量子网络理论及相关数学问题

浙江大学数学学院

武俊德

Contents

（2）1．Tensor Networks
（2）2．Quantum Networks
（3）3．Linear Maps
（3）4．Choi－Jamiolkowski Isomorphism
（3）5．The Link Product
（3）6．Conclusion

1 Tensor Networks

\square A tensor network is simply a collection of tensors connected by contractions．
Tensor network methods are employed in modern quantum information sci－ ence，condensed matter physics，mathematics and computer science，repre－ sentation theory，category theory，etc．

［1］．Roger Penrose．Applications of negative dimensional tensors．

Let V be a finite－dimensional Hilbert space，V^{*} be the dual space of V ．Then each basis $\left\{e^{j}\right\}_{j}$ of V ，there is a dual basis $\left\{\eta_{k}\right\}_{k}$ of V^{*} ，that is $\eta_{j}\left(e^{i}\right)=\delta_{j}^{i}$ ．

For each finite－dimensional Hilbert space W_{i} ，given a basis $\left\{e^{(i) k}\right\}_{k}$ of W_{i} and a dual basis $\left\{\eta_{k}^{(i)}\right\}_{k}$ of V_{i}^{*} ，then each order－(p, q) tensor

$$
T \in W_{1} \otimes W_{2} \otimes \cdots \otimes W_{p} \otimes V_{1}^{*} \otimes V_{2}^{*} \otimes \cdots \otimes V_{q}^{*}
$$

can be represented by

$$
T=\sum_{i_{1} \cdots i_{p} ; j_{1} \cdots j_{q}} T_{i_{1} \cdots i_{p}}{ }^{j_{1} \cdots j_{q}} e^{(1)^{i_{1}}} \otimes \cdots \otimes e^{(p)^{i_{p}}} \otimes \eta_{j_{1}}^{(1)} \otimes \cdots \otimes \eta_{j_{q}}^{(q)}
$$

第4页共 45 页
返 回

Example．Diagram（a）represents a vector，diagram（b）is a matrix，and diagram（c）the tensor $T^{i}{ }_{j k}$ ．
（a）
$\stackrel{\mid i}{ }$
$\stackrel{\rightharpoonup}{b}$
（b） $\begin{gathered}\left.\right|^{j} \\ \\ \\ \\ \\ \\ \left.\right|_{k}\end{gathered}$

The map $W \otimes W^{*} \rightarrow \mathbb{K}, w \otimes \phi \mapsto \phi(w)$ decides a natural bilinear map．
One can apply this map to contraction of the corresponding upper and lower indices．

For example，if we happen to have $W_{1}=V_{1}$ we may contract the corre－ sponding indices on T ：

$$
\begin{aligned}
& C_{1,1}(T)=T_{i_{1} \cdots i_{p}}{ }_{1} \cdots j_{q} \\
& \eta_{j_{1}}^{(1)}\left(e^{(1)^{i_{1}}}\right) e^{(2)^{i_{2}}} \otimes \cdots \otimes e^{(p)^{i_{p}}} \otimes \eta_{j_{2}}^{(2)} \otimes \cdots \otimes \eta_{j_{q}}^{(q)} \\
&=T_{k i_{2} \cdots i_{p}}{ }^{k j_{2} \cdots j_{q}} e^{(2)^{i_{2}}} \otimes \cdots \otimes e^{(p)^{i_{p}}} \otimes \eta_{j_{2}}^{(2)} \otimes \cdots \otimes \eta_{j_{q}}^{(q)}
\end{aligned}
$$

