量子系统的拓扑和几何 （Geometric Phases for the observable）

陈泽乾
中国科学院武汉物理与数学研究所

哈尔滨工业大学，2018年01月06日

Contents

Dirac－von Neumann formulation of quantum mechanics

Mathematical formulation of quantum mechanics

$\left(P_{1}\right)$ A quantum system Q is mathematically associated with a Hilbert space \mathbb{H} and is completely described by a unit vector ψ in \mathbb{H} ，which is called a（vector）state；and every observable for Q is represented by a self－adjoint operator A on \mathbb{H} ．
$\left(P_{2}\right)$ The system Q as described by vector states is changed with time according to Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \frac{d \psi}{d t}=H \psi \tag{1.1}
\end{equation*}
$$

where H is a Hermitian operator on \mathbb{H} ，and $\mathrm{i}=\sqrt{-1}$ ．
$\left(P_{3}\right)$ At the state ψ ，by the observation of a quantity described by a self－adjoint operator A with eigenstates $\psi_{1}, \psi_{2}, \ldots$ ，the state ψ will be changed to the state ψ_{j} with probability $\left|\left\langle\psi, \psi_{j}\right\rangle\right|^{2}$ ，whose expectation equals to $\langle\psi, A \psi\rangle$ ．

The geometric phase for the quantum state

At a（pure）state $\psi \in \mathbb{H}$ ，the expectation of any observable A ，

$$
\langle A\rangle_{\psi}=\langle\psi, A \psi\rangle=\langle\tilde{\psi}, A \tilde{\psi}\rangle, \quad \tilde{\psi}=e^{\mathrm{i} \theta} \psi, \theta \in[0,2 \pi),
$$

$e^{\mathrm{i} \theta}$ is called a phase factor and θ is a phase．

Berry＇s Phase

Berry showed that when H undergoes adiabatic evolution along a closed curve Γ in the parameter space M ，then a state that remains as an eigenstate of $H(R)$ corresponding to a non－degenerate eigenvalue $E(R)$ develops a geometrical phase γ which depends only on the geometry of Γ ，as described by Simon．
［Berry］M．V．Berry，Quantal phase factors accompanying adiabatic changes，Proceedings of the Royal Society of London，Series A 392 （1984），45－57．
［Simon］B．Simon，Holonomy，the quantum adiabatic theorem， and Berry＇s phase，Physical Review Letters 51 （1983），

The geometric phase for the quantum state

Given a cyclic evolution $C:[0, T] \ni t \rightarrow \psi(t)$ with $\psi(T)=e^{\mathrm{i} \phi} \psi(0)$ ，which satisfies the Schrödinger equation

$$
\mathrm{i} \frac{d \psi}{d t}=h(t) \psi
$$

where $h(t)$ is a time－dependent Hamiltonian，the geometric phase of Aharonov and Anandan is defined to be

$$
\beta=\phi+\int_{0}^{T}\langle\psi(s), h(s) \psi(s)\rangle d s
$$

depends only on the closed curve $\mathcal{C}: t \rightarrow \varrho(t)=|\psi(t)\rangle\langle\psi(t)|$ in the state space satisfying the Liouville－von Neumann equation

$$
\mathrm{i} \frac{d \varrho(t)}{d t}=[h(t), \varrho(t)]
$$

［AA］Y．Aharonov，J．Anandan，Phase change during a cyclic quantum evolution，Physical Review Letters 58 （1987）， 1593－1596．

The fiber bundle over the state space

The principal fiber bundle：
（a）The total space is the unit sphere of \mathbb{H} ， $\mathbf{S}(\mathbb{H})=\{\psi:\|\psi\|=1, \psi \in \mathbb{H}\}$ ．
（b）The base space is the state space， $\mathcal{S}(\mathbb{H})=\{|\psi\rangle\langle\psi|: \psi \in \mathbf{S}(\mathbb{H})\} \cong \mathcal{P}(\mathbb{H})=\{[\psi]: \psi \in \mathbf{S}(\mathbb{H})\}$ with $[\psi]=\left\{e^{\mathrm{i} \theta} \psi: \theta \in[0,2 \pi)\right\}$ ．
（c）$\eta=(\mathbf{S}(\mathbb{H}), \mathcal{P}(\mathbb{H}), \pi, \mathcal{U}(1))$ with the structure group $\mathcal{U}(1)$ ．
（d）The canonical connection $\mathcal{A}=\langle\psi, d \psi\rangle$ ．

