Semigroup C*-Algebras arising from Graphs of monoids

Cheng Chen IASM, Harbin Institute of Technology

21 June 2023

0 Outline

1 Preliminaries

- 2 Main results
- **3** References

1 Outline

Preliminaries

2 Main results

3 References

1 C*-algebras

A C*-algebra A is a Banach algebra endowed with an involution * satisfying: For all $\lambda \in \mathbb{C}$ and all $x, y \in A$, 1. $(\lambda x + y)^* = \overline{\lambda}x^* + y^*$; 2. $x^{**} = x$; 3. $(xy)^* = y^*x^*$; 4. $||x^*x|| = ||x||^2$.

Examples: $M_n(\mathbb{C}), \ C_0(X), \ L_\infty(X), \ \mathcal{L}(H), \ \mathcal{K}(H); \ L_p(X), \ 1 \le p < \infty.$

Gelfand-Naimark Theorem: Every C*-algebra is isometrically *-isomorphic to a C*-subalgebra of $\mathcal{L}(H)$.

1 Group C*-algebras

Here we consider only discrete groups.

Given a group G, its left regular representation λ is the homomorphism of G into the unitary group of $\mathcal{L}(\ell_2(G))$, defined by $s \mapsto \lambda_s$ with $\lambda_s f(t) = f(s^{-1}t)$ for all $s \in G$ and all $f \in \ell_2(G)$. The left reduced group C*-algebra of G, denoted by $C_r^*(G)$, is defined to be the smallest C*-algebra in $\mathcal{L}(\ell_2(G))$, containg λ_s , $\forall s \in G$.

Theorem: If G is an abelian group, then $C_r^*(G) = C(\hat{G})$, where \hat{G} is the Pontryagin dual group of G (consisting of all characters on G).

Example: $C_r^*(\mathbb{Z}) = C(\mathbb{T})$.

1 Semigroup C*-algebras

Let P be a left cancellative and discrete semigroup, its left regular representation is given as follows:

$$P \to \mathcal{L}(\ell_2(P)), \ p \ \mapsto V_p \ [\delta_x \mapsto \delta_{px}], \ \forall p \in P.$$

The left reduced semigroup C*-algebra of P, denoted by $C_r^*(P)$, is defined to be the smallest C*-algebra in $\mathcal{L}(\ell_2(P))$, containg V_p , $\forall p \in P$.

Example: $C_r^*(\mathbb{N})$ is the Toeplitz algebra.

1 Graphs of groups

A graph Γ is a pair (V, E) with two maps $E \to V \times V$, $e \mapsto (o(e), t(e))$ and $E \to E$, $e \mapsto \overline{e}$, satisfying: $\overline{\overline{e}} = e$ and $\overline{e} \neq e$ and $o(e) = t(\overline{e})$. A tree is connected non-empty graph without circuits.

A graph of groups: $\Gamma = (V, E)$ connected, G_v and G_e . $G_{\bar{e}} = G_e, \ G_e \to G_{t(e)}: \ x \mapsto x^e, \ G_e \to G_{o(e)}: \ x \mapsto x^{\bar{e}}.$

T maximal subtree, $E = T \cup A \cup \overline{A}$, The fundamental group $G = \pi_1, T := \langle G_v \rangle_{v \in V} \cup A | g^e = g^{\overline{e}}, \forall e \in T, g \in G_e, eg^e = g^{\overline{e}}e, \forall e \in A, g \in G_e > .$

1 Graphs of groups

Examples

 $\mathcal{T}=(V,\ E)$ a tree of groups \Longrightarrow G is the amagamated free product of G_{v} along G_{e}

Assume $G_e = \{\epsilon\}, \forall e \in E$: then G is the free product of G_v .

 Γ a bouquet of circles, $V = \{v\}$, $G_v \cong \mathbb{Z}$ and $G_e \cong \mathbb{Z}$, $\forall e \in E$. $\implies G$ is a one vertex generalised Baumslag-Solitar group.

$$G = \langle \{b\} \cup A | b^{n_e}e = eb^{\operatorname{sgn}(e)m_e}, \forall e \in A \rangle,$$

Here n_e , $m_e \in \mathbb{Z}_+$ and $sgn(e) \in \{\pm 1\}$. $\#A = 1 \Longrightarrow G$ is the classical Baumslag-Solitar group.

