

A mathematical foundation for self-testing: Lifting common assumptions

Pedro Baptista, <u>Ranyiliu Chen</u>, Jędrzej Kaniewski, David R. Lolck, Laura Mančinska, Thor G. Nielsen, Simon Schmidt

13th Dec. 2023, HIT

arXiv: 2310.12662

Content

Backgrounds

- Bell scenario, correlation, and self-testing
- common assumptions in self-testing

Main Result

- when we can/cannot remove those assumptions
- a special correlation without any full-rank PVM realization

A viewpoint from operator algebra

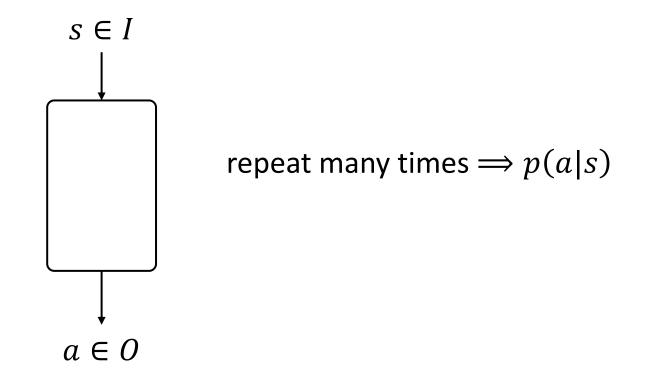
- correlation by C* algebra
- self-testing by C* algebra

Q & A

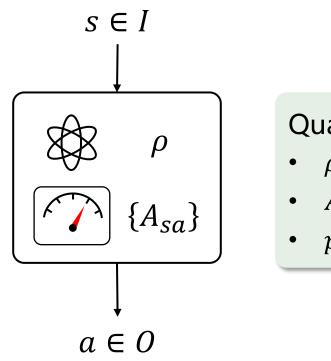
Background

Bell scenario, correlation, and self-testing

A (interactive) box:



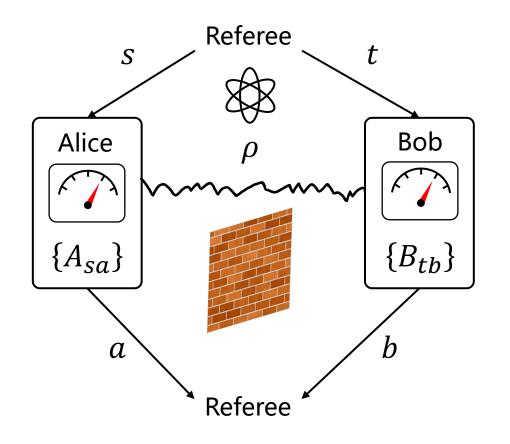
A quantum box:



Quantum mechanism:

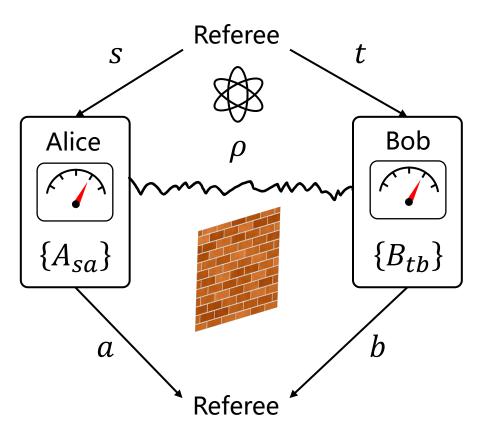
- $\rho \in B(H), \rho \ge 0, \operatorname{Tr}[\rho] = 1$
- $A_{sa} \in B(H), A_{sa} \ge 0, \sum_{a} A_{sa} = id$
- $p(a|s) = \operatorname{Tr}[A_{sa}\rho]$

Bell scenario:

