The Novikov conjecture, groups of diffeomorphisms, and Hilbert-Hadamard spaces

Jianchao Wu Shanghai Center for Mathematical Sciences, Fudan University Based on joint works with Sherry Gong, Zhizhang Xie and Guoliang Yu

May 7, 2023

I. Motivations: rigidity phenomena of manifolds

Layers of structures on a Riemannian manifold M:

- metric structure, e.g., curvatures
- smooth structure

Rigidity phenomena

- homeomorphism type

The Borel Conjecture

For aspherical manifolds, homotopy equiv. implies homeomorphism.

- homeomorphism type
- homotopy type

Motivation: classification of manifolds

Symmetry groups: Isom(M,g)Diff(M)Homeo(M)

The Novikov Conjecture

The higher signatures of smooth orientable manifolds are invariant under oriented homotopy equivalences.

The Gromov-Lawson Conjecture

An aspherical manifold cannot have positive scalar curvature.

Homotopy structure

Metric structure

Higher signature

In fact, these conjectures are statements about the fundamental groups $\pi_1(M)$.

Functional analytical approach

II. Our focus: groups of diffeomorphisms

Let M = closed smooth manifold

Theorem (Connes, 1986)

The Novikov conjecture holds for the Gel'fand-Fuchs classes of a group of diffeomorphisms of M.

Theorem (Gong-W-Yu, 2021)

The rational strong Novikov conjecture holds for ω -preserving $(\omega$ -)discrete countable subgroups of Diff(M).

Comparing the results: pros (+) and cons (-)

+ No restrictions on the subgroups of Diff(M). Connes:

+ No restrictions on the characteristic classes. G-W-Y: + Rational strong Novikov \Rightarrow Novikov + Gromov-Lawson.

[Fix a volume form ω on M]

Theorem (Gong-W-Yu, 2021)

The rational strong Novikov conjecture holds for ω -preserving (ω) -)discrete countable subgroups of Diff(M).

Assumptions on the subgroups Γ of Diff(M):

- volume-form-preserving
- ω -discrete, more precisely:

$$onumber F
i \gamma \mapsto \lambda_+(\gamma) := \Big(\int_{y \in N} (\log \|D_y \gamma\|)^2 \ d \omega$$

where $D_y \gamma: T_y N \to T_{\gamma \cdot y} N$ is the derivative and $\|\cdot\|$ is the operator norm (w.r.t. some fixed Riemannian metric q).

Note:

- The integral measures how far γ is from being isometric (w.r.t. g).
- The definition of ω -discreteness is independent of g.

Theorem (Gong-W-Yu, 2021)

The rational strong Novikov conjecture holds for ω -preserving (ω) -)discrete countable subgroups of Diff(M).

Theorem (Gong-W-Xie-Yu, 2023+) [Fix a prob. measure μ on M]

The rational strong Novikov conjecture holds for μ -discrete countable subgroups of Diff(M).

This removes the "volume-form-preserving" condition above. In this more general case, " μ -discreteness" means: $\inf_{\gamma'\in\Gamma} d_{\mu,q}(\gamma'\gamma,\gamma') \xrightarrow{\gamma\to\infty} \infty$, where we use a pseudometric on Diff(N):

 $d_{\mu,g}(\varphi,\psi) := \left(\int_{x \in N} \left(\log \left(\left\| D_{\varphi(x)} \left(\psi \varphi^{-1} \right) \right\|_g \vee \left\| D_{\psi(x)} \left(\varphi \psi^{-1} \right) \right\|_g \right) \right)^2 \, \mathrm{d}\,\mu(x) \right)^{\frac{1}{2}}$

III. Outlook: merging two extreme cases for $\Gamma < \text{Diff}(M)$ **?**

'tame'' Γ fixes a Riem. metric $\Longrightarrow \Gamma < Lie$ group vild" Γ is μ -discrete $\stackrel{[GWYX]}{\Longrightarrow}$ rational strong Novikov conj.