1 Graphs of monoids

 $\begin{array}{l} (V, \ E) \\ G_v \text{ totally ordered with positive cone } P_v, \ \forall v \in V \text{ and} \\ P_e := \{g \in G_e, \ g^e \in P_{t(e)}\}, \ \forall e \in E. \end{array}$

Assume $P_e = P_{\bar{e}}$ for all $e \in T$ and either $P_e = P_{\bar{e}}$ or $P_e = P_{\bar{e}}^{-1}$ for all $e \in A$. Define $A_+ := \{e \in A | P_e = P_{\bar{e}}\}$ and $A_- := \{e \in A | P_e = P_{\bar{e}}^{-1}\}$.

Remark

The embedding $P_e \to P_{o(e)}$, $g \mapsto g^{\overline{e}}$ is order preserving for all $e \in T \cup A_+$ and order reversing for all $e \in A_-$. For instance, in Example 2, A_+ consists exactly of those $e \in A$ with $\operatorname{sgn}(e) = 1$, and A_- consists exactly of those $e \in A$ with $\operatorname{sgn}(e) = -1$.

The fundamental monoid $P \subseteq G$: generated by P_v , $v \in V$ and A. The submonoid $P_T \subseteq P$: generated by P_v , $v \in V$. 2 Outline

Preliminaries

2 Main results

3 References

2 Right LCM Property

P right LCM: for all $p, q \in P, pP \cap qP = \emptyset$ or $pP \cap qP = rP$.

condition (LCM) for P: for all $e \in E$, $p \in P_{o(e)}$, either $p^{-1}P_{\bar{e}}^{\bar{e}} = \emptyset$ or $p^{-1}P_{\bar{e}}^{\bar{e}} = qP_{\bar{e}}^{\bar{e}}$ for some $q \in P_{o(e)}$, where

$$p^{-1}P_{\overline{e}}^{\overline{e}} := \{x \in P_{o(e)}, px \in P_{\overline{e}}^{\overline{e}}\}.$$

Theorem (C. Chen, X. Li) condition (LCM) for $P \Longrightarrow P$ right LCM.

2 Simplicity and pure infiniteness

For convenience, we introduce the notation \prec in P: $p, q \in P, p \prec q$ if $q \in pP$.

Theorem (C. Chen, X. Li)

Assume that condition (LCM) is satisfied. If $P_e = \{\epsilon\}$ for some $e \in T$ and there exists $v \in V$ and a sequence $x_n \in P_v \setminus \{\epsilon\}$ with $x_{n+1} \prec x_n$ such that, for every $p \in P_v \setminus \{\epsilon\}$, $x_n \prec p$ and $x_n \neq p$ for all sufficiently big *n*, then $C^*_{\lambda}(P)$ is purely infinite simple.

2 Closed invariant subsets

 V, E, G_v countable, condition (LCM) for P

The associated character space Ω : all nonzero filters (multiplicative) χ

 $\chi: \ \{ pP, \ p \in P \} \cup \{ \emptyset \} \to \{ 0, \ 1 \},$

with the pointwise convergence topology.

The partial action $G \cap \Omega$: $g: U_{g^{-1}} \to U_g, \ \chi \mapsto g \cdot \chi = \chi(g^{-1} \cdot), \ \chi \in U_{g^{-1}} \Leftrightarrow g = pq^{-1}$ for some $p, \ q \in P$ and $\chi(qP) = 1$.

Theorem [CELY17] $C^*_{\lambda}(P) \cong C^*_r(G \ltimes \Omega).$

2 Closed invariant subsets

For
$$w = x_1 x_2 x_3 \cdots$$
, $x_* \in \{P_v \setminus \epsilon\}_{v \in V} \cup A$, define $\chi_w \in \Omega$:
 $\chi_w(xP) = 1 \iff [w]_j := x_1 x_2 \cdots x_j \in xP$ for some *j*.
 $\chi = \chi_w$ by [LOS18].

$$\begin{split} \Omega_{\infty} &: \chi \neq \chi_w \text{ with } w \text{ finite word.} \\ \{\infty\} &= \partial \Omega_{P_{\tau}}. \\ \Omega_{b, \infty} &:= \{\chi \in \Omega, \ (g \cdot \chi)(b^i P) = 1, \ \forall g \in G, \ \forall i \in \mathbb{N}\}, \text{ where } b \in P_u \text{ for some } u \in V \text{ is fixed.} \end{split}$$

2 Additional assumption

Assume $G_v \subseteq (\mathbb{R}, +), v \in V$

Condition (D) $P_e = \{\epsilon\}$ or $P_e \cong \mathbb{Z}_+$ for all $e \in T \cup A$.