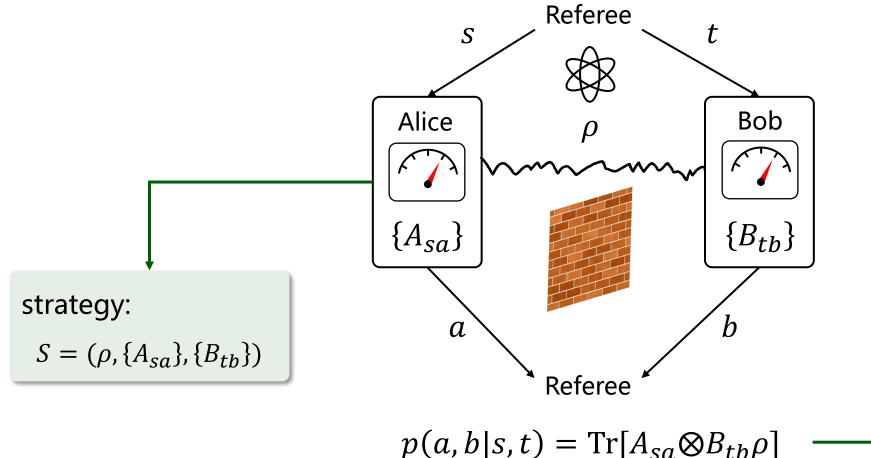


Quantum mechanism: • $\rho \in B(H_A \otimes H_B)$

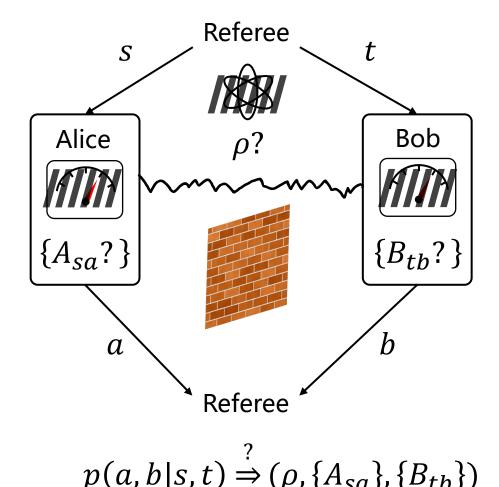
Bell scenario:



 $p(a,b|s,t) = \operatorname{Tr}[A_{sa} \otimes B_{tb}\rho]$



It is known that some statistics (correlation) cannot be produced by classical mechanics!



Inverse question:

Can p(a, b|s, t) induce $S = (\rho, \{A_{sa}\}, \{B_{tb}\})$?

Self-testing: there is a 'unique' strategy

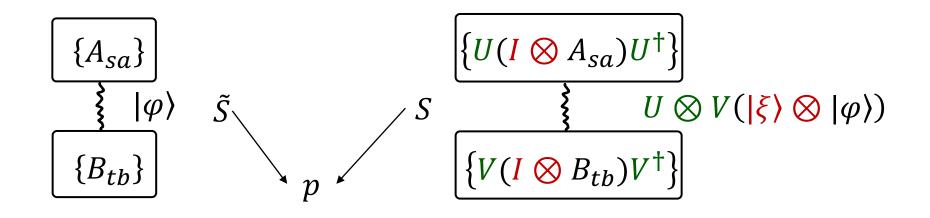
that produces

p(a,b|s,t).

Unique up to ...

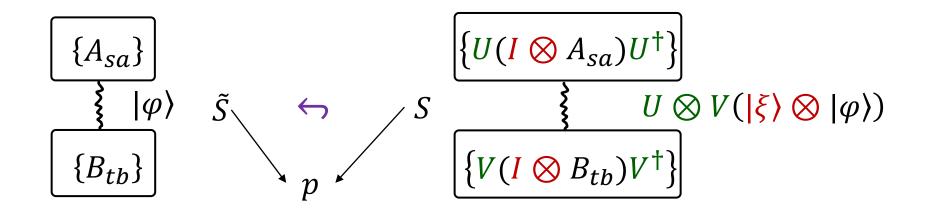
```
Unique up to ...
```

trivial auxiliary state + change of local bases:



Unique up to ...

trivial auxiliary state + change of local bases:



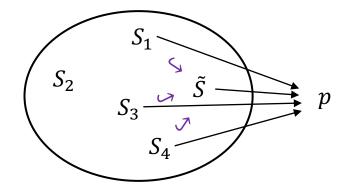
We say \tilde{S} is a local dilation of *S*, denote by $S \hookrightarrow \tilde{S}$.

Unique up to ...

trivial auxiliary state + change of local bases:

Local dilation: $S \hookrightarrow \tilde{S}$ if there is local isometry $V = V_A \otimes V_B$ and auxiliary state σ_{aux} such that $V(A_{sa} \otimes B_{tb})\rho V^* = (\tilde{A}_{sa} \otimes \tilde{B}_{tb})\tilde{\rho} \otimes \sigma_{aux}$ holds for all a, b, s, t.

