
Learning low-degree functions on the
discrete hypercube

Alexandros Eskenazis

Functional Analysis Seminar
Harbin Institute of Technology

The hypercube

Every function f : {−1, 1}n → R admits a unique expansion

∀ x ∈ {−1, 1}n, f (x) =
∑

S⊆{1,...,n}

f̂ (S)wS(x)

where the Walsh functions are given by wS(x) =
∏

i∈S xi . The
corresponding Fourier coefficients are then given by

∀ S ⊆ {1, . . . , n}, f̂ (S) = E
[
f (x)wS(x)

]
,

where x is uniformly distributed on {−1, 1}n. We say that f has
degree at most d if f̂ (S) = 0 when |S | > d .

The hypercube

Every function f : {−1, 1}n → R admits a unique expansion

∀ x ∈ {−1, 1}n, f (x) =
∑

S⊆{1,...,n}

f̂ (S)wS(x)

where the Walsh functions are given by wS(x) =
∏

i∈S xi .

The
corresponding Fourier coefficients are then given by

∀ S ⊆ {1, . . . , n}, f̂ (S) = E
[
f (x)wS(x)

]
,

where x is uniformly distributed on {−1, 1}n. We say that f has
degree at most d if f̂ (S) = 0 when |S | > d .

The hypercube

Every function f : {−1, 1}n → R admits a unique expansion

∀ x ∈ {−1, 1}n, f (x) =
∑

S⊆{1,...,n}

f̂ (S)wS(x)

where the Walsh functions are given by wS(x) =
∏

i∈S xi . The
corresponding Fourier coefficients are then given by

∀ S ⊆ {1, . . . , n}, f̂ (S) = E
[
f (x)wS(x)

]
,

where x is uniformly distributed on {−1, 1}n.

We say that f has
degree at most d if f̂ (S) = 0 when |S | > d .

The hypercube

Every function f : {−1, 1}n → R admits a unique expansion

∀ x ∈ {−1, 1}n, f (x) =
∑

S⊆{1,...,n}

f̂ (S)wS(x)

where the Walsh functions are given by wS(x) =
∏

i∈S xi . The
corresponding Fourier coefficients are then given by

∀ S ⊆ {1, . . . , n}, f̂ (S) = E
[
f (x)wS(x)

]
,

where x is uniformly distributed on {−1, 1}n. We say that f has
degree at most d if f̂ (S) = 0 when |S | > d .

Learning

Let F be a class of functions on {−1, 1}n and fix an unknown
function f ∈ F . Given access to data of the form

(X1, f (X1)), . . . , (XQ , f (XQ))

where X1, . . . ,XQ ∈ {−1, 1}n, we want to algorithmically construct
a hypothesis function h : {−1, 1}n → R which well-approximates f .

Query model. The algorithm can sequentially request any
selection of samples X1,X2,

Random example model. The samples X1,X2, . . . are
i.i.d. random variables, uniformly distributed on the hypercube. In
this model, the output function h is random and we want it to be a
good approximation of f with high probability.

Learning

Let F be a class of functions on {−1, 1}n and fix an unknown
function f ∈ F . Given access to data of the form

(X1, f (X1)), . . . , (XQ , f (XQ))

where X1, . . . ,XQ ∈ {−1, 1}n, we want to algorithmically construct
a hypothesis function h : {−1, 1}n → R which well-approximates f .

Query model. The algorithm can sequentially request any
selection of samples X1,X2,

Random example model. The samples X1,X2, . . . are
i.i.d. random variables, uniformly distributed on the hypercube. In
this model, the output function h is random and we want it to be a
good approximation of f with high probability.

Learning

Let F be a class of functions on {−1, 1}n and fix an unknown
function f ∈ F . Given access to data of the form

(X1, f (X1)), . . . , (XQ , f (XQ))

where X1, . . . ,XQ ∈ {−1, 1}n, we want to algorithmically construct
a hypothesis function h : {−1, 1}n → R which well-approximates f .

Query model. The algorithm can sequentially request any
selection of samples X1,X2,

Random example model. The samples X1,X2, . . . are
i.i.d. random variables, uniformly distributed on the hypercube. In
this model, the output function h is random and we want it to be a
good approximation of f with high probability.

Learning

Let F be a class of functions on {−1, 1}n and fix an unknown
function f ∈ F . Given access to data of the form

(X1, f (X1)), . . . , (XQ , f (XQ))

where X1, . . . ,XQ ∈ {−1, 1}n, we want to algorithmically construct
a hypothesis function h : {−1, 1}n → R which well-approximates f .

Query model. The algorithm can sequentially request any
selection of samples X1,X2,

Random example model. The samples X1,X2, . . . are
i.i.d. random variables, uniformly distributed on the hypercube. In
this model, the output function h is random and we want it to be a
good approximation of f with high probability.

Learning

Question. How many samples do we need?

Query model. Denote by Q(F , ε) the least number of queries
such that we can always output a function h with ‖h − f ‖2

2 ≤ ε.

Random example model. Denote by Qr (F , ε, δ) the least
number of queries such that we can always output a random
function h satisfying ‖h − f ‖2

2 ≤ ε with probability at least 1− δ.

