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Geometric disciplines

Parallels between disciplines:

Algebraic Geometry

Complex Geometry

Differential Geometry

Topology

topological algebras
of polynomials PpMq

topological algebras of
holomorphic functions OpMq

topological algebras of
smooth functions EpMq

topological algebras of
continuous functions CpMq
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Reality

Algebraic Geometry

Complex Geometry

Differential Geometry

Topology

observation tools
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Topological algebras

Polynomial algebras,
key example: PpMq

Holomorphic algebras,
key example: OpMq

Smooth algebras,
key example: EpMq

Continuous algebras,
key example: CpMq

?

holomorphic envelope

smooth envelope

continuous envelope
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Monoidal category

Key example:

Category VectC of vector spaces over C.

1) a category M,

2) a covariant furctor b : M ˆ M Ñ M called the tensor product:

1XbY “ 1X b 1Y , pχ b χ1q ˝ pφ b φ1q “ pχ ˝ φq b pχ1 ˝ φ1q

3) an isomorphism of functors
˝ :

´

pX ,Y ,Z q ÞÑ pX b Y q b Z
¯

↣
´

pX ,Y ,Z q ÞÑ X b pY b Z q

¯

, called the
associativity isomorphism, such that @A,B,C,D

pA b pB b Cqq b D
˝A,BbC,D

// A b ppB b Cq b Dq

1Ab˝B,C,D
��

ppA b Bq b Cq b D

˝A,B,C b1D

OO

˝AbB,C,D ))

A b pB b pC b Dqq

pA b Bq b pC b Dq

˝A,B,CbD

55
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4) an object I called the unit object in the category M, and two isomorphisms of
functors Ÿ :

´

X ÞÑ I b X
¯

↣
´

X ÞÑ X
¯

, and Ź :
´

X ÞÑ X b I
¯

↣
´

X ÞÑ X
¯

,
called the left identity and the right identity, such that

pŸI : I b I Ñ Iq “ pŹI : I b I Ñ Iq,

pX b Iq b Y X b pI b Y q

X b Y
''ŹX b1Y

//
˝X,I,Y

ww 1X bŸY
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Symmetric monoidal category

5) an isomorphism of functors ˛ :
´

pX ,Y q ÞÑ X b Y
¯

↣
´

pX ,Y q ÞÑ Y b X
¯

called
the symmetry, such that

I b X X b I

X
��

ŸX

//
˛I,X

��
ŹX

X b Y X b Y

Y b X
$$˛X,Y

//
1XbY

::

˛Y ,X

X b pY b Z q pY b Z q b X

pX b Y q b Z Y b pZ b Xq

pY b Xq b Z Y b pX b Z q

//
˛X,Y bZ

))

˝Y ,Z,X

))˛X,Y b1Z

55˝X,Y ,Z

//
˝Y ,X,Z

55

1Y b˛X,Z
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Closed symmetric monoidal category

6) a bifunctor pX ,Y q ÞÑ Y
X : M ˆ M Ñ M, contravariant in the first variable and

covariant in the second:

1Y

1X
“ 1 Y

X
,

χ1 ˝ φ1

φ ˝ χ
“

χ1

χ
˝
φ1

φ

7) an isomorphism of functors

´

pX ,Y ,Z q ÞÑ Z m pX b Y q

¯

m
↣

´

pX ,Y ,Z q ÞÑ
Z
Y

m X
¯

,

Remark

Y m X “ MorpX,Yq

Y
X

“ HompX,Yq

MorpX b Y,Zq – MorpX,HompY,Zqq
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Pure algebra vs Topological algebra

Pure algebra: Topological algebra:

The category VectC Only the category BanC
of vector spaces over C of Banach spaces over C
is closed monoidal: is closed monoidal:

LpX b Y ,Z q – LpX , LpY ,Z qq BpX pbY ,Z q – BpX ,BpY ,Z qq

ó

Topological algebra is a “non-categorical theory”: only its “Banach branch” is
categorical, but the problem is that there are not so many Banach algebras, for
example, the algebras C8pMq, DiffpMq are not Banach.
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Stereotype spaces

A stereotype space is a topological vector space X over C such that the natural map

iX : X Ñ X ‹‹, iX pxqpf q “ f pxq, x P X , f P X ‹

is an isomorphism of topological vector spaces (i.e. a linear and a homeomorphic
map). Here the dual space X ‹ is defined as the space of all linear continuous
functionals f : X Ñ C endowed with the topology of uniform convergence on totally
bounded sets in X , and the second dual space X ‹‹ is the space dual to X ‹ in the same
sense.
A set D Ď X is said to be capacious if for each totally bounded set A Ď X there is a
finite set F Ď X such that A Ď D ` F .