Expression for the geometric phase on the state space

The curve

$$
\tilde{C}:[0, T] \ni t \mapsto \tilde{\psi}(t)=e^{\mathrm{i} \int_{0}^{t}\langle\psi(s), h(s) \psi(s)\rangle d s} \psi(t)
$$

is the horizontal lift of $\mathcal{C}: t \rightarrow \varrho(t)=|\psi(t)\rangle\langle\psi(t)|$ in $\mathcal{S}(\mathbb{H})$ ，i．e．

$$
\left\langle\tilde{\psi}(t), \frac{d}{d t} \tilde{\psi}(t)\right\rangle=0,
$$

such that

$$
\tilde{\psi}(T)=e^{\mathrm{i} \beta} \mid \psi(0)
$$

Moreover，

$$
\beta=\int_{0}^{T}\left\langle\bar{\psi}(t), \frac{d}{d t} \bar{\psi}(t)\right\rangle d t=\oint_{\bar{C}}\langle\bar{\psi}, d \bar{\psi}\rangle
$$

for any closed curve $\bar{C}:[0, T] \ni t \rightarrow \bar{\psi}(t)$ with $\bar{\psi}(0)=\bar{\psi}(T)$ such that $\pi(\bar{\psi})=|\psi\rangle\langle\psi|$ ．

New formulation of quantum mechanics

$\left(Q_{1}\right)$ A quantum system Q associated with a Hilbert space \mathbb{H} is described by an orthonormal basis W ，which is called a prototype；and every observable W is represented by a self－adjoint operator A on \mathbb{H} ．
$\left(Q_{2}\right)$ The system Q as described by prototypes is changed with time according to the equation for the associated bases $W_{t}=\left(\psi_{n}(t)\right)_{n \geq 1}$ in \mathbb{H} ，

$$
\mathrm{i} \frac{d \psi_{n}(t)}{d t}=-H \psi_{n}(t), \quad \forall n \geq 1
$$

where H is a Hermitian operator on \mathbb{H} ．
$\left(Q_{3}\right)$ For a given prototype W ，a quantum state is defined as a valuation for the complete family of obeservables which is diagonal under the corresponding basis W ，which is characterized by either a vector or singular state．

Cyclic evolution for the observable

－Consider $C:[0, T] \ni t \mapsto W_{t}=\left(\left|\psi_{n}(t)\right\rangle\right)_{n \geq 1}$ satisfying the skew Schrödinger equation

$$
\mathrm{i} \frac{d \psi_{n}(t)}{d t}=-h(t) \psi_{n}(t), \quad \forall n \geq 1
$$

with $W_{0}=\left(\left|\psi_{n}(0)\right\rangle\right)_{n \geq 1}$ being a basis of \mathbb{H} ．
－Given any fixed family of distinct real numbers $\left(\lambda_{n}\right)_{n \geq 1}$ ， $X(t)=\sum_{n \geq 1} \lambda_{n}\left|\psi_{n}(t)\right\rangle\left\langle\psi_{n}(t)\right|$ satisfies the the Heisenberg equation

$$
\mathrm{i} \frac{d X(t)}{d t}=[X(t), h(t)]
$$

in the observable space．
－ $\mathcal{C}:[0, T] \ni t \mapsto X(t)$ is cyclic in the quantal observable space if $X(0)=X(T)$ ．