Some structure is needed! If F = {f : {−1, 1}n → {0, 1}}, one
needs at least (1− ε)2n values of an unknown f ∈ F in order to
make an accurate hypothesis for f up to error ε.

Structure = Low Complexity

Learning

Question. How many samples do we need?

Query model. Denote by Q(F , ε) the least number of queries
such that we can always output a function h with ‖h − f ‖2

2 ≤ ε.

Random example model. Denote by Qr (F , ε, δ) the least
number of queries such that we can always output a random
function h satisfying ‖h − f ‖2

2 ≤ ε with probability at least 1− δ.

Some structure is needed! If F = {f : {−1, 1}n → {0, 1}}, one
needs at least (1− ε)2n values of an unknown f ∈ F in order to
make an accurate hypothesis for f up to error ε.

Structure = Low Complexity

Learning

Question. How many samples do we need?

Query model. Denote by Q(F , ε) the least number of queries
such that we can always output a function h with ‖h − f ‖2

2 ≤ ε.

Random example model. Denote by Qr (F , ε, δ) the least
number of queries such that we can always output a random
function h satisfying ‖h − f ‖2

2 ≤ ε with probability at least 1− δ.

Some structure is needed! If F = {f : {−1, 1}n → {0, 1}}, one
needs at least (1− ε)2n values of an unknown f ∈ F in order to
make an accurate hypothesis for f up to error ε.

Structure = Low Complexity

Learning

Question. How many samples do we need?

Query model. Denote by Q(F , ε) the least number of queries
such that we can always output a function h with ‖h − f ‖2

2 ≤ ε.

Random example model. Denote by Qr (F , ε, δ) the least
number of queries such that we can always output a random
function h satisfying ‖h − f ‖2

2 ≤ ε with probability at least 1− δ.

Some structure is needed! If F = {f : {−1, 1}n → {0, 1}}, one
needs at least (1− ε)2n values of an unknown f ∈ F in order to
make an accurate hypothesis for f up to error ε.

Structure = Low Complexity

Learning

Question. How many samples do we need?

Query model. Denote by Q(F , ε) the least number of queries
such that we can always output a function h with ‖h − f ‖2

2 ≤ ε.

Random example model. Denote by Qr (F , ε, δ) the least
number of queries such that we can always output a random
function h satisfying ‖h − f ‖2

2 ≤ ε with probability at least 1− δ.

Some structure is needed! If F = {f : {−1, 1}n → {0, 1}}, one
needs at least (1− ε)2n values of an unknown f ∈ F in order to
make an accurate hypothesis for f up to error ε.

Structure = Low Complexity

Learning polynomials

One of the first concept classes F that was rigorously studied was

Fn,d =
{
f : {−1, 1}n → [−1, 1] : deg(f) ≤ d

}
.

Why? Polynomials can be characterized by few values.

Toy result. Q(Fn,d , 0) =
∑d

j=0

(n
j

)
Proof. It suffices to check that any degree-d polynomial is fully
characterized by its values on a Hamming ball of radius d , e.g.

Bd(1) =
{
x with at most d coordinates equal to − 1

}
.

To see that this many samples are also needed, observe that with
fewer data points, the system would be undertermined. 2

Learning polynomials

One of the first concept classes F that was rigorously studied was

Fn,d =
{
f : {−1, 1}n → [−1, 1] : deg(f) ≤ d

}
.

Why? Polynomials can be characterized by few values.

Toy result. Q(Fn,d , 0) =
∑d

j=0

(n
j

)
Proof. It suffices to check that any degree-d polynomial is fully
characterized by its values on a Hamming ball of radius d , e.g.

Bd(1) =
{
x with at most d coordinates equal to − 1

}
.

To see that this many samples are also needed, observe that with
fewer data points, the system would be undertermined. 2

Learning polynomials

One of the first concept classes F that was rigorously studied was

Fn,d =
{
f : {−1, 1}n → [−1, 1] : deg(f) ≤ d

}
.

Why? Polynomials can be characterized by few values.

Toy result. Q(Fn,d , 0) =
∑d

j=0

(n
j

)
Proof. It suffices to check that any degree-d polynomial is fully
characterized by its values on a Hamming ball of radius d , e.g.

Bd(1) =
{
x with at most d coordinates equal to − 1

}
.

To see that this many samples are also needed, observe that with
fewer data points, the system would be undertermined. 2

Learning polynomials

One of the first concept classes F that was rigorously studied was

Fn,d =
{
f : {−1, 1}n → [−1, 1] : deg(f) ≤ d

}
.

Why? Polynomials can be characterized by few values.

Toy result. Q(Fn,d , 0) =
∑d

j=0

(n
j

)

Proof. It suffices to check that any degree-d polynomial is fully
characterized by its values on a Hamming ball of radius d , e.g.

Bd(1) =
{
x with at most d coordinates equal to − 1

}
.

To see that this many samples are also needed, observe that with
fewer data points, the system would be undertermined. 2

Learning polynomials

One of the first concept classes F that was rigorously studied was

Fn,d =
{
f : {−1, 1}n → [−1, 1] : deg(f) ≤ d

}
.

Why? Polynomials can be characterized by few values.

