n) in 

time T′ using space S′ . Then, T′ ⋅ S′ = 𝛀 (𝑛 ).

➢ Proof (main idea)

Using the idea of Ambainis’s exact query algorithm  in  

(SOTC’13)



Result 3
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➢ There is an exact 2QCFA  that accepts the language 

LNE(n) in the time T using the space S such that T ⋅
S = 𝐎 n1 87 ⋅ log n  

➢ Let A be a PTM that accepts the language LNE(n) in 

time T′ using space S′ . Then, T′ ⋅ S′ = 𝛀 (𝑛 ).

➢ Lower bound for PTM 
➢ The probabilistic communication 

complexity for  RNE(x, y) is 𝛀(𝑛) 
➢ We can prove that the time-space 

complexity for RNE(x, y) is 𝛀(𝑛 ) 



➢ 𝐷𝐽𝑛
𝑘 = ቊ

0
1

𝑖𝑓 x ≤ 𝑘 𝑜𝑟 |x| ≥ 𝑛 − 𝑘
𝑖𝑓|x| = 𝑛/2

Theorem. 𝑄𝐸 𝐷𝐽𝑛
𝑘 = 𝑘 + 1 and 𝐷 𝐷𝐽𝑛

𝑘 = 𝑛/2 + 𝑘 + 1.

Theorem.  Any symmetric partial Boolean function 𝑓 has 
𝑄𝐸(𝑓) = 1 if and only if 𝑓 can be computed by the Deutsch-
Jozsa algorithm.

Theorem. Two-way probabilistic finite automata (2PFA) are 
strictly better than  deterministic Turing machines (DTM);

Two-way finite automata with quantum and classical states 
(2QCFA) are strictly better than probabilistic Turing machines 
(PTM).

2018/1/12 60
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➢ Let 𝑓: {0,1}𝑛 → {0,1} be an 𝑛-bit symmetric partial
Boolean function with domain of definition 𝐷, and let

0 ≤ 𝑘 < ⌊
𝑛

 
⌋ . Then, for 2𝑘 + 1 ≤ deg 𝑓 ≤ 2(𝑘 + 1),

how to characterize 𝑓 by giving all functions with
degrees from 2𝑘 + 1 to 2𝑘 + 2?

➢ For the function 𝐷𝑊𝑛
𝑘,𝑙defined as:

can we give optimal exact quantum query algorithms for 
any 𝑘 and 𝑙?
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• We have studied the time-space complexity of 2PFA
vs DTM, and of 2QCFA vs PTM, but their definitions
for space complexity are different, so these results
need be further considered.

• How about for 2PFA vs exact
2QCFA?

• How about for PTM vs QTM?

62
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A useful reference

• H. Buhrman and R. de Wolf, Complexity 
measures and decision tree complexity: a 
survey, Theoretical Computer Science, 288 
(2002) 1-43.
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Thank you for your attention！
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