Geometric phases for the cyclic evolution of observable

1）$C:[0, T] \ni t \mapsto W_{t}=\left(\left|\psi_{n}(t)\right\rangle\right)_{n \geq 1}$ with

$$
\left|\psi_{n}(T)\right\rangle=e^{\mathrm{i} \phi_{n}}\left|\psi_{n}(0)\right\rangle \text { with } \phi_{n} \in[0,2 \pi) \text { for } n \geq 1
$$

2）The geometric phases over the \mathcal{C} are defined as

$$
\beta_{n}=\phi_{n}-\int_{0}^{T}\left\langle\psi_{n}(t), h(t) \psi_{n}(t)\right\rangle d t
$$

3）$\tilde{C}:[0, T] \ni t \mapsto \tilde{W}(t)=\left(\tilde{\psi}_{n}(t)\right)_{n \geq 1}$ ，where

$$
\tilde{\psi}_{n}(t)=e^{-\mathrm{i} \int_{0}^{t}\left\langle\psi_{n}(s), h(s) \psi_{n}(s)\right\rangle d s} \psi_{n}(t)
$$

such that $\tilde{\psi}_{n}(T)=e^{\mathrm{i} \beta_{n}} \mid \psi_{n}(0)$ and

$$
\left\langle\tilde{\psi}_{n}(t), \frac{d}{d t} \tilde{\psi}_{n}(t)\right\rangle=0, \forall n \geq 1
$$

The observable space

－ $\mathcal{B}(\mathbb{H})$ is the algebra of all bounded operators on \mathbb{H} ，
－ $\mathcal{O}(\mathbb{H})$ is the set of all self－adjoint operators on \mathbb{H} and， $\mathcal{O}_{d}(\mathbb{H})$ denotes the subset of $\mathcal{O}(\mathbb{H})$ consisting of those self－adjoint operators with discrete spectrum，
－ $\mathcal{U}(\mathbb{H})$ is the group of all unitary operators on \mathbb{H} ．I always denotes the identity operator on \mathbb{H} ．
－A complete orthonormal decomposition of the identity operator I in \mathbb{H} ，is $O=\{|n\rangle\langle n|: n \geq 1\}$ with $\sum_{n}|n\rangle\langle n|=I$ and $\langle n \mid m\rangle=0$ whenever $n \neq m$ ．
Denote by $\mathcal{W}(\mathbb{H})$ the set of all complete orthonormal decompositions in \mathbb{H} ．The distance $D_{\mathcal{W}}$ on $\mathcal{W}(\mathbb{H})$ is defined as： For $O, O^{\prime} \in \mathcal{W}(\mathbb{H})$ ，

$$
D_{\mathcal{W}}\left(O, O^{\prime}\right)=\inf \left\{\|I-U\|: U^{-1} O^{\prime} U=O, U \in \mathcal{U}(\mathbb{H})\right\}
$$

$\left(\mathcal{W}(\mathbb{H}), D_{\mathcal{W}}\right)$ is called the observable space．

The topology for the observable space

$\mathcal{G}(\mathbb{N})$ denotes the automorphism group of \mathbb{N} ．For an arbitrary fixed basis $(|n\rangle)_{n \geq 1}$ of $\mathbb{H}, \mathcal{U}(1)^{\mathbb{N}}$ and $\mathcal{G}(\mathbb{N}) \times \mathcal{U}(1)^{\mathbb{N}}$ are represented as

$$
\mathcal{U}(1)^{\mathbb{N}}=\left\{\sum_{n \geq 1} e^{\mathrm{i} \theta_{n}}|n\rangle\langle n|: \forall \theta_{n} \in[0,2 \pi)\right\},
$$

$$
\mathcal{G}(\mathbb{N}) \times \mathcal{U}(1)^{\mathbb{N}}=\left\{\sum_{n \geq 1} e^{\mathrm{i} \theta_{n}}|\sigma(n)\rangle\langle n|: \forall \sigma \in \mathcal{G}(\mathbb{N}), \forall \theta_{n} \in[0,2 \pi)\right\}
$$

