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Introduction

The study of quantum symmetries is at the intersection of combinatorics,
quantum groups, and quantum information.

The definition of quantum symmetry for finite graphs is due to Banica and
Bichon, and this notion has been studied extensively.

It is natural to look for an analogue of these constructions for infinite graphs.

The aim of my talk is to describe certain discrete quantum automorphism
groups associated to arbitrary infinite graphs.
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Quantum permutations

Definition

Let I be a set. A quantum permutation of I is a pair (H, u) of a Hilbert space
H and a family u = (uij)i,j∈I of projections uij ∈ B(H) such that

• For every i ∈ I the projections uij for j ∈ I are pairwise orthogonal,

• For every j ∈ I the projections uij for i ∈ I are pairwise orthogonal,

• We have ∑
k∈I

uik = 1 =
∑
k∈I

ukj

for all i , j ∈ I , with convergence in the strong operator topology.

Lemma

Quantum permutations of a set I whose underlying Hilbert space is C are the
same thing as permutations of I .
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Some further definitions

Fix a set I throughout.

• If σ = (H, u) and τ = (K, v) are quantum permutations then an
intertwiner from σ to τ is a bounded linear operator T : H → K such that
Tuij = vijT for all i , j ∈ I .

• The direct sum of quantum permutations σ = (H, u) and τ = (K, v) is
defined by σ⊕ τ = (H⊕K, u⊕ v), where (u⊕ v)ij = uij ⊕ vij for all i , j ∈ I .

• The tensor product of quantum permutations σ = (Hσ, u
σ) and

τ = (Hτ , u
τ ) is defined by σ ⊗ τ = (Hσ ⊗Hτ , u

σ
T⃝uτ ) where

(uσ
T⃝uτ )ij =

∑
k∈I u

σ
ik ⊗ uτ

kj for all i , j ∈ I .

• The contragredient σ = (Hσ, u
σ) of a quantum permutation σ = (Hσ, u

σ)
is defined by taking Hσ to be the conjugate Hilbert space of Hσ and the
family of projections uσ = (uσ

ij ) determined by uσ
ij (ξ) = uσ

ji (ξ) for ξ ∈ Hσ.

Upshot

Quantum permutations of a set I form naturally a concrete C∗-tensor category.
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Some further definitions

We keep the set I .

• By the dimension of a quantum permutation σ = (H, u) we mean the
dimension of H.

• A quantum permutation (H, u) is called irreducible if every intertwiner
(H, u) → (H, u) is a scalar multiple of the identity.

• A quantum permutation (H, u) is called classical if the C∗-algebra
generated by the projections uij is abelian.
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Examples

Lemma

Every quantum permutation of a set I with |I | = 1, 2, 3 is classical.

Proof.

This is obvious for |I | = 1. For |I | = 2 notice that we must have

u =

(
p 1− p

1− p p

)
for some projection p.
For |I | = 3 write I = {1, 2, 3}. Enough to show that uij and ukl commute
provided i ̸= j and k ̸= l . Consider e.g. u11 and u22. We get

u11u22u13 = u11(1− u21 − u23)u13 = 0,

which implies u11u22 = u11u22(u11 + u12 + u13) = u11u22u11. This yields

u11u22 = u11u22u11 = (u11u22u11)
∗ = (u11u22)

∗ = u22u11

as required.
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Examples

As soon as I has more than 3 elements one can find non-classical quantum
permutations.

Indeed, for arbitrary projections p, q the matrix
p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q


defines a quantum permutation of four points.

Theorem (Banica-Bichon 2009)

For |I | = 4 the irreducible quantum permutations of I have dimension 1, 2 or 4.

Combining quantum permutations of finite subsets of an infinite set I with
classical permutations of I one obtains a basic supply of infinite quantum
permutations.
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Discrete quantum groups

Let Γ be a discrete group. Then the group structure of Γ can be encoded by
the C∗-algebra c0(Γ) of functions on Γ together with its comultiplication, that
is, the nondegenerate ∗-homomorphism

∆ : c0(Γ) → M(c0(Γ)⊗ c0(Γ)) = cb(Γ× Γ)

given by
∆(f )(s, t) = f (st)

This clearly satisfies coassociativity, namely (∆⊗ id)∆ = (id⊗∆)∆.