Toy result. Q(Fn,d , 0) =
∑d

j=0

(n
j

)
Proof. It suffices to check that any degree-d polynomial is fully
characterized by its values on a Hamming ball of radius d , e.g.

Bd(1) =
{
x with at most d coordinates equal to − 1

}
.

To see that this many samples are also needed, observe that with
fewer data points, the system would be undertermined. 2

Learning polynomials

One of the first concept classes F that was rigorously studied was

Fn,d =
{
f : {−1, 1}n → [−1, 1] : deg(f) ≤ d

}
.

Why? Polynomials can be characterized by few values.

Toy result. Q(Fn,d , 0) =
∑d

j=0

(n
j

)
Proof. It suffices to check that any degree-d polynomial is fully
characterized by its values on a Hamming ball of radius d , e.g.

Bd(1) =
{
x with at most d coordinates equal to − 1

}
.

To see that this many samples are also needed, observe that with
fewer data points, the system would be undertermined. 2

The Low-Degree Algorithm

Question. What about the random case?

This question was first addressed in a fundamental result:

Low-Degree Algorithm (Linial, Mansour, Nisan, 1989) We have

Qr (Fn,d , ε, δ) ≤ 2nd

ε
log

(
2nd

δ

)
.

Proof. Let X1, . . . ,XQ i.i.d. random samples. For a subset S , let

αS =
1

Q

Q∑
j=1

f (Xj)wS(Xj),

which is a sum of bounded indep. variables with E[αS] = f̂ (S).

The Low-Degree Algorithm

Question. What about the random case?

This question was first addressed in a fundamental result:

Low-Degree Algorithm (Linial, Mansour, Nisan, 1989) We have

Qr (Fn,d , ε, δ) ≤ 2nd

ε
log

(
2nd

δ

)
.

Proof. Let X1, . . . ,XQ i.i.d. random samples. For a subset S , let

αS =
1

Q

Q∑
j=1

f (Xj)wS(Xj),

which is a sum of bounded indep. variables with E[αS] = f̂ (S).

The Low-Degree Algorithm

Question. What about the random case?

This question was first addressed in a fundamental result:

Low-Degree Algorithm (Linial, Mansour, Nisan, 1989) We have

Qr (Fn,d , ε, δ) ≤ 2nd

ε
log

(
2nd

δ

)
.

Proof. Let X1, . . . ,XQ i.i.d. random samples. For a subset S , let

αS =
1

Q

Q∑
j=1

f (Xj)wS(Xj),

which is a sum of bounded indep. variables with E[αS] = f̂ (S).

The Low-Degree Algorithm

Therefore, by the Chernoff bound, for b > 0 we have

P
{
|αS − f̂ (S)| ≥ b

}
≤ 2 exp(−Qb2/2).

By the union bound,

P
{
|αS − f̂ (S)| ≤ b, ∀ S

}
≥ 1− 2

d∑
j=0

(
n

j

)
exp(−Qb2/2) ≥ 1− δ

for

Q =

 2

b2
log

2

δ

d∑
j=0

(
n

j

) .
How large can we take b?

The Low-Degree Algorithm

Therefore, by the Chernoff bound, for b > 0 we have

P
{
|αS − f̂ (S)| ≥ b

}
≤ 2 exp(−Qb2/2).

By the union bound,

P
{
|αS − f̂ (S)| ≤ b, ∀ S

}
≥ 1− 2

d∑
j=0

(
n

j

)
exp(−Qb2/2) ≥ 1− δ

for

Q =

 2

b2
log

2

δ

d∑
j=0

(
n

j

) .

How large can we take b?

The Low-Degree Algorithm

Therefore, by the Chernoff bound, for b > 0 we have

P
{
|αS − f̂ (S)| ≥ b

}
≤ 2 exp(−Qb2/2).

By the union bound,

P
{
|αS − f̂ (S)| ≤ b, ∀ S

}
≥ 1− 2

d∑
j=0

(
n

j

)
exp(−Qb2/2) ≥ 1− δ

for

Q =

 2

b2
log

2

δ

d∑
j=0

(
n

j

) .
How large can we take b?

The Low-Degree Algorithm

Consider the function

∀ x ∈ {−1, 1}, hb(x) =
∑
|S |≤d

αSwS(x).

Then, if the high probability event holds

‖f − hb‖2
2 =

∑
|S|≤d

(
αS − f̂ (S)

)2 ≤
d∑

j=0

(
n

j

)
b2 ≤ ε

for b2 ≤ ε/
∑d

j=0

(n
j

)
which completes the proof. 2

The Low-Degree Algorithm

Consider the function

∀ x ∈ {−1, 1}, hb(x) =
∑
|S |≤d

αSwS(x).

Then, if the high probability event holds

‖f − hb‖2
2 =

∑
|S|≤d

(
αS − f̂ (S)

)2 ≤
d∑

j=0

(
n

j

)
b2 ≤ ε

for b2 ≤ ε/
∑d

j=0

(n
j

)
which completes the proof. 2

Learning polynomials

Question. Are O(nd log n) samples too many?