Topological space for a quantum system

Given an arbitrary fixed basis $(|n\rangle)_{n \geq 1}$ of \mathbb{H} ，

$$
\mathcal{W}(\mathbb{H}) \cong \frac{\mathcal{U}(\mathbb{H})}{\mathcal{G}(\mathbb{N}) \times \mathcal{U}(1)^{\mathbb{N}}}
$$

$\mathcal{W}\left(\mathbb{C}^{d}\right)$ is topologically non－trivial as its fundamental group is isomorphic to $\Pi(d)$ ，the permutation group of d objects．

The principal fiber bundle

Fix a point $O_{0}=\{|n\rangle\langle n|: n \geq 1\} \in \mathcal{W}(\mathbb{H})$ ．
－For any $O \in \mathcal{W}(\mathbb{H})$ ，we write

$$
\mathcal{F}_{O}=\left\{U \in \mathcal{U}(\mathbb{H}): U^{\dagger} O U=O_{0}\right\} .
$$

－Define $\mathcal{G}_{O_{0}}=\left\{\sum_{n \geq 1} e^{\mathrm{i} \theta_{n}}|\sigma(n)\rangle\langle n|: \forall \sigma \in \mathcal{G}(\mathbb{N}), \forall \theta_{n} \in[0,2 \pi)\right\}$ ， and the action of $\mathcal{G}_{O_{0}}$ on $\mathcal{F}_{O}:(G, U) \mapsto U G$ for any $G \in \mathcal{G}_{O_{0}}$ and for all \mathcal{F}_{O} ．Clearly， $\mathcal{G}_{O_{0}}$ is the structure group of \mathcal{F}_{O} ．

Since

$$
\mathcal{U}(\mathbb{H})=\bigcup_{O \in \mathcal{W}(\mathbb{H})} \mathcal{F}_{O},
$$

the principal fiber bundle over the quantal observable space is the follows：

$$
P_{O_{0}}=\left(\mathcal{U}(\mathbb{H}), \mathcal{W}(\mathbb{H}), \Pi, \mathcal{G}_{O_{0}}\right),
$$

where $\Pi^{-1}(O)=\mathcal{F}_{O}$ for $O \in \mathcal{W}(\mathbb{H})$ ．

Tangent space for the structure group

Denote by $\mathcal{Q}(\mathbb{H})$ the set of all densely defined operators in \mathbb{H} ．Fix $O_{0}=\{|n\rangle\langle n|: n \geq 1\} \in \mathcal{W}(\mathbb{H})$ ，and let $\mathcal{D}\left(O_{0}\right)=\operatorname{span}\{|n\rangle: n \geq 1\}$ ，which is a densely subspace of \mathbb{H} ．

Tangent vectors for the structure group $\mathcal{G}_{O_{0}}$

Fix $O_{0} \in \mathcal{W}(\mathbb{H})$ ．For a given $U \in \mathcal{G}_{O_{0}}$ ，an operator $Q \in \mathcal{Q}(\mathbb{H})$ is called a tangent vector at U for $\mathcal{G}_{O_{0}}$ ，if $\mathcal{D}\left(O_{0}\right) \subset \operatorname{Dom}(Q)$ and there is a strongly continuous curve $\chi:(-\varepsilon, \varepsilon) \ni t \mapsto U(t) \in \mathcal{G}_{O_{0}}$ with $\chi(0)=U$ such that for every $h \in \operatorname{Dom}(Q)$ ，the limit

$$
\lim _{t \rightarrow 0} \frac{U(t)(h)-U(h)}{t}=Q(h)
$$

in \mathbb{H} ．In this case，we denote by $Q=\left.\frac{d \chi(t)}{d t}\right|_{t=0}$ ．The set of all tangent vectors at U is denoted by $T_{U} \mathcal{G}_{O_{0}}$ ，and $T \mathcal{G}_{O_{0}}=\bigcup_{U \in \mathcal{G}_{O_{0}}} T_{U} \mathcal{G}_{O_{0}}$.