返 回
since the defining property of a dual basis is $\eta_{j_{1}}^{(1)}\left(e^{(1) i_{1}}\right)=\delta_{j_{1}}^{i_{1}}$ ．
\square The order－(p, q) tensor T can be reinterpreted as multilinear map T^{\prime} from vectors to vectors：

$$
\begin{gathered}
T^{\prime}: V_{1} \otimes \cdots \otimes V_{q} \rightarrow W_{1} \otimes \cdots \otimes W_{p} \\
T^{\prime}\left(v^{(1)} \otimes \cdots \otimes v^{(q)}\right)=T_{i_{1} \cdots i_{p}}^{j_{1} \cdots j_{q}} e^{(1)^{i_{1}}} \otimes \cdots e^{(p)^{i_{p}}} \times \eta_{j_{1}}^{(1)}\left(v^{(1)}\right) \times \cdots \eta_{j_{q}}^{(q)}\left(v^{(q)}\right),
\end{gathered}
$$

where the tensor T contract the corresponding indices．
The order－(p, q) tensor T can be also reinterpreted as multilinear map $T^{\prime \prime}$

目录页

44

第 6 页共 45 页
返 回

全 屏 显示

Thus，we may move any of the vector spaces to the other side of the arrow by taking their dual：
$W \otimes V^{*} \cong \mathbb{K} \rightarrow W \otimes V^{*} \cong V \rightarrow W \cong V \otimes W^{*} \rightarrow \mathbb{K} \cong W^{*} \rightarrow V^{*}$.

Connecting two tensor legs with a wire means that the corresponding indices are contracted，that is，summed over．
（a）

（b）
${ }^{j}\left(\frac{\stackrel{1}{2}_{\Gamma}^{(4)}}{l}\right)^{2}=\frac{b^{i}}{\frac{B}{l}}$

访问主页
标题页

```
目录页
```

44

第 7 页共 45 页
返 回
\square Two or more tensors in a diagram form a tensor network．

Recently，there are many important papers：
［2］．Jacob Biamonte．Charged String Tensor Networks．Proceedings of the National Academy of Sciences of U．S．A， 2017
［3］．Glen Evenbly．Hyperinvariant Tensor Networks and Holography． Physical Review Letter．119，141602， 2017
［4］．F．Motzoi，M．P．Kaicher，F．K．Wilhelm．Linear and Logarith－ mic Time Compositions of Quantum Many－Body Operators．Physical Review Letter．119，160503， 2017
\square An important milestone was David Deutsch＇s pioneering use of the diagram－ matic notation in quantum computing，developing the so called quantum circuit model．

The quantum circuits model is widely used to describe experimental imple－ mentations of quantum algorithms，to classify the entangling properties and computational power of quantum gates．

返 回
［5］．D．Deutsch．Quantum computational networks．Proceedings of the Royal Society of London A：Mathematical，Physical and Engi－ neering Sciences， 1989.
\square An Example，Quantum circuits
Quantum circuit diagrams is as follows：

The CNOT and Hadamard gates are：

$$
\begin{aligned}
\mathrm{CNOT} & =\sum_{a b}|a, a \oplus b\rangle\langle a, b| \\
\mathrm{H} & =\frac{1}{\sqrt{2}} \sum_{a b}(-1)^{a b}|a\rangle\langle b|
\end{aligned}
$$

标题页
目录页
44

第 11 页共 45 页
where the addition in the CNOT gate is modulo 2，that is $1 \oplus 1=0 \oplus 0=$ $0,1 \oplus 0=0 \oplus 1=1,1 \oplus a=\neg a$ where $\neg a$ is the Boolean negation of a ．

The diagram translates into the following equation：

$$
\mathrm{CNOT}^{i l}{ }_{j m} \mathrm{H}^{j}{ }_{k}=\frac{1}{\sqrt{2}} \sum_{j k m}(-1)^{j k}|j, j \oplus m\rangle\langle k, m| .
$$

\square In quantum information science，one often introduces a computational basis $\{|k\rangle\}_{k}$ for each space $V,\{\langle j|\}_{j}$ for its dual basis，and

$$
T=\sum_{i j k} T^{i}{ }_{j k}|i\rangle\langle j k|
$$

（a）
（b）
$\bigcup=\delta^{i j}$
（c）
$\bigcap=\delta_{i j}$

The identity tensor（a）is used for index contraction，cup（b）and the cap（c） raise and lower tensor indices by bending the corresponding tensor legs．
\square Expanding them in the basis are：

$$
\begin{aligned}
|I\rangle & =\delta^{i}{ }_{j}|i\rangle\langle j|=\sum_{k}|k\rangle\langle k|, \\
|\cup\rangle & =\delta^{i j}|i j\rangle=\sum_{k}|k k\rangle, \\
\langle\cap| & =\delta_{i j}\langle i j|=\sum_{k}\langle k k| .
\end{aligned}
$$