E.–Ivanisvili–Streck (2022). Qr (Fn,d , 0, δ) ≤ 2O(d)nd log
(
n
δ

)
.

The first advance for ε > 0 was a result of:

Iyer–Rao–Reis–Rothvoss–Yehudayoff (2021).

Qr (Fn,d , ε, δ) = Od ,ε,δ(n
d−1 log n).

The correct answer turns out to be much better.

E.–Ivanisvili (2021). Qr (Fn,d , ε, δ) = Od ,ε,δ(log n).

E.–Ivanisvili–Streck (2022). Qr (Fn,d , ε, δ) = Ωd ,ε,δ(log n).

Learning polynomials

Question. Are O(nd log n) samples too many?

E.–Ivanisvili–Streck (2022). Qr (Fn,d , 0, δ) ≤ 2O(d)nd log
(
n
δ

)
.

The first advance for ε > 0 was a result of:

Iyer–Rao–Reis–Rothvoss–Yehudayoff (2021).

Qr (Fn,d , ε, δ) = Od ,ε,δ(n
d−1 log n).

The correct answer turns out to be much better.

E.–Ivanisvili (2021). Qr (Fn,d , ε, δ) = Od ,ε,δ(log n).

E.–Ivanisvili–Streck (2022). Qr (Fn,d , ε, δ) = Ωd ,ε,δ(log n).

Learning polynomials

Question. Are O(nd log n) samples too many?

E.–Ivanisvili–Streck (2022). Qr (Fn,d , 0, δ) ≤ 2O(d)nd log
(
n
δ

)
.

The first advance for ε > 0 was a result of:

Iyer–Rao–Reis–Rothvoss–Yehudayoff (2021).

Qr (Fn,d , ε, δ) = Od ,ε,δ(n
d−1 log n).

The correct answer turns out to be much better.

E.–Ivanisvili (2021). Qr (Fn,d , ε, δ) = Od ,ε,δ(log n).

E.–Ivanisvili–Streck (2022). Qr (Fn,d , ε, δ) = Ωd ,ε,δ(log n).

Learning polynomials

Question. Are O(nd log n) samples too many?

E.–Ivanisvili–Streck (2022). Qr (Fn,d , 0, δ) ≤ 2O(d)nd log
(
n
δ

)
.

The first advance for ε > 0 was a result of:

Iyer–Rao–Reis–Rothvoss–Yehudayoff (2021).

Qr (Fn,d , ε, δ) = Od ,ε,δ(n
d−1 log n).

The correct answer turns out to be much better.

E.–Ivanisvili (2021). Qr (Fn,d , ε, δ) = Od ,ε,δ(log n).

E.–Ivanisvili–Streck (2022). Qr (Fn,d , ε, δ) = Ωd ,ε,δ(log n).

Learning polynomials

Question. Are O(nd log n) samples too many?

E.–Ivanisvili–Streck (2022). Qr (Fn,d , 0, δ) ≤ 2O(d)nd log
(
n
δ

)
.

The first advance for ε > 0 was a result of:

Iyer–Rao–Reis–Rothvoss–Yehudayoff (2021).

Qr (Fn,d , ε, δ) = Od ,ε,δ(n
d−1 log n).

The correct answer turns out to be much better.

E.–Ivanisvili (2021). Qr (Fn,d , ε, δ) = Od ,ε,δ(log n).

E.–Ivanisvili–Streck (2022). Qr (Fn,d , ε, δ) = Ωd ,ε,δ(log n).

Learning polynomials

Question. Are O(nd log n) samples too many?

E.–Ivanisvili–Streck (2022). Qr (Fn,d , 0, δ) ≤ 2O(d)nd log
(
n
δ

)
.

The first advance for ε > 0 was a result of:

Iyer–Rao–Reis–Rothvoss–Yehudayoff (2021).

Qr (Fn,d , ε, δ) = Od ,ε,δ(n
d−1 log n).

The correct answer turns out to be much better.

E.–Ivanisvili (2021). Qr (Fn,d , ε, δ) = Od ,ε,δ(log n).

E.–Ivanisvili–Streck (2022). Qr (Fn,d , ε, δ) = Ωd ,ε,δ(log n).

Tweaking the Low-Degree Algorithm

Where did we lose in the proof?

Since ‖f ‖2 ≤ 1, we have∑
|S |≤d

f̂ (S)2 ≤ 1

so unless b2 . n−d there is not much to gain by incorporating all
the empirical coefficients αS in the hypothesis function hb. We
should just make sure to include the few influential ones, say those
larger than a. By Markov’s inequality there are

#{S : |f̂ (S)| > a} ≤ 1

a2

∑
S : |f̂ (S)|>a

f̂ (S)2 ≤ 1

a2
.

Then, we are left to estimate a term of the form∑
S: |f̂ (S)|≤a

f̂ (S)2 ??
<< ε(a).

Tweaking the Low-Degree Algorithm

Where did we lose in the proof? Since ‖f ‖2 ≤ 1, we have∑
|S |≤d

f̂ (S)2 ≤ 1

so unless b2 . n−d there is not much to gain by incorporating all
the empirical coefficients αS in the hypothesis function hb. We
should just make sure to include the few influential ones, say those
larger than a. By Markov’s inequality there are

#{S : |f̂ (S)| > a} ≤ 1

a2

∑
S : |f̂ (S)|>a

f̂ (S)2 ≤ 1

a2
.