Tangent space for the base space

1）Fix $O_{0} \in \mathcal{W}(\mathbb{H})$ ．For a continuous curve
$\chi:(a, b) \ni t \mapsto O(t) \in \mathcal{W}(\mathbb{H})$ ，a subset \mathcal{A} of $\mathcal{Q}(\mathbb{H})$ is called a tangent vector of χ at a fixed $t_{0} \in(a, b)$ relative to O_{0} ，if for any $Q \in \mathcal{A}, \mathcal{D}\left(O_{0}\right) \subset \operatorname{Dom}(Q)$ and there is a strongly continuous curve $\gamma:(a, b) \ni t \mapsto U_{t} \in \mathcal{F}_{O(t)}$ such that for every $h \in \operatorname{Dom}(Q)$ ，the limit

$$
\lim _{t \rightarrow t_{0}} \frac{U_{t}(h)-U_{t_{0}}(h)}{t-t_{0}}=Q(h)
$$

in \mathbb{H} ．In this case，we denote by $\mathcal{A}=\left.\frac{d O(t)}{d t}\right|_{t=t_{0}}=\left.\frac{d \chi(t)}{d t}\right|_{t=t_{0}}$ ．
2）Fix $O_{0} \in \mathcal{W}(\mathbb{H})$ ．Given $O \in \mathcal{W}(\mathbb{H})$ ，a tangent vector of $\mathcal{W}(\mathbb{H})$ at O relative to O_{0} is define to be a subset \mathcal{A} of $\mathcal{Q}(\mathbb{H})$ ， provided \mathcal{A} is a tangent vector of some continuous curve χ at $t=0$ ，where $\chi:(-\varepsilon, \varepsilon) \ni t \mapsto O(t) \in \mathcal{W}(\mathbb{H})$ with $\chi(0)=O$ ， i．e．， $\mathcal{A}=\left.\frac{d O(t)}{d t}\right|_{t=0}$ ．We denote by $T_{O} \mathcal{W}(\mathbb{H})$ the set of all tangent vectors at O ，and write $T \mathcal{W}(\mathbb{H})=\bigcup_{O \in \mathcal{W}(\mathbb{H})} T_{O} \mathcal{W}(\mathbb{E}(\mathbb{H})$ ．

Tangent space for the total space

1）Fix $O_{0} \in \mathcal{W}(\mathbb{H})$ ．For a given $P \in \mathcal{U}(\mathbb{H})$ ，an operator $Q \in \mathcal{Q}(\mathbb{H})$ is called a tangent vector of $P_{O_{0}}$ at P relative to O_{0} ，if $\mathcal{D}\left(O_{0}\right) \subset \operatorname{Dom}(Q)$ and there exists a strongly continuous curve $\gamma:(-\varepsilon, \varepsilon) \ni t \mapsto P_{t} \in \mathcal{U}(\mathbb{H})$ with $\gamma(0)=P$ ，such that for any $h \in \operatorname{Dom}(Q)$ ，

$$
\lim _{t \rightarrow 0} \frac{P_{t}(h)-P(h)}{t}=Q(h)
$$

in \mathbb{H} ．In this case，we write $Q=\left.\frac{d P_{t}}{d t}\right|_{t=0}=\left.\frac{d \gamma(t)}{d t}\right|_{t=0}$ ．Denote by $T_{P} P_{O_{0}}(\mathbb{H})$ the set of all tangent vectors of $P_{O_{0}}$ at P relative to O_{0} ，and write $T P_{O_{0}}(\mathbb{H})=\bigcup_{P \in P_{O_{0}}(\mathbb{H})} T_{P} P_{O_{0}}(\mathbb{H})$ ．
2）Given $P \in P_{O_{0}}(\mathbb{H})$ ，a tangent vector $Q \in T_{P} P_{O_{0}}(\mathbb{H})$ is said to be vertical，if there is a strongly continuous curve $\Gamma:(-\varepsilon, \varepsilon) \ni t \mapsto P_{t} \in F_{\Pi(P)}$ with $\Gamma(0)=P$ such that $Q=\left.\frac{d \Gamma(t)}{d t}\right|_{t=0}$ ．We denote by $V_{P} P_{O_{0}}(\mathbb{H})$ the set of all vertical tangent vectors at P ．