[Fix a volume form ω on M]

↓ [Guentner-Higson-Weinberger]

IV. Strategy: exploit geometric properties of groups

"Abstract" Theorem (Gong-W-Yu, 2021)

The rational strong Novikov conjecture holds for groups acting isometrically and properly on *admissible Hilbert-Hadamard spaces*.

 $\forall \exists x \in \mathcal{H}, d(x, \gamma \cdot x) \xrightarrow{\gamma \to \infty} \infty$ nonpositively curved "manifold-like" metric spaces common generalization of Hilbert spaces and Hadamard manifolds

A Hilbert-Hadamard space constructed from M [Fix $\mu \in Prob(M)$]

Obs: {inner products on \mathbb{R}^n } \cong {positive definite $n \times n$ -matrices} $\cong GL(n,\mathbb{R})/O(n)$ (= a nonpositively curved symmetric space) \Rightarrow {Riemannian metrics on M} \cong {smooth sections of Riem(M)}

with an "
$$L^2$$
-metric" $d(\xi,\eta) := \left(\int_M d_{GL/O}(\xi(x),\eta)\right)$

 $\xrightarrow{L^2\text{-completion}}$ Riem $(M)_{\mu}$ = the "space of L^2 -Riemannian metrics".

Obs: $\Gamma < \operatorname{Diff}(M)$ is μ -preserving and discrete $\Rightarrow \Gamma \curvearrowright \operatorname{Riem}(M)_{\mu}$ isometrically & properly. $==\Rightarrow \begin{pmatrix} \text{"Abstract" Theorem} \\ \Rightarrow \text{Theorem GWY 2021} \end{pmatrix}$.

- a $GL(n,\mathbb{R})/O(n)$ -bundle over M
 - $(\eta(x))^2 d\mu(x)$

V. Technical innovation: continuous fields of Hilbert-Hadamard spaces

Variation of measures

$$\operatorname{Riem}(M)|_{Z} := \underbrace{\{\operatorname{Riem}(M)_{\mu}\}_{\mu \in Z}}$$

a continuous field of Hilbert-Hadamard spaces over Z

Obs: $\Gamma < \text{Diff}(M)$ is μ -discrete $\Rightarrow \Gamma \curvearrowright \operatorname{Riem}(M)|_Z$ isometrically & properly where $Z = \overline{\Gamma \cdot \mu} \subseteq \operatorname{Prob}(M)$.

Hence Theorem GWXY 2023+ follows from:

"Abstract" Theorem (Gong-W-Xie-Yu, 2023+)

The rational strong Novikov conjecture holds for groups acting isometrically and properly on admissible continuous fields of Hilbert-Hadamard spaces.

Key proof ingredients:

- The construction of a C^* -algebra associated to a continuous field of Hilbert-Hadamard spaces.
- New deformation & trivilization techniques to aid K-theory computations.

[Fix $Z \subseteq \operatorname{Prob}(M)$]

VI. Related research: ∞ -dimensional symmetric spaces

• Point of departure: $\operatorname{Riem}(M)_{\mu}$ is a symmetric Hilbert-Hadamard space, i.e., \exists inversion symmetry at every point.

• Goal: Extend the classification and structure theory of classical symmetric spaces (à la Cartan; using Riemannian geometry & Lie theory) to this setting. ~ Functional analysis on nonlinear spaces!

- They appear to be related to von Neumann algebras. Construction (essentially [Bowen-Hayes-Lin] "A multiplicative ergodic theorem..."; think: ∞ -dim'l analog of $GL(n, \mathbb{C})/U(n)$)
 - (M, τ) : a von Neumann algebra with a semifinite trace.
 - $L^0(M, \tau)$: the algebra of operators on $L^2(M, \tau)$ that are affiliated with (M, τ) and have essentially dense domains.
 - $\mathcal{P}(M,\tau) \subseteq L^0(M,\tau)$ consisting of operators x satisfying: x is positive,
 - 2 x is invertible, i.e., $x^{-1} \in L^0(M, \tau)$, and
 - **③** log $|x| \in L^2(M, \tau)$.
 - Equip $\mathcal{P}(M,\tau)$ with a metric $d(x,y) = \|\log(x^{-1/2}yx^{-1/2})\|_2$