2 Closed invariant subsets

Theorem (C. Chen, X. Li)

Suppose that $G_v \subseteq (\mathbb{R}, +)$ for all $v \in V$, and that $\sharp V > 1$ or $V = \{v\}, G_v \subseteq (\mathbb{R}, +)$ dense and $A \neq \emptyset$. Further assume that conditions (LCM) and (D) are satisfied. The lists of all closed invariant subspaces of Ω are as follows:

2 Topological freeness

$G \curvearrowright X$ topologically free

 $\iff \exists X' \subseteq X \text{ dense s.t. } g \cdot x = x, \ g \in G, \ x \in X' \text{ implies } g = \epsilon.$

Assume that $G_v \subseteq (\mathbb{R}, +)$ for all $v \in V$, and $\sharp V > 1$ or $A \neq \emptyset$, and that conditions (LCM) and (D) are satisfied.

Assume in addition $P_e \neq \{\epsilon\}$ for all $e \in T$. Given $e \in A$, let v = o(e) and w = t(e). Let b_v be the generator of P_v and b_w the generator of P_w . Let m_e , $n_e \in \mathbb{Z}_+$ be such that $()^{\overline{e}} : P_{\overline{e}} \to P_v$ is given by $z \mapsto n_e z$ and $()^e : P_{\overline{e}} \to P_w$ is given by $z \mapsto \pm m_e z$. Then we have $b_v^{n_e} e = e b_w^{\pm m_e}$ in G. Moreover, as $P_e \neq \{\epsilon\}$ for all $e \in T$, $< b_v^{n_e} > \cap < b_w^{m_e} > = < b_v^{k_e n_e} > = < b_w^{k_e m_e} >$ for some k_e , $l_e \in \mathbb{Z}_+$.

2 Topological freeness

Theorem

 $\begin{array}{l} G \curvearrowright X \text{ is topologically free for every closed invariant subspace } X \subseteq \Omega \text{ if} \\ \text{and only if one of the following holds:} \\ (i) P_e = \{\epsilon\} \text{ for some } e \in T. \\ (ii) P_e \neq \{\epsilon\} \text{ for all } e \in T, \ \sharp V > 1, \ A \neq \emptyset, \ \text{and one of the following holds:} \\ (ii_1) k_e \nmid l_e \text{ for some } e \in A, \\ (ii_2) k_e \mid l_e \text{ for all } e \in A \text{ and } (\cap_{e \in A} < b_v^{k_e n_e}) \cap (\cap_{v \in V} G_v) = \{\epsilon\}. \\ (iii) \ \sharp V = 1, \ \sharp A = \infty, \ \sharp A_+ \in \{0, \ \infty\}, \ \text{and } (ii_1) \text{ or } (ii_2) \text{ holds.} \\ (iv) \ \sharp V = 1, \ \sharp A = \infty, \ \sharp A_+ < \infty, \ (ii_1) \text{ or } (ii_2) \text{ holds, and either } \ \sharp A_+ \geq 2 \text{ or} \\ \ \sharp A_+ = 1, \ A_+ = \{e\} \text{ and } m_e \neq 1. \end{array}$

2 Topological freeness

Corollary

If one of (i)-(iv) in the above theorem is satisfied, the the map $X \mapsto C_r^*(G \ltimes (\Omega \setminus X))$ is a one-to-one correspondence between closed invariant subspaces of Ω and ideals of $C_{\lambda}^*(P) \cong C_r^*(G \ltimes \Omega)$.

2 Nuclearity

Theorem (C. Chen, X. Li)

If condition (LCM) for P is satisfied, then $C^*_{\lambda}(P)$ is nuclear iff $C^*_{\lambda}(P_T)$ nuclear.