Connection over the bundle

A connection on the principal fiber bundle $P_{O_{0}}$ is a family of linear functionals $\Omega=\left\{\Omega_{P}: P \in P_{O_{0}}(\mathbb{H})\right\}$ ，where for each $P \in P_{O_{0}}(\mathbb{H})$ ， Ω_{P} is a linear functional in $T_{P} P_{O_{0}}(\mathbb{H})$ with values in $T \mathcal{G}_{O_{0}}$ ， satisfying the following conditions：
（1）For any $P \in \mathcal{U}(\mathbb{H})$ ，every vertical tangent vector $Q \in V_{P} P_{O_{0}}(\mathbb{H})$ satisfies the equation $\Omega_{P}(Q)=P^{\dagger} Q$ ．
（2）Ω_{P} depends continuously on P in a certain topology．
（3）Under the right action of $\mathcal{G}_{O_{0}}$ on $P_{O_{0}}(\mathbb{H}), \Omega$ transforms according to

$$
\begin{array}{r}
\Omega_{R_{G}(P)}\left[\left(R_{G}\right)_{*}(Q)\right]=G^{-1} \Omega_{P}(Q) G \\
\text { for } G \in \mathcal{G}_{O_{0}}, P \in P_{O_{0}}(\mathbb{H}), \text { and } Q \in T_{P} P_{O_{0}}(\mathbb{H}) .
\end{array}
$$

Such a connection is simply called an O_{0}－connection．

The canonical connection

Given a fixed $O_{0} \in \mathcal{W}(\mathbb{H})$ ，we define $\check{\Omega}=\left\{\check{\Omega}_{P}: P \in \mathcal{U}(\mathbb{H})\right\}$ as follows：For each $P \in \mathcal{U}(\mathbb{H}), \check{\Omega}_{P}: T_{P} P_{O_{0}}(\mathbb{H}) \mapsto T \mathcal{G}_{O_{0}}$ is defined by

$$
\check{\Omega}_{P}(Q)=P^{\dagger} \star Q
$$

for any $Q \in T_{P} P_{O_{0}}(\mathbb{H})$ ，where

$$
P^{\dagger} \star Q=\sum_{n \geq 1}\langle n| P^{\dagger} Q|n\rangle|n\rangle\langle n| .
$$

This is clearly an O_{0}－connection on $P_{O_{0}}$ ．In this case，we write $\check{\Omega}_{P}=P^{\dagger} \star d P$ for any $P \in \mathcal{U}(\mathbb{H})$ ．

Quantum lifts

The evolution of an exact cyclic observable is defined to be a closed loop

$$
C_{W}:[0, T] \ni t \longmapsto O(t) \in \mathcal{W}(\mathbb{H}), \quad O(0)=O(T),
$$

in the base space $\mathcal{W}(\mathbb{H})$ ．

Quantum lifts

Fix a point $O_{0}=\{|n\rangle\langle n|: n \geq 1\} \in \mathcal{W}(\mathbb{H})$ ．For a continuous curve $C_{W}:[0, T] \ni t \longmapsto O(t) \in \mathcal{W}(\mathbb{H})$ ，a lift of C_{W} with respect to O_{0} is defined to be a continuous curve

$$
C_{P}:[0, T] \ni t \longmapsto U(t) \in \mathcal{U}(\mathbb{H})
$$

such that $U(t) \in \mathcal{F}_{O(t)}$ for any $t \in[0, T]$ ，that is， $\{U(t)|n\rangle: n \geq 1\} \in B a(O(t))$ for every $t \in[0, T]$ ．