Best one can hope for: \tilde{S} is a local-dilation of any S generating p.



Definition (self-testing):

A correlation p is a self-test for \tilde{S} , if for any strategy S generating p, there exists local isometry and auxiliary state such that $S \hookrightarrow \tilde{S}$.

Background

Assumptions in self-testing

Definition (self-testing):

A correlation p is a self-test for \tilde{S} , if for any strategy S generating

p, there exists local isometry and auxiliary state such that $S \hookrightarrow \tilde{S}$.

In most of the existing results, some of these assumptions are made for *S*:

- the shared state, ρ , is pure, i.e., $\rho = |\varphi\rangle\langle\varphi|, |\varphi\rangle \in H_A \otimes H_B$
- the shared state is full-rank, i.e., $rank(\rho_A) = \dim H_A$, $rank(\rho_B) = \dim H_B$
- the measurements $\{A_{sa}\}, \{B_{tb}\}$ are PVMs, i.e., A_{s} E.g., $\frac{|00\rangle+|11\rangle}{\sqrt{2}} \in \mathbb{C}^2 \otimes \mathbb{C}^2$ is full-rank, while $\frac{|00\rangle+|11\rangle}{\sqrt{2}} \in \mathbb{C}^2 \otimes \mathbb{C}^3$ is not.

Definition (self-testing):

A correlation p is a self-test for \tilde{S} , if for any strategy S generating

p, there exists local isometry and auxiliary state such that $S \hookrightarrow \tilde{S}$.

In most of the existing results, some of these assumptions are made for *S*:

- the shared state, ρ , is pure, i.e., $\rho = |\varphi\rangle\langle\varphi|, |\varphi\rangle \in H_A \otimes H_B$
- the shared state is full-rank, i.e., $rank(\rho_A) = \dim H_A$, $rank(\rho_B) = \dim H_B$
- the measurements $\{A_{sa}\}, \{B_{tb}\}$ are PVMs, i.e., A_{sa} and B_{tb} are projections

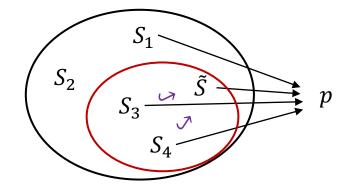
Definition (self-testing):

A correlation p is a self-test for \tilde{S} , if for any strategy S generating

p, there exists local isometry and auxiliary state such that $S \hookrightarrow \tilde{S}$.

In most of the existing results, some of these assumptions are made for *S*.

Making assumptions =



Why we want to remove those assumptions?

• A purely math reason: it weakens the self-testing statements.

Why we want to remove those assumptions?

- A purely math reason: it weakens the self-testing statements.
- Examples:

Perfectly correlated correlation:

p(00) + p(11) = 1

- If assume purity, then state must be entangled.
- But the correlation is classical!

Why we want to remove those assumptions?

- A purely math reason: it weakens the self-testing statements.
- Examples:

Perfectly correlated correlation:

p(00) + p(11) = 1

- If assume purity, then state must be entangled.
- But the correlation is classical!

In DI-RNG:

- Unpredictable by any third party
- If assume purity, then third party can never entangle a pure state, thus it is already unpredictable!

Why we want to remove those assumptions?

- A purely math reason: it weakens the self-testing statements.
- Examples
- A philosophical reason: it goes against the idea of self-testing: making **minimal** assumptions.

Why we want to remove those assumptions?

- A purely math reason: it weakens the self-testing statements.
- Examples
- A philosophical reason: it goes against the idea of self-testing: making **minimal** assumptions.

Main result: in most cases, we can remove those assumptions safely!

Main result

Lifting Assumptions

Lifting Assumptions

Let $t \subseteq \{\text{pure, full rank, PVM}\}$.

Definition (*t*-self-testing):

A correlation p is a *t*-self-test for \tilde{S} , if for any *t* strategy *S* generating p, there exists local isometry and auxiliary state such that $S \hookrightarrow \tilde{S}$.

- Clearly, if $t \subseteq t'$, then t-self-test $\Rightarrow t'$ -self-test.
- Removing assumption = promoting self-test
- If $t = \emptyset$, we call it an **assumption-free** self-test.

Lifting Assumptions

Theorem A (Main Result):

Let p be a correlation. Let \tilde{S} be a 'nice' strategy for p.