Then, we are left to estimate a term of the form∑
S: |f̂ (S)|≤a

f̂ (S)2 ??
<< ε(a).

Tweaking the Low-Degree Algorithm

Where did we lose in the proof? Since ‖f ‖2 ≤ 1, we have∑
|S |≤d

f̂ (S)2 ≤ 1

so unless b2 . n−d there is not much to gain by incorporating all
the empirical coefficients αS in the hypothesis function hb. We
should just make sure to include the few influential ones, say those
larger than a. By Markov’s inequality there are

#{S : |f̂ (S)| > a} ≤ 1

a2

∑
S : |f̂ (S)|>a

f̂ (S)2 ≤ 1

a2
.

Then, we are left to estimate a term of the form∑
S: |f̂ (S)|≤a

f̂ (S)2 ??
<< ε(a).

Digression: Littlewood, BH,. . .

Trivially, for a1, a2, . . . ∈ R,∑
i≥1

|ai | = sup
{∣∣∣∑

i≥1

aixi

∣∣∣ : ‖x‖∞ ≤ 1
}
.

Littlewood’s 4
3-inequality. For aij ∈ R, where i , j ≥ 1(∑

i ,j≥1

|aij |
4
3

) 3
4 ≤
√

2 sup
{∣∣∣ ∑

i ,j≥1

aijxiyj

∣∣∣ : ‖x‖∞, ‖y‖∞ ≤ 1
}
.

Digression: Littlewood, BH,. . .

Trivially, for a1, a2, . . . ∈ R,∑
i≥1

|ai | = sup
{∣∣∣∑

i≥1

aixi

∣∣∣ : ‖x‖∞ ≤ 1
}
.

Littlewood’s 4
3-inequality. For aij ∈ R, where i , j ≥ 1(∑

i ,j≥1

|aij |
4
3

) 3
4 ≤
√

2 sup
{∣∣∣ ∑

i ,j≥1

aijxiyj

∣∣∣ : ‖x‖∞, ‖y‖∞ ≤ 1
}
.

Digression: Littlewood, BH,. . .

Trivially, for a1, a2, . . . ∈ R,∑
i≥1

|ai | = sup
{∣∣∣∑

i≥1

aixi

∣∣∣ : ‖x‖∞ ≤ 1
}
.

Littlewood’s 4
3-inequality. For aij ∈ R, where i , j ≥ 1(∑

i ,j≥1

|aij |
4
3

) 3
4 ≤
√

2 sup
{∣∣∣ ∑

i ,j≥1

aijxiyj

∣∣∣ : ‖x‖∞, ‖y‖∞ ≤ 1
}
.

Digression: Littlewood, BH,. . .

Bohnenblust–Hille inequality. For a degree-d polynomial
p(x) =

∑
|α|≤d cαx

α on infinitely many variables,

(∑
|α|≤d

|cα|
2d
d+1

) d+1
2d ≤ Cd sup

{
|p(x)| : ‖x‖∞ ≤ 1

}
.

If p is a multilinear polynomial representing f : {−1, 1}n → R, the
maximum on the RHS is attained at a vertex of {−1, 1}n. Thus,
we can get an estimate on the hypercube(∑

|S|≤d

|f̂ (S)|
2d
d+1

) d+1
2d ≤ Bd‖f ‖∞

for functions of degree at most d .

Digression: Littlewood, BH,. . .

Bohnenblust–Hille inequality. For a degree-d polynomial
p(x) =

∑
|α|≤d cαx

α on infinitely many variables,

(∑
|α|≤d

|cα|
2d
d+1

) d+1
2d ≤ Cd sup

{
|p(x)| : ‖x‖∞ ≤ 1

}
.

If p is a multilinear polynomial representing f : {−1, 1}n → R, the
maximum on the RHS is attained at a vertex of {−1, 1}n. Thus,
we can get an estimate on the hypercube(∑

|S|≤d

|f̂ (S)|
2d
d+1

) d+1
2d ≤ Bd‖f ‖∞

for functions of degree at most d .

Proof of the logarithmic bound on the queries

The idea of introducing a cutoff for the spectrum first appeared in
an algorithm of Kushilevitz and Mansour (1993). Fix b > 0 and set

Q =

 2

b2
log

2

δ

d∑
j=0

(
n

j

)
so that

P
{
|αS − f̂ (S)| ≤ b, ∀ S

}
≥ 1− 2

d∑
j=0

(
n

j

)
exp(−Qb2/2) ≥ 1− δ.

Consider the random collection of sets

Σb =
{
S : |αS | > 2b

}
.

Proof of the logarithmic bound on the queries

The idea of introducing a cutoff for the spectrum first appeared in
an algorithm of Kushilevitz and Mansour (1993). Fix b > 0 and set

Q =

 2

b2
log

2

δ

d∑
j=0

(
n

j

)
so that

P
{
|αS − f̂ (S)| ≤ b, ∀ S

}
≥ 1− 2

d∑
j=0

(
n

j

)
exp(−Qb2/2) ≥ 1− δ.