Quantum parallel transport

Horizontal lift for C_{W}

Fix $O_{0} \in \mathcal{W}(\mathbb{H})$ and let Ω be an O_{0}－connection on $P_{O_{0}}(\mathbb{H})$ ．Let
$C_{W}:[0, T] \ni t \longmapsto O(t) \in \mathcal{W}(\mathbb{H})$ be a continuous curve．A horizontal lift of C_{W} with respect to O_{0} is defined to be a O_{0}－lift of $C_{W}, C_{P}:[0, T] \ni t \longmapsto \tilde{U}(t)$ such that

$$
\Omega_{\tilde{U}(t)}\left[\frac{d \tilde{U}(t)}{d t}\right]=0
$$

for every $t \in[0, T]$ ．
In this case，the curve $t \mapsto \tilde{U}(t)$ is called the parallel transportation along C_{W} associated with the connection Ω on $P_{O_{0}}(\mathbb{H})$ ．

Canonical parallel transportation

Fix $O_{0}=\{|n\rangle\langle n|: n \geq 1\} \in \mathcal{W}(\mathbb{H})$ ．Let $\left(\left|\psi_{n}(t)\right\rangle\right)_{n \geq 1}$ be a family of bases such that for each $n \geq 1, \psi_{n}(t)$ is continuously differential \mathbb{H}－valued function in $[0, T]$ ．Then

$$
C_{W}:[0, T] \ni t \rightarrow O(t)=\left\{\left|\psi_{n}(t)\right\rangle\left\langle\psi_{n}(t)\right|: n \geq 1\right\} \in \mathcal{W}(\mathbb{H})
$$

is a continuous curve in $\mathcal{W}(\mathbb{H})$ ．For $0 \leq t \leq T$ ，define

$$
\tilde{U}(t)=\sum_{n \geq 1}\left|\tilde{\psi}_{n}(t)\right\rangle\langle n|, \quad\left|\tilde{\psi}_{n}(t)\right\rangle=e^{-\int_{0}^{t}\left\langle\psi_{n}(s), \frac{d}{d s} \psi_{n}(s)\right\rangle d s}\left|\psi_{n}(t)\right\rangle .
$$

Then $\tilde{C}_{P}:[0, T] \ni t \longmapsto \tilde{U}(t) \in \mathcal{F}_{O(t)}$ is a lift of C_{W} associated with O_{0} such that

$$
\check{\Omega}_{\tilde{U}(t)}\left[\frac{d \tilde{U}(t)}{d t}\right]=0
$$

for all $t \in[0, T]$ ，where $\check{\Omega}$ is the canonical connection defined above．Therefore，\tilde{C}_{P} is the horizontal lift of C_{W} in the principal bundle $P_{O_{0}}$ associated with the canonical connection $\check{\Omega}$ ．

Local section

Section

Let \mathcal{O} be an open subset of $\mathcal{W}(\mathbb{H})$ ．A mapping
$s: \mathcal{O} \subset \mathcal{W}(\mathbb{H}) \mapsto \mathcal{U}(\mathbb{H})$ is called a（local）section for $P_{O_{0}}(\mathbb{H})$ ，if s is continuous and $s(O) \in \mathcal{F}_{O}$ for any $O \in \mathcal{O}$ ．If $\mathcal{O}=\mathcal{W}(\mathbb{H})$ ，such a section is said to be global．

Let Ω be an O_{0}－connection on $P_{O_{0}}(\mathbb{H})$ ．Let $s: \mathcal{O} \subset \mathcal{W}(\mathbb{H}) \mapsto \mathcal{U}(\mathbb{H})$ be a local section $P_{O_{0}}(\mathbb{H})$ and $\omega_{\mathcal{O}}^{s}=\left\{\omega_{O}^{s}: O \in \mathcal{O}\right\}$ be a family of linear functionals on $\bigcup_{O \in \mathcal{O}} T_{O} \mathcal{W}(\mathbb{H})$ such that for $O \in \mathcal{O}$ ，

$$
\omega_{\mathcal{O}}^{s}(\mathcal{A})=\Omega_{s(O)}\left[s_{*}(\mathcal{A})\right]
$$

for any $\mathcal{A} \in T_{O} \mathcal{W}(\mathbb{H})$ ，where s_{*} is the pull－forward map of s defined in the usual way．We call $\omega_{\mathcal{O}}^{s}$ the local connection on \mathcal{O} associated with Ω ．