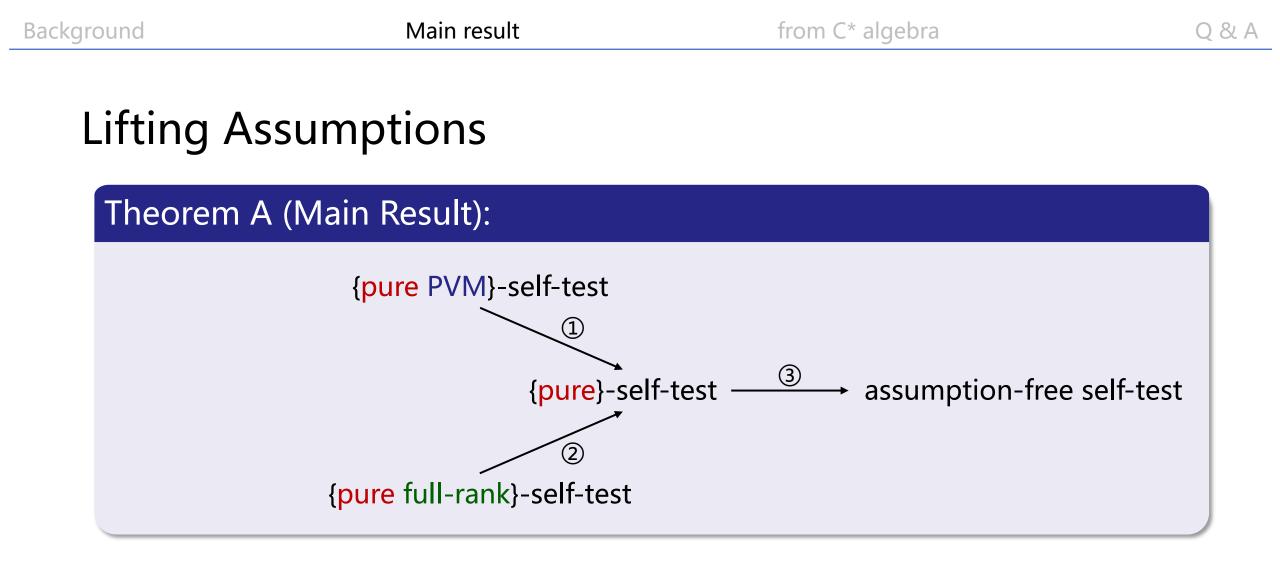
(a) If p is a {pure PVM}-self-test for \tilde{S} ,

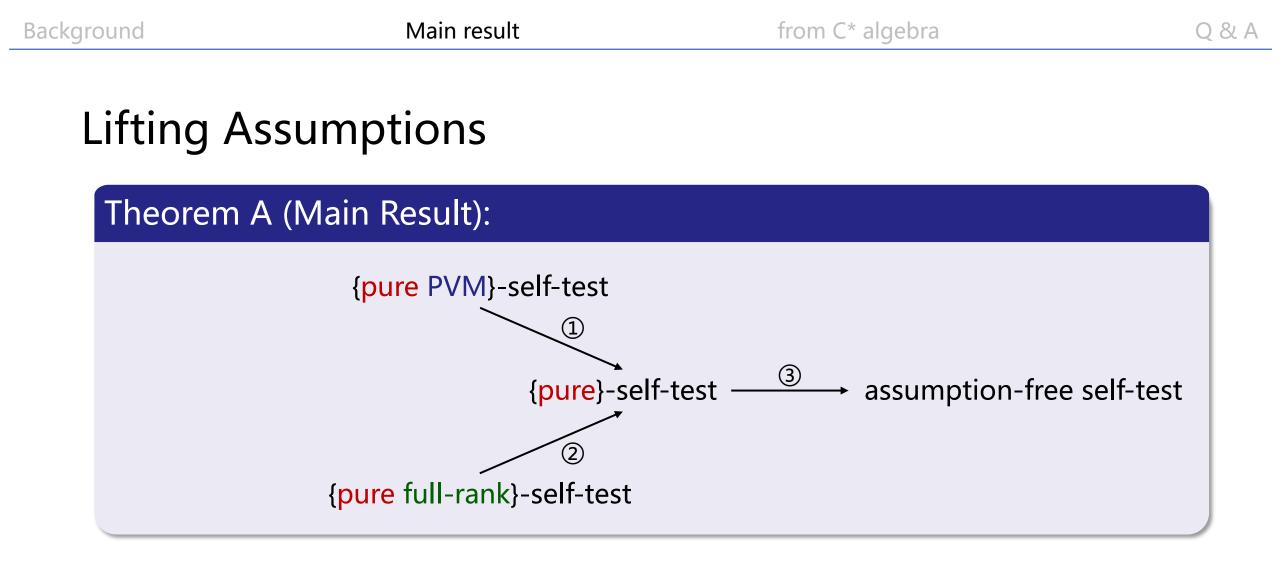
then p is an assumption-free self-test for \tilde{S} .