Consider the random collection of sets

Σb =
{
S : |αS | > 2b

}
.

Proof of the logarithmic bound on the queries

The idea of introducing a cutoff for the spectrum first appeared in
an algorithm of Kushilevitz and Mansour (1993). Fix b > 0 and set

Q =

 2

b2
log

2

δ

d∑
j=0

(
n

j

)
so that

P
{
|αS − f̂ (S)| ≤ b, ∀ S

}
≥ 1− 2

d∑
j=0

(
n

j

)
exp(−Qb2/2) ≥ 1− δ.

Consider the random collection of sets

Σb =
{
S : |αS | > 2b

}
.

Proof of the logarithmic bound on the queries

Then, on the high probability event, we have

∀ S ∈ Σb, |f̂ (S)| > b

and
∀ S /∈ Σb, |f̂ (S)| ≤ 3b.

If we define hb =
∑

S∈Σb
αSwS , then

‖f − hb‖2
2 =

∑
S∈Σb

(
αS − f̂ (S)

)2
+
∑
S /∈Σb

f̂ (S)2 = (1) + (2).

To bound (1), observe that

|Σb| ≤ b−
2d
d+1

∑
S∈Σb

f̂ (S)
2d
d+1 ≤ B

2d
d+1

d b−
2d
d+1

so that (1) ≤ B
2d
d+1

d b
2

d+1 .

Proof of the logarithmic bound on the queries

Then, on the high probability event, we have

∀ S ∈ Σb, |f̂ (S)| > b

and
∀ S /∈ Σb, |f̂ (S)| ≤ 3b.

If we define hb =
∑

S∈Σb
αSwS , then

‖f − hb‖2
2 =

∑
S∈Σb

(
αS − f̂ (S)

)2
+
∑
S /∈Σb

f̂ (S)2 = (1) + (2).

To bound (1), observe that

|Σb| ≤ b−
2d
d+1

∑
S∈Σb

f̂ (S)
2d
d+1 ≤ B

2d
d+1

d b−
2d
d+1

so that (1) ≤ B
2d
d+1

d b
2

d+1 .

Proof of the logarithmic bound on the queries

Then, on the high probability event, we have

∀ S ∈ Σb, |f̂ (S)| > b

and
∀ S /∈ Σb, |f̂ (S)| ≤ 3b.

If we define hb =
∑

S∈Σb
αSwS , then

‖f − hb‖2
2 =

∑
S∈Σb

(
αS − f̂ (S)

)2
+
∑
S /∈Σb

f̂ (S)2 = (1) + (2).

To bound (1), observe that

|Σb| ≤ b−
2d
d+1

∑
S∈Σb

f̂ (S)
2d
d+1 ≤ B

2d
d+1

d b−
2d
d+1

so that (1) ≤ B
2d
d+1

d b
2

d+1 .

Proof of the logarithmic bound on the queries

To bound (2), write

(2) =
∑
S /∈Σb

f̂ (S)2 ≤ (3b)
2

d+1

∑
S /∈Σb

|f̂ (S)|
2d
d+1 ≤ 3B

2d
d+1

d b
2

d+1 .

Putting everything together

‖f − hb‖2
2 ≤ 4B

2d
d+1

d b
2

d+1 ≤ ε

for b2 ≤ (ε/4)d+1B
− 2d

d+1

d . 2

Proof of the logarithmic bound on the queries

To bound (2), write

(2) =
∑
S /∈Σb

f̂ (S)2 ≤ (3b)
2

d+1

∑
S /∈Σb

|f̂ (S)|
2d
d+1 ≤ 3B

2d
d+1

d b
2

d+1 .

Putting everything together

‖f − hb‖2
2 ≤ 4B

2d
d+1

d b
2

d+1 ≤ ε

for b2 ≤ (ε/4)d+1B
− 2d

d+1

d . 2

Remarks

E.–Ivanisvili (2021). Qr (Fn,d , ε, δ) = Od ,ε,δ(log n).

E.–Ivanisvili–Streck (2022). Qr (Fn,d , ε, δ) = Ωd ,ε,δ(log n).

In fact, for n large enough,

c(1−
√
ε)2d log

(n
δ

)
≤ Qr (Fn,d , ε, δ) ≤

B2d
d

εd+1
log
(n
δ

)
.

• The best known bound for Bd is Bd ≤ exp(C
√
d log d). A

(conjectured) polynomial bound on Bd would give almost optimal
dependence on d also.
• The dependence on ε can be improved to ε−1 if the unknown
function is a priori known to be Boolean.

Remarks

E.–Ivanisvili (2021). Qr (Fn,d , ε, δ) = Od ,ε,δ(log n).

E.–Ivanisvili–Streck (2022). Qr (Fn,d , ε, δ) = Ωd ,ε,δ(log n).

In fact, for n large enough,

c(1−
√
ε)2d log

(n
δ

)
≤ Qr (Fn,d , ε, δ) ≤

B2d
d

εd+1
log
(n
δ

)
.

• The best known bound for Bd is Bd ≤ exp(C
√
d log d). A

(conjectured) polynomial bound on Bd would give almost optimal
dependence on d also.
• The dependence on ε can be improved to ε−1 if the unknown
function is a priori known to be Boolean.