Locally parallel transportation

If $s^{\prime}(O)=s(O) \cdot G(O), \quad \forall O \in \mathcal{O}$ ，we have

$$
\omega_{O}^{s^{\prime}}(\mathcal{A})=G(O)^{-1} \omega_{O}^{s}(\mathcal{A}) G(O)+G(O)^{-1} d G(O)
$$

Locally parallel transportation

Fix $O_{0} \in \mathcal{W}(\mathbb{H})$ and let Ω be an O_{0}－connection on $P_{O_{0}}(\mathbb{H})$ ．Let $C_{W}:[0, T] \ni t \longmapsto O(t) \in \mathcal{W}(\mathbb{H})$ be a continuous curve．A lift C_{P} of C_{W} is a horizontal lift of C_{W} with respect to O_{0} ，if and only if

$$
C_{P}(t)=s\left(C_{W}(t)\right) \cdot G_{s}(t)
$$

where s is a local section on some \mathcal{O} containing a segment of C_{W} ， and $G_{s}(t) \in \mathcal{G}_{O_{0}}$ is the solution of

$$
\left\{\begin{aligned}
\frac{d G_{s}(t)}{d t} & =-\omega_{O(t)}^{s}\left(\frac{d O(t)}{d t}\right) \cdot G_{s}(t) \\
G_{s}(0) & =I
\end{aligned}\right.
$$

Expression for the geometric phases of the observable

Fix $O_{0}=\{|n\rangle\langle n|: n \geq 1\} \in \mathcal{W}(\mathbb{H})$ ．For $0 \leq t \leq T$ ，define

$$
\tilde{U}(t)=\sum_{n \geq 1}\left|\tilde{\psi}_{n}(t)\right\rangle\langle n| \in \mathcal{U}(\mathbb{H}),
$$

where $\left|\tilde{\psi}_{n}(t)\right\rangle=e^{-\mathrm{i} \int_{0}^{t}\left\langle\psi_{n}(s), h(s) \psi_{n}(s)\right\rangle d s}\left|\psi_{n}(t)\right\rangle$ ．Then

$$
\tilde{C}_{P}:[0, T] \ni t \longmapsto \tilde{U}(t) \in P_{O_{0}}
$$

is the horizontal lift of $C_{W}: t \rightarrow\left\{\left|\psi_{n}(t)\right\rangle\left\langle\psi_{n}(t)\right|: n \geq 1\right\}$ associated with $P_{O_{0}}$ and the canonical connection $\check{\Omega}$ ，such that

$$
\tilde{U}(T)=\sum_{n \geq 1} e^{\mathrm{i} \beta_{n}}|n\rangle\langle n|
$$

is the holonomy element associated with the canonical connection Ω in $P_{O_{0}}$ ．

Expression for the geometric phases of the observable

Expression for the geometric phases

Fix $O_{0}=\{|n\rangle\langle n|: n \geq 1\} \in \mathcal{W}(\mathbb{H})$ ．For any closed lift
$\bar{C}_{P}:[0, T] \ni t \longmapsto \bar{U}(t) \in P_{O_{0}}$ of C_{W} associated with O_{0} ，i．e．，
$\bar{U}(T)=\bar{U}(0)$ ，we have

$$
\beta_{n}=\langle n| \mathrm{i} \int_{0}^{T} \bar{U}^{\dagger}(t) \frac{d}{d t} \bar{U}(t) d t|n\rangle=\langle n| \mathrm{i} \oint_{\bar{C}_{P}} \bar{U}^{\dagger} \star d \bar{U}|n\rangle
$$

for every $n \geq 1$ ．
β_{n}＇s are the geometric phases associated with C_{W} ，and independent of the choice of the point O_{0} ．

Remarks

（1）Application：Geometric quantum computing，Integer quantum Hall effect．
（2）量子场的 Wightman 公理体系，Feynman 积分的数学理论．
（3）量子电动力学的数学基础。

Thank you for your attention！