(b) If p is a {pure full-rank}-self-test for \tilde{S} ,

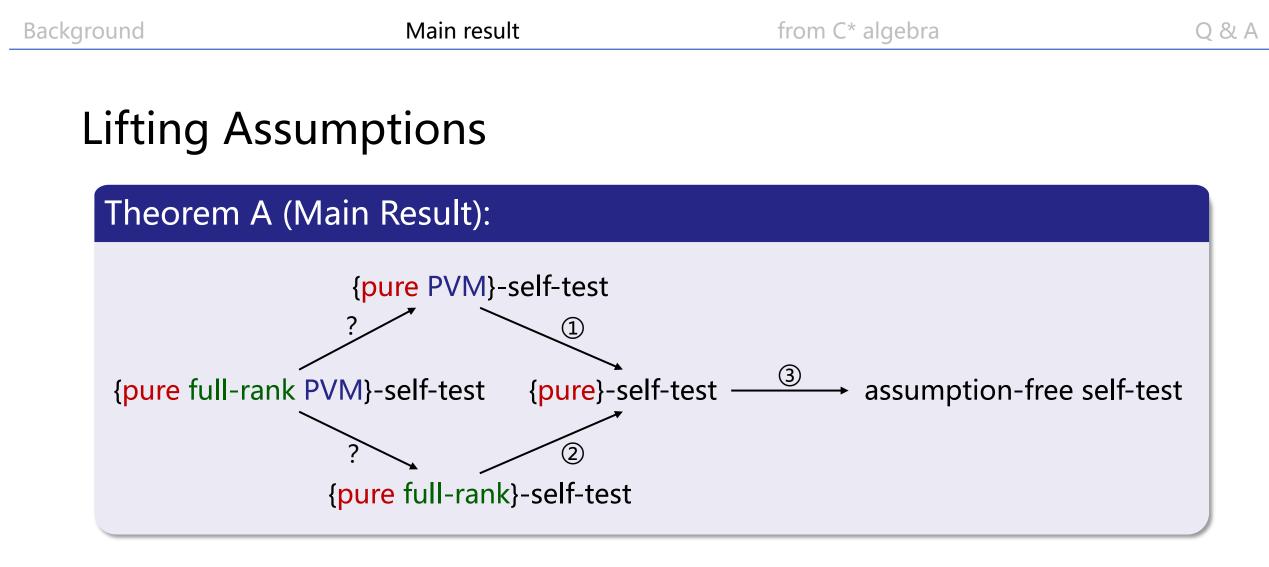
then p is an assumption-free self-test for \tilde{S} .

'nice' = pure, full-rank, PVM





$$(1) + (3) = (a), (2) + (3) = (b)$$



? <u>Conjecture</u>: Negative

Lifting Assumptions

Theorem B:

Let p be a correlation that is an assumption-free self-test for some strategy \tilde{S} . Then \tilde{S} must be PVM on its support.

In other words, if \tilde{S} is full-rank but non-projective, then it cannot be self-tested in an assumption-free way.

Main result

Correlation without any full-rank PVM realization

Recall: the canonical strategy for CHSH inequality:

$$\tilde{S}_{\text{CHSH}} = (|\text{EPR}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}, \{X, Z\}, \{H \coloneqq \frac{X+Z}{\sqrt{2}}, G \coloneqq \frac{X-Z}{\sqrt{2}}\})$$

Recall: the canonical strategy for CHSH game: $\tilde{S}_{CHSH} = (|EPR\rangle, \{X, Z\}, \{H, G\})$