Remarks

E.–Ivanisvili (2021). Qr (Fn,d , ε, δ) = Od ,ε,δ(log n).

E.–Ivanisvili–Streck (2022). Qr (Fn,d , ε, δ) = Ωd ,ε,δ(log n).

In fact, for n large enough,

c(1−
√
ε)2d log

(n
δ

)
≤ Qr (Fn,d , ε, δ) ≤

B2d
d

εd+1
log
(n
δ

)
.

• The best known bound for Bd is Bd ≤ exp(C
√
d log d). A

(conjectured) polynomial bound on Bd would give almost optimal
dependence on d also.
• The dependence on ε can be improved to ε−1 if the unknown
function is a priori known to be Boolean.

Beyond polynomials?

Pro. Correct query complexity of polynomials.

Con. Too rigid: hard to imagine other concept classes for which
BH-type arguments would be applicable.

What about the class of bounded approximate polynomials,

Fn,d(t) =
{
f : {−1, 1}n → [−1, 1] :

∑
|S |>d

f̂ (S)2 ≤ t
}

?

E.–Ivanisvili–Streck (2022). There exists η = η(t, d) > 0 s.t.

Qr (Fn,d(t), η + ε, δ) .t,d ,ε log
(n
δ

)
.

Warning! This is useful only when η(t, d) is small.

Beyond polynomials?

Pro. Correct query complexity of polynomials.

Con. Too rigid: hard to imagine other concept classes for which
BH-type arguments would be applicable.

What about the class of bounded approximate polynomials,

Fn,d(t) =
{
f : {−1, 1}n → [−1, 1] :

∑
|S |>d

f̂ (S)2 ≤ t
}

?

E.–Ivanisvili–Streck (2022). There exists η = η(t, d) > 0 s.t.

Qr (Fn,d(t), η + ε, δ) .t,d ,ε log
(n
δ

)
.

Warning! This is useful only when η(t, d) is small.

Beyond polynomials?

Pro. Correct query complexity of polynomials.

Con. Too rigid: hard to imagine other concept classes for which
BH-type arguments would be applicable.

What about the class of bounded approximate polynomials,

Fn,d(t) =
{
f : {−1, 1}n → [−1, 1] :

∑
|S |>d

f̂ (S)2 ≤ t
}

?

E.–Ivanisvili–Streck (2022). There exists η = η(t, d) > 0 s.t.

Qr (Fn,d(t), η + ε, δ) .t,d ,ε log
(n
δ

)
.

Warning! This is useful only when η(t, d) is small.

Beyond polynomials?

Pro. Correct query complexity of polynomials.

Con. Too rigid: hard to imagine other concept classes for which
BH-type arguments would be applicable.

What about the class of bounded approximate polynomials,

Fn,d(t) =
{
f : {−1, 1}n → [−1, 1] :

∑
|S |>d

f̂ (S)2 ≤ t
}

?

E.–Ivanisvili–Streck (2022). There exists η = η(t, d) > 0 s.t.

Qr (Fn,d(t), η + ε, δ) .t,d ,ε log
(n
δ

)
.

Warning! This is useful only when η(t, d) is small.

Beyond polynomials?

Pro. Correct query complexity of polynomials.

Con. Too rigid: hard to imagine other concept classes for which
BH-type arguments would be applicable.

What about the class of bounded approximate polynomials,

Fn,d(t) =
{
f : {−1, 1}n → [−1, 1] :

∑
|S |>d

f̂ (S)2 ≤ t
}

?

E.–Ivanisvili–Streck (2022). There exists η = η(t, d) > 0 s.t.

Qr (Fn,d(t), η + ε, δ) .t,d ,ε log
(n
δ

)
.

Warning! This is useful only when η(t, d) is small.

Beyond polynomials?

Pro. Correct query complexity of polynomials.

Con. Too rigid: hard to imagine other concept classes for which
BH-type arguments would be applicable.

What about the class of bounded approximate polynomials,

Fn,d(t) =
{
f : {−1, 1}n → [−1, 1] :

∑
|S |>d

f̂ (S)2 ≤ t
}

?

E.–Ivanisvili–Streck (2022). There exists η = η(t, d) > 0 s.t.

Qr (Fn,d(t), η + ε, δ) .t,d ,ε log
(n
δ

)
.

Warning! This is useful only when η(t, d) is small.

Beyond polynomials?

More concretely, consider Bn,d(t) the subclass of Fn,d(t)
consisting of Boolean functions.

E.–Ivanisvili–Streck (2022). We have

t = o
(1√

d

)
=⇒ Qr (Bn,d(t), ε, δ) .t,d ,ε log

(n
δ

)
for ε > 0 arbitrarily small constant.

Conversely, we can also prove that

t = Ω
(1√

d

)
=⇒ Qr

(
Bn,d(t), 1

3 ,
1
3

)
&t,d n.

Beyond polynomials?

More concretely, consider Bn,d(t) the subclass of Fn,d(t)
consisting of Boolean functions.