A topological vector space X is said to be

pseudocomplete, if each totally bounded Cauchy net in X converges,

pseudosaturated, if each closed convex balanced capacious set D in X is a
neighborhood of zero in X .

Criterion: a locally convex space X is stereotype if and only if it is pseudocomplete
and pseudosaturated.
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Category "Ste" of stereotype spaces

The class Ste of stereotype spaces forms a category with linear continuous maps as
morphisms and with the following properties:

Ste is pre-abelian, i.e. additive with kernels and cokernels;

Ste is bicomplete, i.e. has projective and injective limits;

Ste has nodal decomposition:

X
StrongEpi ��

φ
// Y

X 1

Epi X Mono
// Y 1

StrongMono

OO

Ste is a *-autonomous category, i.e. symmetric closed monoidal with the duality
functor ‹, and

X ‹‹ – X , X ‹ m pY f Z q – pX f Y q‹ m Z .
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Algebras in monoidal categories

Key example:

Algebra CpMq of continuous functions on a (locally compact) topological space M.

An algebra in a monoidal category M is a triple pA, µ, ιq such that

pA b Aq b A

µb1A

��

˝A,A,A
// A b pA b Aq

1Abµ

��

A b A
µ

// A A b A
µ

oo

A b A

µ

��

I b A

ŸA ''

ιb1A
77

A b I

ŹAww

1Abιgg

A

A left module over pA, µ, ιq is a pair pX , ξq such that

pA b Aq b X

µb1X

��

˝A,A,X
// A b pA b Xq

1Abξ

��

A b X
ξ

// X A b X
ξ

oo

A b X

ξ

��

I b X

ŸX ''

ιb1X
77

X
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Stereotype algebras and modules

As a symmetric monoidal category Ste generates the notions of stereotype algebra A
and of stereotype module over A. Analytical definitions:

A is a stereotype algebra if the multiplication pa, bq ÞÑ a ¨ b is continuous as a
bilinear mapping,

M is a left stereotype module over A if the multiplication pa, xq ÞÑ a ¨ x is
continuous as a bilinear mapping,

M is a right stereotype module over A if the multiplication px , aq ÞÑ x ¨ a is
continuous as a bilinear mapping,

Theorem. The categories A Ste and SteA of left and right stereotype modules over A
are enriched categories over Ste.
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Hopf algebras in monoidal categories

Key example:

Algebra CpGq of continuous functions on a (locally compact) topological group G.

A Hopf algebra in a symmetric monoidal category M is a sextuple pH, µ, ι,κ, ε, σq:

µ : H b H Ñ H (multiplication),

ι : I Ñ H (unit),

κ : H Ñ H b H (comultiplication),

ε : H Ñ I (counit),

σ : H Ñ H (antipode)

1) the triple pH, µ, ιq is a monoid in M,

pH b Hq b H
µb1H ��

˝H,H,H
// H b pH b Hq

1H bµ
��

H b H
µ

// H H b H
µ

oo

H b H
µ
��

I b H
ŸH ++

ιb1H 33

H b I
ŹHss

1H bιkk

H

2) the triple pH,κ, εq is a comonoid in M,

pH b Hq b H
˝H,H,H

// H b pH b Hq

H b H

κb1H

OO

H
κoo κ // H b H

1H bκ
OO

H b Hεb1H
ss

1H bε

++
I b H H b I

H

κ
OO

Ÿ
´1
H

kk

Ź
´1
H

33
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3) the morphisms κ : H Ñ H b H and ε : H Ñ I are homomorphisms of monoids, and
the morphisms µ : H b H Ñ H and ι : I Ñ H are homomorphisms of comonoids:

pH b Hq b pH b Hq
␣H,H,H,H

// pH b Hq b pH b Hq

µbµ

((
H b H

κbκ
66

µ --

H b H

H κ

11

I
ι
��

Ÿ
´1
I // I b I

ιbι
��

H
κ// H b H

; H b H
εbε
��

µ
// H

ε
��

I b I
ŸI // I

; H
ε

��
I

ι
@@

1I // I

4) axiom of antipode:

H b H
σb1H // H b H

µ

""
H

κ <<

κ ""

ε // I
ι // H

H b H
1H bσ

// H b H
µ

<<
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Hopf algebras CpGq and C‹pGq

The identity
CpG ˆ Hq – CpGq d CpHq

implies that for each locally compact group G

(i) CpGq is a Hopf algebra in pSte,dq with

µ : CpG ˆ Gq Ñ CpGq, µpwqptq “ wpt , tq pmultiplicationq

ι : C Ñ CpGq, ιpλqptq “ λ punitq

κ : CpGq Ñ CpG ˆ Gq, κpuqps, tq “ ups ¨ tq pcomultiplicationq

ε : CpGq Ñ C, εpuq “ up1Gq pcounitq

σ : CpGq Ñ CpGq, σpuqptq “ upt´1q pantipodeq

(ii) C‹pGq is a Hopf algebra in pSte,fq with

µ‹ : C‹pGq Ñ C‹pG ˆ Gq, µ‹pαqpwq “

ż

G
wpt , tq αpdtq pcomultiplicationq

ι‹ : C‹pGq Ñ C, ι‹pαq “

ż

G
1 αpdtq pcounitq

κ‹ : C‹pG ˆ Gq Ñ C‹pGq, κ‹pγq “

ż

GˆG
ups ¨ tq γpds, dtq pmultiplicationq

ε‹ : C Ñ C‹pGq, ε‹pλq “ λ ¨ δ1G punitq

σ‹ : C‹pGq Ñ C‹pGq, σ‹pαq “ α ˝ σ pantipodeq
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C‹pGq as a group algebra

A continuous representation of a locally compact group G in a stereotype algebra A is
an arbitrary continuous multiplicative map π : G Ñ A:

πp1Gq “ 1A, πps ¨ tq “ πpsq ¨ πptq, s, t P G.

Example

The delta-function δ : G Ñ C‹pGq.

Theorem

For each locally compact group G and for each stereotype algebra A the diagram

G
δ //

π ��

C‹pGq

φ}}
A

establishes a bijection between

— continuous representations π of G in A, and

— homomorphisms φ of C‹pGq into A.
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Hopf algebras EpGq and E‹pGq

The identities
EpG ˆ Hq – EpGq d EpHq – EpGq f EpHq

imply that for each real Lie group G

(i) EpGq is a Hopf algebra in pSte,dq and in pSte,fq with

µ : EpG ˆ Gq Ñ EpGq, µpwqptq “ wpt , tq pmultiplicationq

ι : C Ñ EpGq, ιpλqptq “ λ punitq

κ : EpGq Ñ EpG ˆ Gq, κpuqps, tq “ ups ¨ tq pcomultiplicationq

ε : EpGq Ñ C, εpuq “ up1Gq pcounitq

σ : EpGq Ñ EpGq, σpuqptq “ upt´1q pantipodeq

(ii) E‹pGq is a Hopf algebra in pSte,dq and in pSte,fq with

µ‹ : E‹pGq Ñ E‹pG ˆ Gq, µ‹pαqpwq “

ż

G
wpt , tq αpdtq pcomultiplicationq

ι‹ : E‹pGq Ñ C, ι‹pαq “

ż

G
1 αpdtq pcounitq

κ‹ : E‹pG ˆ Gq Ñ E‹pGq, κ‹pγq “

ż

GˆG
ups ¨ tq γpds, dtq pmultiplicationq

ε‹ : C Ñ E‹pGq, ε‹pλq “ λ ¨ δ1G punitq

σ‹ : E‹pGq Ñ E‹pGq, σ‹pαq “ α ˝ σ pantipodeq
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E‹pGq as a group algebra
A smooth representation of a real Lie group G in a stereotype algebra A is an arbitrary
continuous multiplicative map π : G Ñ A

πp1Gq “ 1A, πps ¨ tq “ πpsq ¨ πptq, s, t P G.

that defines a continuous map

f P A‹ ÞÑ f ˝ π P EpGq.