Consider the following 3-outcome non-PVM measurement $M = \{M_0, M_1, M_2\}$:

$$\begin{cases} M_0 = \frac{1}{3}(I + Z) & |v_1\rangle \\ M_1 = \frac{1}{3}(I - \frac{1}{2}Z + \frac{\sqrt{3}}{2}X) \iff M_i = \frac{2}{3}|v_i\rangle\langle v_i| & |v_0\rangle \\ M_2 = \frac{1}{3}(I - \frac{1}{2}Z - \frac{\sqrt{3}}{2}X) & |v_2\rangle \end{cases}$$

Now, define

 $\tilde{S} = (|EPR\rangle, \{X, Z\}, \{H, G, M\})$

Consider the following 3-outcome non-PVM measurement $M = \{M_0, M_1, M_2\}$:

$$\begin{cases} M_0 = \frac{1}{3}(I + Z) & |v_1\rangle \\ M_1 = \frac{1}{3}(I - \frac{1}{2}Z + \frac{\sqrt{3}}{2}X) \iff M_i = \frac{2}{3}|v_i\rangle\langle v_i| & |v_0\rangle \\ M_2 = \frac{1}{3}(I - \frac{1}{2}Z - \frac{\sqrt{3}}{2}X) & |v_2\rangle \end{cases}$$

Now, define

$$\tilde{S} = (|EPR\rangle, \{X, Z\}, \{H, G, M\})$$

Then $p_{\tilde{S}} \in C_q(2, 3, 2, 3)$.

<u>Note</u>: $p_{\tilde{S}}$ cannot be an assumption-free self-test for \tilde{S} by Theorem B.

Theorem C:

Correlation $p_{\tilde{S}}$ satisfies the following:

(a) $p_{\tilde{S}}$ is extreme in $C_q(2,3,2,3)$.

(b) $p_{\tilde{S}}$ {pure, full-rank}-self-tests \tilde{S} .

(c) $p_{\tilde{S}}$ {pure, PVM}-self-tests any Naimark dilation of \tilde{S} .

Correlation without any full-rank PVM realization

Theorem C:

Correlation $p_{\tilde{S}}$ satisfies the following:

(a) $p_{\tilde{S}}$ is extreme in $C_q(2,3,2,3)$.

(b) $p_{\tilde{S}}$ {pure, full-rank}-self-tests \tilde{S} .

(c) $p_{\tilde{S}}$ {pure, PVM}-self-tests any Naimark dilation of \tilde{S} .

Implications:

- In Theorem A, the condition of \tilde{S} being 'nice' is crucial.
- $p_{\tilde{S}}$ admits no pure full-rank PVM realization.

Wrap-up:

Theorem A in short:

If our \tilde{S} is 'nice', then we may safely remove many assumptions.

Theorem B in short:

If our \tilde{S} is not 'nice', then the best we can hope for is a self-test

with assumptions (we will never get an assumption-free one).

Theorem C in short:

There is a correlation cannot be produced by any 'nice' strategy.

A viewpoint from operator algebra

Correlation by different quantum models

Fix *I*, *O*, let $C_q(|I|, |O|)$ be the set of all (quantum) correlation with |I| inputs and |O| outputs:

 $C_q(|I|, |O|) = \{p | p(a, b | s, t) = \operatorname{Tr}[A_{sa} \otimes B_{tb}\rho] \text{ for some } (\rho, \{A_{sa}\}, \{B_{tb}\})\}$ $\subseteq \mathbb{R}^{|I|^2 \times |O|^2}$

Correlation by different quantum models

Fix *I*, *O*, let $C_q(|I|, |O|)$ be the set of all (quantum) correlation with |I| inputs and |O| outputs.

Similarly, we can define

- $C_c(|I|, |O|)$, the set of classical correlation.
- $C_{qa}(|I|, |O|)$, (the closure of) the set of infinite dim. quantum correlation.
- $C_{qc}(|I|, |O|)$, the set of quantum commuting correlation.

Quantum commuting strategies: $p(a, b|s, t) = \langle \varphi | A_{sa} B_{tb} | \varphi \rangle, [A_{sa}, B_{tb}] = 0.$

Correlation by different quantum models

Fix *I*, *O*, let $C_q(|I|, |O|)$ be the set of all (quantum) correlation with |I| inputs and |O| outputs.