E.–Ivanisvili–Streck (2022). We have

t = o
(1√

d

)
=⇒ Qr (Bn,d(t), ε, δ) .t,d ,ε log

(n
δ

)
for ε > 0 arbitrarily small constant.

Conversely, we can also prove that

t = Ω
(1√

d

)
=⇒ Qr

(
Bn,d(t), 1

3 ,
1
3

)
&t,d n.

Beyond polynomials?

More concretely, consider Bn,d(t) the subclass of Fn,d(t)
consisting of Boolean functions.

E.–Ivanisvili–Streck (2022). We have

t = o
(1√

d

)
=⇒ Qr (Bn,d(t), ε, δ) .t,d ,ε log

(n
δ

)
for ε > 0 arbitrarily small constant.

Conversely, we can also prove that

t = Ω
(1√

d

)
=⇒ Qr

(
Bn,d(t), 1

3 ,
1
3

)
&t,d n.

Linear threshold functions

A Boolean function of the form f (x) = sign(〈x , θ〉) for a fixed
vector θ ∈ Rn is called a linear threshold function. Peres’ noise
sensitivity theorem (2004) asserts that any LTF satisfies

∀ t > 0,
∑

|S |>Ω(1/t2)

f̂ (S)2 ≤ t.

As this estimate is in general optimal, the existing algorithm does
not allow us to efficiently learn LTFs.

Linear threshold functions

A Boolean function of the form f (x) = sign(〈x , θ〉) for a fixed
vector θ ∈ Rn is called a linear threshold function.

Peres’ noise
sensitivity theorem (2004) asserts that any LTF satisfies

∀ t > 0,
∑

|S |>Ω(1/t2)

f̂ (S)2 ≤ t.

As this estimate is in general optimal, the existing algorithm does
not allow us to efficiently learn LTFs.

Linear threshold functions

A Boolean function of the form f (x) = sign(〈x , θ〉) for a fixed
vector θ ∈ Rn is called a linear threshold function. Peres’ noise
sensitivity theorem (2004) asserts that any LTF satisfies

∀ t > 0,
∑

|S |>Ω(1/t2)

f̂ (S)2 ≤ t.

As this estimate is in general optimal, the existing algorithm does
not allow us to efficiently learn LTFs.

Linear threshold functions

A Boolean function of the form f (x) = sign(〈x , θ〉) for a fixed
vector θ ∈ Rn is called a linear threshold function. Peres’ noise
sensitivity theorem (2004) asserts that any LTF satisfies

∀ t > 0,
∑

|S |>Ω(1/t2)

f̂ (S)2 ≤ t.

As this estimate is in general optimal, the existing algorithm does
not allow us to efficiently learn LTFs.

DNF formulas

A disjunctive normal form (DNF) is a logical ∨ of terms, each of
which is a logical ∧ of Boolean variables xi or their negations ¬xi ,

(x1 ∧ x2) ∨ (¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x3).

The number of terms is the size of the DNF (=3 in the example).

It is known that any DNF form of size s satisfies

∀ t > 0,
∑

|S |>Ω(log(s/t)2)

f̂ (S)2 ≤ t

and plugging this choice of d , one obtains new learning results for
the class of DNF formulas.

DNF formulas

A disjunctive normal form (DNF) is a logical ∨ of terms, each of
which is a logical ∧ of Boolean variables xi or their negations ¬xi ,

(x1 ∧ x2) ∨ (¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x3).

The number of terms is the size of the DNF (=3 in the example).

It is known that any DNF form of size s satisfies

∀ t > 0,
∑

|S |>Ω(log(s/t)2)

f̂ (S)2 ≤ t

and plugging this choice of d , one obtains new learning results for
the class of DNF formulas.

DNF formulas

A disjunctive normal form (DNF) is a logical ∨ of terms, each of
which is a logical ∧ of Boolean variables xi or their negations ¬xi ,

(x1 ∧ x2) ∨ (¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x3).

The number of terms is the size of the DNF (=3 in the example).

It is known that any DNF form of size s satisfies

∀ t > 0,
∑

|S |>Ω(log(s/t)2)

f̂ (S)2 ≤ t

and plugging this choice of d , one obtains new learning results for
the class of DNF formulas.

DNF formulas

A disjunctive normal form (DNF) is a logical ∨ of terms, each of
which is a logical ∧ of Boolean variables xi or their negations ¬xi ,

(x1 ∧ x2) ∨ (¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x3).

The number of terms is the size of the DNF (=3 in the example).

It is known that any DNF form of size s satisfies

∀ t > 0,
∑

|S |>Ω(log(s/t)2)

f̂ (S)2 ≤ t

and plugging this choice of d , one obtains new learning results for
the class of DNF formulas.

DNF formulas

A disjunctive normal form (DNF) is a logical ∨ of terms, each of
which is a logical ∧ of Boolean variables xi or their negations ¬xi ,

(x1 ∧ x2) ∨ (¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x3).

The number of terms is the size of the DNF (=3 in the example).

It is known that any DNF form of size s satisfies

∀ t > 0,
∑

|S |>Ω(log(s/t)2)

f̂ (S)2 ≤ t

and plugging this choice of d , one obtains new learning results for
the class of DNF formulas.

Thank you!