返 回

2．Snake tensors
One can raise and then lower an index or vice versa，which amounts to doing nothing at all．This idea is captured diagrammatically by the so called snake：

In abstract index notation it is expressed succinctly as

$$
\delta^{i j} \delta_{j k}=\delta^{i}{ }_{k}=\delta_{k j} \delta^{j i} .
$$

3．Swap tensor

Crossing two wires can be thought of as swapping the relative order of two vector spaces．If both wires represent the same vector space，it represents swapping the states of the two subsystems：
（a）
（b）

第 15 页共 45 页

返 回

全屏显示

It is an important quantum gate in quantum computing，with a well－known implementation in terms of three controlled－NOT gates：

4．Transpose of Matrices
Given $A^{i}{ }_{j}$ ，we may reverse the positions of its indices using a cup and a cap． This is equivalent to transposing the corresponding linear map in the basis：

目 录 页

第 16 页共 45 页

返 回

5．Map－state duality
（a）

Using the snake tensor，we have：

返 回

6．Trace of matrices
Diagram（a）below represents the trace $A^{i}{ }_{i}$ ．Diagram（b）represents the trace $B^{i q}{ }_{i q}$ ．

目 录 页

第 18 页共 45 页
返 回

7．Singular value decomposition
Singular value decomposition of matrices is at the heart of many numerical
simulation algorithms．If we can factor $(1,1)$ tensor into blocks with simple properties：
（i）$(1,1)$ diagonal tensor storing the singular values，
（ii）two（ 1,1 ）unitary tensors，
The we can factor all (p, q) tensors．

第 19 页共 45 页
$(1,1)$ tensor can be considered as linear maps $T: A \rightarrow B$ ，where A and B
返 回

$$
T_{a}^{b}=U^{b}{ }_{j} \Sigma^{j}{ }_{i} V^{i}{ }_{a},
$$

where U and V are unitary，and Σ is real，non－negative，diagonal and has the singular values $\left\{\sigma_{k}\right\}_{k}$ of T on its diagonal．It can be expanded as

$$
\Sigma=\sum_{k} \sigma_{k}|k\rangle_{B}\left\langle\left. k\right|_{A} .\right.
$$

\square Diagrammatically this is represented as

$$
\underline{A}-\frac{B}{T}=\underline{A} \operatorname{V}^{A} \stackrel{B}{U} \underline{B}
$$

Now using the wire bending techniques，we have the famous Schmidt de－ composition theorem：

Given a vector $|\psi\rangle \in A \otimes B$ ，we may use the snake equation to convert it

第 20 页共 45 页
返 回

全屏显示

The singular values $\left\{\sigma_{k}\right\}_{k}$ now correspond to the Schmidt coefficients．
\square Schmidt decomposition theorem has important applications in quantum in－ formation theory．

Diagrammatically Schmidt decomposition theorem is represented as

$$
\langle\sqrt[\psi]{\frac{A}{B}}=\sqrt[\psi]{\frac{B}{\square}}=\sqrt[\underbrace{\frac{B}{U}}]{\frac{A}{B}}
$$

返 回

全屏显示

8．Matrix product states

Given a n qubits quantum state $|\psi\rangle$ ，fully describing this state requires an amount of information that grows exponentially with n ，that is

$$
|\psi\rangle=\sum_{i j \cdots k} \psi^{i j \cdots k}|i j \cdots k\rangle,
$$

has 2^{n} coefficients $\psi^{i j \cdots k}$ ，this is too difficult ！！
We need to find new representation of $|\psi\rangle$ such that the data is less intensive． We wish to write $|\psi\rangle$ as

$$
|\psi\rangle=\sum_{i j \cdots k} \operatorname{Tr}\left(A_{i}^{[1]} A_{j}^{[2]} \cdots A_{k}^{[n]}\right)|i j \cdots k\rangle,
$$