Example

The delta-function δ : G Ñ O‹pGq.

Theorem

For each real Lie group G and for each stereotype algebra A the diagram

G
δ //

π ��

E‹pGq

φ}}
A

establishes a bijection between

— smooth representations π of G in A, and

— homomorphisms φ of E‹pGq into A.
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Hopf algebras OpGq and O‹pGq

The identities
OpG ˆ Hq – OpGq d OpHq – OpGq f OpHq

imply that for each Stein group G

(i) OpGq is a Hopf algebra in pSte,dq and in pSte,fq with

µ : OpG ˆ Gq Ñ OpGq, µpwqptq “ wpt , tq pmultiplicationq

ι : C Ñ OpGq, ιpλqptq “ λ punitq

κ : OpGq Ñ OpG ˆ Gq, κpuqps, tq “ ups ¨ tq pcomultiplicationq

ε : OpGq Ñ C, εpuq “ up1Gq pcounitq

σ : OpGq Ñ OpGq, σpuqptq “ upt´1q pantipodeq

(ii) O‹pGq is a Hopf algebra in pSte,dq and in pSte,fq with

µ‹ : O‹pGq Ñ O‹pG ˆ Gq, µ‹pαqpwq “

ż

G
wpt , tq αpdtq pcomultiplicationq

ι‹ : O‹pGq Ñ C, ι‹pαq “

ż

G
1 αpdtq pcounitq

κ‹ : O‹pG ˆ Gq Ñ O‹pGq, κ‹pγq “

ż

GˆG
ups ¨ tq γpds, dtq pmultiplicationq

ε‹ : C Ñ O‹pGq, ε‹pλq “ λ ¨ δ1G punitq

σ‹ : O‹pGq Ñ O‹pGq, σ‹pαq “ α ˝ σ pantipodeq
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O‹pGq as a group algebra
A holomorphic representation of a Stein group G in a stereotype algebra A is an
arbitrary continuous multiplicative map π : G Ñ A

πp1Gq “ 1A, πps ¨ tq “ πpsq ¨ πptq, s, t P G.

that defines a continuous map

f P A‹ ÞÑ f ˝ π P OpGq.

Example

The delta-function δ : G Ñ O‹pGq.

Theorem

For each Stein group G and for each stereotype algebra A the diagram

G
δ //

π ��

O‹pGq

φ||
A

establishes a bijection between

— holomorphic representations π of G in A, and

— homomorphisms φ of O‹pGq into A.
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Hopf algebras PpGq and P‹pGq

The identities
PpG ˆ Hq – PpGq d PpHq – PpGq f PpHq

imply that for each complex affine algebraic group G

(i) PpGq is a Hopf algebra in pSte,dq and in pSte,fq with

µ : PpG ˆ Gq Ñ PpGq, µpwqptq “ wpt , tq pmultiplicationq

ι : C Ñ PpGq, ιpλqptq “ λ punitq

κ : PpGq Ñ PpG ˆ Gq, κpuqps, tq “ ups ¨ tq pcomultiplicationq

ε : PpGq Ñ C, εpuq “ up1Gq pcounitq

σ : PpGq Ñ PpGq, σpuqptq “ upt´1q pantipodeq

(ii) P‹pGq is a Hopf algebra in pSte,dq and in pSte,fq with

µ‹ : P‹pGq Ñ P‹pG ˆ Gq, µ‹pαqpwq “

ż

G
wpt , tq αpdtq pcomultiplicationq

ι‹ : P‹pGq Ñ C, ι‹pαq “

ż

G
1 αpdtq pcounitq

κ‹ : P‹pG ˆ Gq Ñ P‹pGq, κ‹pγq “

ż

GˆG
ups ¨ tq γpds, dtq pmultiplicationq

ε‹ : C Ñ P‹pGq, ε‹pλq “ λ ¨ δ1G punitq

σ‹ : P‹pGq Ñ P‹pGq, σ‹pαq “ α ˝ σ pantipodeq
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P‹pGq as a group algebra
A polynomial representation of a complex affine algebraic group G in a stereotype
algebra A is an arbitrary continuous multiplicative map π : G Ñ A

πp1Gq “ 1A, πps ¨ tq “ πpsq ¨ πptq, s, t P G.

that defines a continuous map

f P A‹ ÞÑ f ˝ π P PpGq.