A discrete quantum group is given by a C∗-algebra

A = c0-
⊕
π∈Π

Mnπ (C)

together with a nondegenerate ∗-homomorphism ∆ : A → M(A⊗ A) such that
(∆⊗ id)∆ = (id⊗∆)∆ and certain additional properties.

By slight abuse of notation, we write A = c0(Γ) and refer to (the non-existing
object) Γ as a discrete quantum group.
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Quantum permutation groups

Definition

The (discrete) quantum permutation group of I is the discrete quantum group
Sym+(I ) associated to the (concrete) rigid C∗-tensor category Sym+(I ) of all
finite dimensional quantum permutations of I via Tannaka-Krein reconstruction.

Explicitly, the underlying C∗-algebra of functions on Sym+(I ) can be written as
the C∗-direct sum of matrix algebras

C0(Sym
+(I )) =

⊕
σ

B(Hσ),

indexed by the isomorphism classes of irreducible objects in Sym+(I ).

The coproduct is the uniquely determined nondegenerate ∗-homomorphism
∆ : C0(Sym

+(I )) → M(C0(Sym
+(I ))⊗ C0(Sym

+(I ))) satisfying

∆(uij) =
∑
k∈I

uik ⊗ ukj

for all i , j ∈ I , with the sum converging in the strict topology.
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Quantum permutation groups

For |I | = 1, 2, 3 we have a canonical identification of Sym+(I ) with the group
Sym(I ) of (classical) permutations of I .

Consider I = {1, . . . , n} and abbreviate Sym+(I ) = Sym+
n .

If n ≥ 4 then there exist uncountably many nonisomorphic quantum
permutations of {1, . . . , n} in every positive dimension, and Sym+

n is not
isomorphic to Wang’s quantum permutation group S+

n .

In fact, Sym+
n is the discretization of S+

n in the following sense.

Definition (So ltan)

Let G be a compact quantum group. Then the discretization of G is the
discrete quantum group Gδ associated to the concrete (rigid) C∗-tensor
category of finite dimensional unital ∗-representations of the universal
C∗-algebra C(G) of G .

In other words, the Pontrjagin dual (compact) quantum group of Gδ can be
viewed as the Bohr compactification of the dual (discrete) quantum group of G .
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Universal property

Proposition

The quantum permutation group Sym+
n is the universal discrete quantum group

acting on {1, . . . , n}.

That is, if H is any discrete quantum group and γ : B → M(C0(H)⊗ B) is a
coaction on B = C({1, . . . , n}) preserving the uniform measure there exists a
unique morphism of quantum groups ι∗ : C0(Sym

+
n ) → M(C0(H)) such that the

diagram

B
β //

γ
&&

M(C0(Sym
+
n )⊗ B)

ι∗⊗id

��
M(C0(H)⊗ B)

is commutative.
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Finitary quantum permutation groups

Classically, one obtains a subgroup Σ(I ) ⊂ Sym(I ) by considering all finitary
permutations, that is, permutations which move only finitely many points of I .
Equivalently, one can view Σ(I ) = lim−→F⊂I

Σ(F ) as the direct limit of the

permutation groups Sym(F ) = Σ(F ) taken over the finite subsets F ⊂ I .

This translates easily to Sym+(I ). More precisely, consider the full subcategory
of the C∗-tensor category Sym+(I ) formed by all quantum permutations
σ = (Hσ, u

σ) for which there exists a finite set F ⊂ I such that uσ
ij ̸= δij only

for i , j ∈ F . In this case we say that σ is finitary.

Definition

The finitary quantum permutation group of a set I is the discrete quantum
group Σ+(I ) obtained from the concrete rigid C∗-tensor category of all finite
dimensional finitary quantum permutations of I via Tannaka-Krein
reconstruction.