标题页
目 录 页

44

第 22 页共 45 页

返 回
全屏显示
where $A_{i}^{[1]}, A_{j}^{[2]}, \cdots, A_{k}^{[n]}$ are indexed sets of matrices．Calculating the com－ ponents of $|\psi\rangle$ becomes to calculate the the products of matrices，hence the name matrix product state．
\square If the matrices are bounded in size，then the amount of information required to describe them is only linear in n ．For instance，if the matrices are at most χ by χ ，the size of the representation scales as $n \chi^{2}$ ．

We can represent quantum states into quantum networks by recursive appli－ cation of the singular value decomposition process，for example for 4 qubit state $|\psi\rangle=\sum_{i j k m} \psi^{i j k m}|i j k m\rangle$ ，we have：

目 录 页

44

第 23 页共 45 页

返 回

全屏显示

If the tensors are grouped，we have

and

返 回

全屏显示

There is a lot of excitement about tensor network algorithms，for example：
Matrix Product States（MPS），Tree Tensor Networks（TTN），Projected En－ tangled Pair States（PEPS），etc．

目 录 页

第 25 页共 45 页

返 回

全 屏 显示
\square If the tensors are grouped，we have

and

返 回

全屏显示

There is a lot of excitement about tensor network algorithms，for example：
Matrix Product States（MPS），Tree Tensor Networks（TTN），Projected En－ tangled Pair States（PEPS），etc．

目 录 页

第 27 页共 45 页

返 回

全屏显示

关 闭

退 出

2 Quantum Networks

为了研究量子问题而建立的量子网络理论是近 20 年来发展起来的一个重要研究方向。代表性论文是：
［1］．J．I．Cirac，P．Zoller，H．J．Kimble，and H．Mabuchi．Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network．Physical Review Letters 78，3221， 1997.
［2］．R．Milo，S．Itzkovitz，N．Kashtan．Response to comment on net－ work motifs：Simple building blocks of complex networks and super－ families of evolved and designed networks．Sciences，305， 2004

目 录 页

第 28 页共 45 页

返 回
［3］．S．Perseguers，M．Lewenstein，A．Acin，J．I．Cirac．Quantum complex networks．Nature Physics 6，539－543， 2010
［4］．G．Chiribella，G．M．D．Ariano，P．Perinotti．Optimal Cloning of Unitary Transformation．Physical Review Letters 101，180504， 2008
［5］．G．Chiribella，G．M．D．Ariano，P．Perinotti．Quantum Circuit Architecture．Physical Review Letters 101，060401， 2008
［6］．A．Bisio，G．Chiribella，G．M．D．Ariano，S．Facchini，and P． PerinottiG．Optimal Quantum Tomography of States，Measurements， and Transformations．Physical Review Letters 102，010404， 2009

文献［4］，［5］，［6］基于著名的Choi－Jamiolkowski 同构来建立量子网络理论，我们将简单介绍该理论。

3 Linear Maps

\square In this talk，all complex Hilbert space H is finite dimension．We have

$$
\mathcal{L}\left(H_{a} \otimes H_{b} \otimes \cdots \times H_{c}\right)=\mathcal{L}\left(H_{a}\right) \otimes \mathcal{L}\left(H_{b}\right) \cdots \times \mathcal{L}\left(H_{c}\right)
$$