Example

The delta-function δ : G Ñ P‹pGq.

Theorem

For each complex affine algebraic group G and for each stereotype algebra A the
diagram

G
δ //

π ��

P‹pGq

φ||
A

establishes a bijection between

— polynomial representations π of G in A, and

— homomorphisms φ of P‹pGq into A.
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Envelopes

‚ A morphism σ : X Ñ X 1 is called an extension of the object X in the class of
morphisms Ω with respect to the class of morphisms Φ, if σ P Ω, and for any
morphism φ : X Ñ B from the class Φ there exists a unique morphism
φ1 : X 1 Ñ B such that

X

X 1 B
��

ΩQσ

��

@φPΦ

//
D!φ1

‚ An extension ρ : X Ñ E of an object X in the class of morphisms Ω with respect
to the class of morphisms Φ is called an envelope of X in Ω with respect to Φ, if for
any other extension σ : X Ñ X 1 (of X in Ω with respect to Φ) there is a unique
morphism υ : X 1 Ñ E such that

X

X 1 E
��

@σ

��

ρ

//
D!υ

Notations:
ρ “ envΩΦ X, E “ EnvΩΦ X.
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Examples

Stone—Čech compactification

In the category of Tikhonov spaces the Stone—Čech compactification β : X Ñ βX is
an envelope in the class of compact spaces with respect to the same class of spaces:

βX “ EnvCom
ComX

Completion

In the category of locally convex spaces the completion İ : X Ñ Xİ is an envelope in
the class of all locally convex spaces with respect to the class of Banach spaces:

Xİ “ EnvLCS
Ban X
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Continuous envelope

A continuous envelope envCA : A Ñ EnvCA of an involutive stereotype algebra A is its
envelope in the class DEpi of dense epimorphisms in the category InvSteAlg of
involutive stereotype algebras with respect to the class of all homomorphisms into
C˚-algebras:

EnvCA “ EnvDEpi
C˚ A

Theorem

Let A be an involutive subalgebra in CpMq and the mapping M Ñ SpecpAq is an exact
covering. Then

EnvCA “ CpMq

Example: EnvCEpMq “ CpMq.
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Differential morphisms
Let B be an involutive stereotype algebra, d P N and m P Nd , set

Im “ tx P Brrdss : @k P Nd k ď m ùñ xk “ 0u.

(the ideal in the algebra Brrdss of power series with coefficients in B). The quotient
algebra

Brms :“ Brrdss{Im

is called the algebra B with joined self-adjoint nilpotent elements (of order m).
Take

Nrms “ tk P Nd : k ď mu.

For each homomorphism D : A Ñ Brms of involutive stereotype algebras its partial
derivatives are the operators

Dk : A Ñ B, Dk paq “ Dpaqpkq, k P Nrms, a P A.

A homomorphism D : A Ñ Brms is differential, if its partial derivatives tDk ; k P Nrmsu

are differential operators from A into B with respect to the homomorphism D0 : A Ñ B
with the orders, not greater than |k |:

Dk P Diff|k|pD0q,

i.e.
r...rDk , a0s, ...a|k|s “ 0, a0, ..., a|k| P A,

with
rΦ, aspxq “ Φpa ¨ xq ´ D0paq ¨ Φpxq, x P X .
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Smooth envelope

A smooth envelope envEA : A Ñ EnvEA of an involutive stereotype algebra A is its
envelope in the class DEpi of dense epimorphisms in the category InvSteAlg of
involutive stereotype algebras with respect to the class DiffMor of all differential
homomorphisms into C˚-algebras Brms with the joined self-adjoint nilpotent elements:

EnvEA “ EnvDEpi
DiffMorA

Theorem

Let A be an involutive subalgebra in EpMq and the mapping M Ñ SpecpAq is an exact
covering, and for each s P M the mapping TspMq Ñ TsrAs is an isomorphism. Then

EnvEA “ EpMq
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Holomorphic envelope

A holomorphic envelope envOA : A Ñ EnvOA of an involutive stereotype algebra A is
its envelope in the class DEpi of dense epimorphisms in the category SteAlg of
stereotype algebras with respect to the class Ban of all homomorphisms into Banach
algebras:

EnvOA “ EnvDEpi
Ban A

Example: EnvOPpMq “ OpMq.
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Stereotype Dualities

Duality for finite groups

finite-dimensional
Hopf algebras

H ÞÑH˚
// finite-dimensional

Hopf algebras

finite groups

CG

ÞÑ

G

OO

finite groups

CG

ÞÑ

G

OO

Abelian finite groups

e

OO

G ÞÑpG // Abelian finite groups

e

OO
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Duality in Topology

Theorem

If G is a Moore group, then

C‹pGq
� EnvC // EnvCC‹pGq

_
‹
��_

‹
OO

CpGq
�EnvCoo

`

EnvCC‹pGq
˘‹

If we denote
H: “

`

EnvCH
˘‹
,

then C‹pGq becomes a Hopf algebra “reflexive with respect to the continuous
envelope”:

H:: – H,

and we receive the following “diagram of functors”, which means that : generalizes the
usual Pontryagin duality ‚:
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Hopf algebras,
reflexive with respect to
the continuous envelope

H ÞÑH:
//

Hopf algebras,
reflexive with respect to
the continuous envelope

Moore groups

C‹pGq

ÞÑ

G

OO

Moore groups

C‹pGq

ÞÑ

G

OO

Abelian locally compact groups

e

OO

G ÞÑG‚
// Abelian locally compact groups

e

OO

Sergei Akbarov Stereotype dualities in Geometry



Duality in Differential Geometry

Theorem

If G “ C ˆ K , where C is a compactly generated Abelian Lie group, and K a compact
Lie group, then

E‹pGq
� EnvE // EnvEE‹pGq

_
‹
��_

‹
OO

EpGq
�EnvEoo

`

EnvEE‹pGq
˘‹

If we denote
H: “

`

EnvEH
˘‹
,

then E‹pGq becomes a Hopf algebra “reflexive with respect to the smooth envelope”:

H:: – H,

and we receive the following “diagram of functors”, which means that : generalizes the
usual Pontryagin duality ‚:
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Hopf algebras,
reflexive with respect to

the smooth envelope

H ÞÑH:
//

Hopf algebras,
reflexive with respect to

the smooth envelope

G “ C ˆ K

E‹pGq

ÞÑ

G

OO

G “ C ˆ K

E‹pGq

ÞÑ

G

OO

Abelian compactly generated Lie groups

e

OO

G ÞÑG‚
// Abelian compactly generated Lie groups

e

OO

Sergei Akbarov Stereotype dualities in Geometry



Duality in Complex Geometry

Theorem

If G is a finite extension of a connected complex linear group, then

O‹pGq
� EnvO // EnvOO‹pGq

_
‹
��_

‹
OO

OpGq
�EnvOoo

`

EnvOO‹pGq
˘‹

If we denote
H: “

`

EnvOH
˘‹
,

then O‹pGq becomes a Hopf algebra “reflexive with respect to the smooth envelope”:

H:: – H,

and we receive the following “diagram of functors”, which means that : generalizes the
usual Pontryagin duality ‚:
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Hopf algebras,
reflexive with respect to

the holomorphic envelope

H ÞÑH:
//

Hopf algebras,
reflexive with respect to

the holomorphic envelope

finite extensions
of connected complex linear groups

O‹pGq

ÞÑ

G

OO

finite extensions
of connected complex linear groups

O‹pGq

ÞÑ

G

OO

Abelian finite groups

e

OO

G ÞÑG‚
// Abelian finite groups
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