We clearly have Sym+(I ) = Σ+(I ) iff I is finite. In the same way as in the
classical case one can write Σ+(I ) = lim−→F⊂I

Σ+(F ) as direct limit of the

quantum permutation groups of the finite subsets F ⊂ I .
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Non-amenability

Theorem

For |I | ≥ 4 the quantum permutation group Σ+(I ) is non-amenable.

Proof.

Idea: It suffices to consider case |I | = 4. According to Banica-Bichon, there is a
matrix model for S+

4 , giving an (explicit) injective ∗-homomorphism
C(S+

4 ) → M4(C(SO(3))).
Using the fact that the discretization SO(3)δ of SO(3) contains free subgroups
one can then cook up a finitely generated quantum subgroup Γ of Σ+

4 and
apply Kyed’s Følner criterion to show that Γ is non-amenable.

Remark

If |I | ≥ 4 then neither Sym+(I ) nor Σ+(I ) are finitely generated, so do not have
property (T). If I is infinite the quantum group Sym+(I ) is not weakly
amenable, and does not have the Haagerup property.
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Quantum symmetries of graphs

By a graph X we mean an undirected simple graph without self-edges. We
write X = (IX ,EX ) where IX is the set of vertices and EX ⊂ IX × IX is the set of
edges of X .

Write rel for the function on pairs of vertices which describes the adjacency
relation, taking the values equal, adjacent, distinct and non-adjacent.

Definition

Let X = (IX ,EX ) be a graph. A quantum automorphism of X is a quantum
permutation σ = (H, u) of IX such that

ui1j1ui2j2 = 0

if rel(i1, i2) ̸= rel(j1, j2).

Terminology

We say that X has quantum symmetry if X admits a non-classical quantum
automorphism, and that X has no quantum symmetry otherwise.
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Quantum automorphism groups

A quantum automorphism of a graph X is the same thing as a quantum
permutation σ = (H, u) of IX such that

AXu = uAX

as matrices in MIX (B(H)), where AX is the adjacency matrix of X . Note here
that the entries of these matrix products in this formula make sense in the
strong operator topology.

Definition

Let X = (IX ,EX ) be a graph. The discrete quantum automorphism group
Qutδ(X ) is the quantum subgroup of Sym+(IX ) corresponding to the concrete
rigid C∗-tensor category of finite dimensional quantum automorphisms of X .

If X is finite then
Qutδ(X ) = Qut(X )δ

is the discretization of Banica’s quantum automorphism group Qut(X ) of X .

The same is true if X is a locally finite connected graph and Qut(X ) is the
quantum automorphism group in the sense of Rollier-Vaes.
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Graphs with no quantum symmetry

Theorem (Schmidt 2018)

The Petersen graph has no quantum symmetry.

Theorem (Lupini-Mančinska-Roberson 2017)

Almost all finite graphs have no quantum symmetry.
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Graphs with no quantum symmetry

The infinite Johnson graph J(∞, k) is the graph with vertices given by all
k-element subsets of N, such that two vertices are connected by an edge iff
their intersection contains k − 1 elements.

This graph has diameter k and is distance transitive.

Proposition

The Johnson graph J(∞, 2) has no quantum symmetry.

The proof is an easy adaption of a corresponding result for finite Johnson
graphs due to Schmidt.

In fact, many of the criteria and techniques developed by Schmidt carry over to
the infinite setting.



44

Graphs with no quantum symmetry

The infinite Johnson graph J(∞, k) is the graph with vertices given by all
k-element subsets of N, such that two vertices are connected by an edge iff
their intersection contains k − 1 elements.

This graph has diameter k and is distance transitive.

Proposition

The Johnson graph J(∞, 2) has no quantum symmetry.

The proof is an easy adaption of a corresponding result for finite Johnson
graphs due to Schmidt.

In fact, many of the criteria and techniques developed by Schmidt carry over to
the infinite setting.