This shows that if $\left.A \in \mathcal{L}\left(H_{a} \otimes H_{b}\right) \otimes \cdots \times H_{c}\right)$ ，then there exists

$$
A_{i} \in \mathcal{L}\left(H_{a}\right), \quad B_{i} \in \mathcal{L}\left(H_{b}\right), \cdots, \quad C_{i} \in \mathcal{L}\left(H_{c}\right)
$$

such that

$$
A=\sum_{i} A_{i} \otimes B_{i} \cdots \otimes C_{i}
$$

We adopt these convention：
$\square H_{a b \ldots n}=H_{a} \otimes H_{b} \otimes \cdots \otimes H_{n}$ ．
$\square A_{a b \ldots n}$ means $A \in \mathcal{L}\left(H_{a b \ldots n}\right)$ ；
$\square A_{b \mid a}$ means $A \in \mathcal{L}\left(H_{a}, H_{b}\right)$ ；
$\square A_{a b} B_{b c}$ denotes $\left(A_{a b} \otimes I_{c}\right)\left(I_{a} \otimes B_{b c}\right)$ ；
$\square r_{a}$ denotes partial trace over H_{a} ；
$\square{ }^{T_{a}}$ denotes partial transposition over H_{a} ．

4 Choi－Jamiolkowski Isomorphism

Theorem．The map

$$
\mathfrak{C}: \mathcal{L}\left(\mathcal{L}\left(H_{0}\right), \mathcal{L}\left(H_{1}\right)\right) \rightarrow \mathcal{L}\left(H_{1} \otimes H_{0}\right)
$$

is defined by

$$
\mathfrak{C}: \mathcal{M} \mapsto M_{10}, \quad M_{10}=\sum_{i j} \mathcal{M}\left(E_{i j}\right) \otimes E_{i j}
$$

第 32 页共 45 页
返 回
is an isomorphism between $\mathcal{L}\left(\mathcal{L}\left(H_{0}\right), \mathcal{L}\left(H_{1}\right)\right)$ and $\mathcal{L}\left(H_{1} \otimes H_{0}\right)$ ，
where $E_{i j}$ is the matrix of i－th row and j－column is 1 ，otherwise is 0 ．
The operator $M=\mathfrak{C}(\mathcal{M})$ is called the Choi operator of \mathcal{M} ．

The inverse map

$$
\mathfrak{C}^{-1}: \mathcal{L}\left(H_{1} \otimes H_{0}\right) \rightarrow \mathcal{L}\left(\mathcal{L}\left(H_{0}\right), \mathcal{L}\left(H_{1}\right)\right)
$$

is decided by

$$
\left[\mathfrak{C}^{-1}\left(M_{10}\right)\right](X)=\operatorname{Tr}_{0}\left[\left(I_{1} \otimes X^{T}\right) M_{10}\right],
$$

where $M_{10} \in \mathcal{L}\left(H_{1} \otimes H_{0}\right), X \in \mathcal{L}\left(H_{0}\right)$ ．

第 33 页共 45 页

5 The Link Product

\square Let

$$
\mathcal{M} \in \mathcal{L}\left(\mathcal{L}\left(H_{0}\right), \mathcal{L}\left(H_{1}\right)\right), \quad \mathcal{N} \in \mathcal{L}\left(\mathcal{L}\left(H_{1}\right), \mathcal{L}\left(H_{2}\right)\right)
$$

Consider the composition

$$
\mathcal{F}:=\mathcal{N} \circ \mathcal{M} \in \mathcal{L}\left(\mathcal{L}\left(H_{0}\right), \mathcal{L}\left(H_{2}\right)\right),
$$

we get

返 回

We denote

$$
N * M=\operatorname{Tr}_{1}\left[\left(I_{2} \otimes M_{10}^{T_{1}}\right)\left(N_{21} \otimes I_{0}\right)\right] .
$$

Where $M=M_{10}, \quad N=N_{21}$ ．
\square Consider

$$
\mathcal{M} \in \mathcal{L}\left(\mathcal{L}\left(H_{0} \otimes H_{2}\right), \mathcal{L}\left(H_{1} \otimes H_{3}\right)\right)
$$

$\mathcal{N} \in \mathcal{L}\left(\mathcal{L}\left(H_{3} \otimes H_{5}\right), \mathcal{L}\left(H_{4} \otimes H_{6}\right)\right)$,