Similarly, we can define

- $C_c(|I|, |O|)$, the set of classical correlation.
- $C_{qa}(|I|, |O|)$, (the closure of) the set of infinite dim. quantum correlation.
- $C_{qc}(|I|, |O|)$, the set of quantum commuting correlation.

$$\mathcal{C}_c \subseteq \mathcal{C}_q \subseteq \mathcal{C}_{qa} \subseteq \mathcal{C}_{qc}$$

Fix *I*, *O*, let $C_q(|I|, |O|)$ be the set of all (quantum) correlation with |I| inputs and |O| outputs.

Let

$$\mathcal{A} \coloneqq C^* \left\langle e_{sa} | e_{sa} = e_{sa}^2, \sum_a e_{sa} = 1 \right\rangle$$
$$\mathcal{B} \coloneqq C^* \left\langle f_{tb} | f_{tb} = f_{tb}^2, \sum_b f_{tb} = 1 \right\rangle$$

- Fix *I*, *O*, let $C_q(|I|, |O|)$ be the set of all (quantum) correlation with |I| inputs and |O| outputs.
- In 2011, [1] showed that:

Theorem (correlation by C* algebra):

Let p be a correlation in $\mathbb{R}^{|I|^2 \times |O|^2}$. Then

 $p \in C_q(|I|,|O|)$

 \Leftrightarrow

$\exists \text{ finite dim. } \varphi \text{ on } \mathcal{A} \otimes_{\min} \mathcal{B} \text{ s.t. } \varphi(e_{sa} \otimes f_{tb}) = p(a, b | s, t)$

[1] M. Junge, M. Navascues, C. Palazuelos, et al. Connes' embedding problem and Tsirelson's problem. Journal of Math. Phy., 52(1):012102, Jan 2011.

Fix *I*, *O*, let $C_{qa}(|I|, |O|)$ be (the closure of) the set of infinite dim. quantum correlation with |I| inputs and |O| outputs.

In 2011, [1] showed that:

Theorem (correlation by C* algebra):

Let p be a correlation in $\mathbb{R}^{|I|^2 \times |O|^2}$. Then

 $p \in C_{qa}(|I|,|O|)$

 \Leftrightarrow

$\exists \text{ finite dim. } \varphi \text{ on } \mathcal{A} \otimes_{\min} \mathcal{B} \text{ s.t. } \varphi(e_{sa} \otimes f_{tb}) = p(a, b | s, t)$

[1] M. Junge, M. Navascues, C. Palazuelos, et al. Connes' embedding problem and Tsirelson's problem. Journal of Math. Phy., 52(1):012102, Jan 2011.

Fix *I*, *O*, let $C_{qc}(|I|, |O|)$ be the set of quantum commuting correlation with |I| inputs and |O| outputs.

In 2011, [1] showed that:

Theorem (correlation by C* algebra):

Let p be a correlation in $\mathbb{R}^{|I|^2 \times |O|^2}$. Then

 $p \in C_{qc}(|I|,|O|)$

 \Leftrightarrow

$\exists \text{ finite dim. } \varphi \text{ on } \mathcal{A} \otimes_{\max} \mathcal{B} \text{ s.t. } \varphi(e_{sa} \otimes f_{tb}) = p(a, b | s, t)$

[1] M. Junge, M. Navascues, C. Palazuelos, et al. Connes' embedding problem and Tsirelson's problem. Journal of Math. Phy., 52(1):012102, Jan 2011.

Characterize self-testing by C* algebra

- Fix *I*, *O*, let $C_q(|I|, |O|)$ be the set of all (quantum) correlation with |I| inputs and |O| outputs.
- In 2023, [2] showed that:

Theorem (self-testing by C* algebra):

Let p be a correlation in $\mathbb{R}^{|I|^2 \times |O|^2}$. Then

p is a self_test

 \Leftrightarrow

 $\exists ! \text{ finite dim. } \varphi \text{ on } \mathcal{A} \otimes_{\min} \mathcal{B} \text{ s.t. } \varphi(e_{sa} \otimes f_{tb}) = p(a, b | s, t)$

[2] C. Paddock, W. Slofstra, Y. Zhao, et al. An operator-algebraic formulation of self-testing. Annales Henri Poincaré, 2023.

Characterize self-testing by C* algebra

Then [2] did similar generalization to other quantum models.

Future work after [2]:

- self-testing in quantum commuting model: quite unexplored
- robustness of self-testing
- geometrical properties of quantum correlation, e.g., extreme/exposed points in C_a

Thanks!

A mathematical foundation for self-testing: Lifting common assumptions arXiv: 2310.12662