45

Examples of graphs with quantum symmetry

Two automorphisms σ, τ of a graph X are called disjoint iff σ(i) ̸= i implies
τ(i) = i and τ(i) ̸= i implies σ(i) = i .

The following is again an easy generalisation of a result due to Schmidt.

Proposition

If X admits a pair of disjoint automorphisms then X has quantum symmetry.

This result allows one to give a range of examples of graphs with quantum
symmetry.

Theorem (Junk-Schmidt-Weber 2019)

Almost all finite trees have quantum symmetry.
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An intriguing example
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An intriguing example

The Higman-Sims graph HS is a graph with the following properties:

• HS has 100 vertices

• Every vertex has 22 neighbours

• HS is triangle-free

• If a ̸= b and a ∼ b then there are exactly 6 vertices c such that
a ∼ c, b ∼ c

• If a, b, c, are distinct and not connected then they have two common
neighbours.

Theorem (Jaeger-Kuperberg)

The quantum automorphism group Qut(HS) is monoidally equivalent to

SOq(5) where q = ( 1+
√

5
2

)2.
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Disjoint unions

Let (Xj)j∈J be a collection of graphs labelled by some index set J and write
X =

⋃
j∈J Xj for their disjoint union, so that VX =

⋃
j∈J IXj and EX =

⋃
j∈J EXi .

Theorem

Let X be a connected graph. Then there is a canonical isomorphism

Qutδ

(⋃
j∈J

X

)
∼= Qutδ(X )Wr∗ Sym+(J)

of discrete quantum groups.

Here the unrestricted free wreath product ΓWr∗ Sym+(J) for a discrete
quantum group Γ and a set J is constructed from a suitable C∗-tensor category.

If Γ = Gδ for a compact quantum group G and J = {1, . . . , n} then

(G ≀∗ S+
n )δ ∼= Gδ Wr∗ Sym+

n

where G ≀∗ S+
n is the free wreath product defined by Bichon.
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The Rado graph

Definition

The Rado graph is the graph R with vertex set VR = N such that a pair of
vertices (m, n) is an edge iff m < n and the m-th digit in the binary expansion
of n is odd, or the same with the roles of m and n reversed.

Equivalently, it can be described as the graph with vertices given by the prime
numbers congruent 1 mod 4, and p, q connected iff p is a quadratic residue
modulo q.

R is also known as the random graph since it is obtained with probability 1 by
assigning edges to pairs of elements in a countable set at random.

Key property

For any pair of disjoint finite sets A,B of vertices in the Rado graph R there
exists a vertex w in R outside A ∪ B such that (x ,w) ∈ ER for all x ∈ A and
(y ,w) /∈ ER for all y ∈ B.
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The Rado graph

In fact, the random graph R is homogeneous, which means that any finite
partial automorphism of R can be extended to a global automorphism.

• R contains all countable graphs as induced subgraphs.

• If one removes a finite number of vertices (and all adjacent edges) or a
finite number edges from R the resulting graph is again isomorphic to R.

• The set of vertices of R can be split into infinitely many disjoint sets such
that the induced subgraphs are isomorphic to R.

Proposition

The Rado graph does not admit any non-classical finite dimensional quantum
automorphisms.

That is, the quantum automorphism group Qutδ(R) is classical.

Question

Does the Rado graph have quantum symmetry?
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Unit distance graphs

A unit distance graph is a graph obtained by taking a subset of Rd as vertex set
and connecting two vertices iff their Euclidean distance is equal to 1.

Examples of finite unit distance graphs in the plane include cycle graphs,
hypercube graphs, and the Petersen graph.

Consider the unit distance graph Ud associated to Rd .

Proposition

The quantum automorphism group Qutδ(U1) is isomorphic to the free wreath
product Aut(L)Wr∗ Sym(R/Z), where L is the“infinite line”graph, i.e. the
Cayley graph of Z with respect to the standard generating set {±1}.

Question

Does Ud for d ≥ 2 have quantum symmetry?
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