标题 页

第 35 页共 45 页
返 回

$$
\mathcal{M} \leftrightarrow M \in \mathcal{L}\left(H_{1} \otimes H_{3} \otimes H_{0} \otimes H_{2}\right),
$$

$$
\mathcal{N} \leftrightarrow N \in \mathcal{L}\left(H_{4} \otimes H_{6} \otimes H_{3} \otimes H_{5}\right)
$$

－

$$
\mathcal{N} \star \mathcal{M}:=\left(\mathcal{N} \otimes \mathcal{I}_{1}\right) \circ\left(\mathcal{M} \otimes \mathcal{I}_{5}\right),
$$

$$
\mathcal{N} \star \mathcal{M} \leftrightarrow N * M=\operatorname{Tr}_{3}\left[\left(I_{456} \otimes M_{1302}^{T_{3}}\right)\left(I_{012} \otimes N_{4635}\right)\right] .
$$

\square Definition．Let

$$
M \in \mathcal{L}\left(\bigotimes_{i \in \Lambda} H_{i}\right), \quad N \in \mathcal{L}\left(\bigotimes_{j \in J} H_{j}\right)
$$

where Λ and J are two finite set of indexes．
Then the link product $N * M$ is an operator in

$$
\mathcal{L}\left(\left(\bigotimes_{i \in \Lambda \backslash J} H_{i}\right) \otimes\left(\bigotimes_{j \in J \backslash \Lambda} H_{j}\right)\right)
$$

is defined by

$$
N * M:=\operatorname{Tr}_{\Lambda \cap J}\left[\left(I_{J \backslash \Lambda} \otimes M^{T_{\Lambda \cap J}}\right)\left(I_{\Lambda \backslash J} \otimes N\right)\right] .
$$

\square If $\Lambda \cap J=\emptyset$ ，then

$$
N * M=N \otimes M,
$$

if $\Lambda=J$ ，then

$$
N * M=\operatorname{Tr}\left[M^{T} N\right] .
$$

返 回
\square Definition．A quantum network is a directed acyclic graph：

第 39 页共 45 页
返 回全屏显示

Equivalent following network：

\square If we let

The quantum network is：

第 41 页 共 45 页

返 回
\square If we let

$$
\mathcal{H}_{A_{i}}=\mathcal{H}_{n} \otimes \mathcal{H}_{m} \otimes \mathcal{H}_{l} .
$$

The quantum network is：

第 42 页共 45 页
返 回

6 Conclusion

\square For above network，note that the input space is：

$$
H_{i n}=H_{0} \otimes H_{1} \otimes H_{4} \otimes H_{6} \otimes H_{12}
$$

output space is

$$
H_{\text {out }}=H_{9} \otimes H_{10} \otimes H_{13} .
$$

\square Theorem 1．Each quantum network is decide by a positive operator in $\mathcal{L}\left(H_{\text {in }} \otimes H_{\text {out }}\right)$ ．

Converse，under a constrain condition，each positive operator in $\mathcal{L}\left(H_{\text {in }} \otimes\right.$ $\left.H_{\text {out }}\right)$ can be realized by a quantum network which is made of a series of Isometries Quantum Channel．
\square Link product told us that tensor networks are special quantum net－ works．

7 References

\square［1］D．Deutsch．Quantum computational networks．Proceedings of the Roy－ al Society of London A：Mathematical，Physical and Engineering Sciences， 1989.
［2］Jacob Biamonte，Ville Bergholm．Tensor Networks in a Nutshell．to appear in Contemporary Physics．
［3］Christopher J．Wood，Jacob Biamonte，and David G．Cory．Tensor net－ works and graphical calculus for open quantum systems．Quantum Infor． Comput．， 2015
［4］Joyal R，Street A．The geometry of tensor calculus．Advances in Math．， 1991

标题 页
目录页

第 44 页共 45 页
返 回

全屏显示
关 闭
［5］Mingji Xia，Peng Zhang，and Wenbo Zhao．Computational complexity of counting problems on 3－regular planar graphs．Theoretical Computer Science， 2007

Thank your attention！

返 回
全屏显示