Assume, in addition, $G_v \subseteq (\mathbb{R}, +)$, $\sharp V > 1$ or $\sharp A > 0$, $C_{\lambda}^*(P)$ is nuclear iff For all $T' \subseteq T$ with $P_e \neq \{\epsilon\}$ for all $e \in T'$, either T' consists of a single vertex or T' consists of two vertices v, w and a pair of edges e, \overline{e} with o(e) = v, t(e) = w, such that $P_v \cong \mathbb{Z}_+$, $P_w \cong \mathbb{Z}_+$, and the embeddings $()^e$, $()^{\overline{e}}$ are both given by $\mathbb{Z}_+ \to \mathbb{Z}_+$, $z \mapsto 2z$.

2 K-theory

Theorem (C. Chen, X. Li)

Suppose that $G_v \subseteq (\mathbb{R}, +)$ for all $v \in V$, and that $\sharp V > 1$ or $V = \{v\}$, $G_v \subseteq (\mathbb{R}, +)$ dense and $A \neq \emptyset$. Further assume that conditions (LCM) and (D) are satisfied. (i)

$$K_0(C_r^*(G \ltimes \Omega)) \cong \mathbb{Z}$$
 and $K_1(C_r^*(G \ltimes \Omega)) \cong 0;$

$$K_*(C^*_r(G \ltimes \Omega_{b,\infty})) \cong K_*(C(\Omega_{b,\infty}) \rtimes_r G) \cong K_*(C^*_\lambda(G_T));$$

$$K_*(C_r^*(G \ltimes \{\infty\})) \cong K_*(C_\lambda^*(G_T))$$

if $\{\infty\}$ is closed in Ω .

2 K-theory

Theorem (C. Chen, X. Li)

(ii) When Ω_{∞} is closed in Ω ,

 $K_0(C_r^*(G \ltimes \Omega_\infty)) \cong \mathbb{Z} \text{ and } K_1(C_r^*(G \ltimes \Omega_\infty)) \cong \mathbb{Z}$ if $P_e \neq \{\epsilon\}$ for all $e \in T$ and $K_0(C_r^*(G \ltimes \Omega_\infty)) \cong \mathbb{Z}_n$ and $K_1(C_r^*(G \ltimes \Omega_\infty)) \cong 0$

 $\text{if } P_e = \{\epsilon\} \text{ for some } e \in T. \text{ Here } n := 1/2 \sharp \{e \in T: \ P_e = \{\epsilon\}\}.$

2 Classification of boundary quotients

Theorem (C. Chen, X. Li)

 $\partial C^*_{\lambda}(P) = C^*_r(G \ltimes \partial \Omega)$ is a UCT kirchberg algebra and is completely classified by K-theory, if the following two conditions are satisfied:

(TF) One of the following holds. (i) There exists $e \in T$ with $P_e = \{\epsilon\}$. (ii) For all $e \in T$, $P_e \neq \{\epsilon\}$, $\sharp A > 0$ and there exists $e \in A$ with $k_e \nmid l_e$. (iii) For all $e \in T$, $P_e \neq \{\epsilon\}$, $\sharp A > 0$, for all $e \in A$, $k_e \mid l_e$ and ($\bigcap_{e \in A} < b_{t(e)}^{k_e n_e} >$) $\cap (\bigcap_{v \in V} G_v) = \{\epsilon\}$.

(N) For all $T' \subseteq T$ with $P_e \neq \{\epsilon\}$ for all $e \in T'$, either T' consists of a single vertex or T' consists of exactly two vertices v, w and one pair of edges e, \bar{e} with o(e) = v, t(e) = w such that $P_v \cong \mathbb{Z}_+$, $P_w \cong \mathbb{Z}_+$, and the embeddings $(\cdot)^e$, $(\cdot)^{\bar{e}}$ are both given by $\mathbb{Z}_+ \to \mathbb{Z}_+$, $z \mapsto 2z$.

2 More work

The discussion of closed invariant subsets and K-theory above is incomplete. Also, we have some work on the topological freeness of the group action on closed invariant subsets, ideal structures of the semigroup C^* -algebras and an application to Cartan pair in UCT kirchberg algebras. We refer interested readers to [CL22].

3 Outline

Preliminaries

2 Main results

3 References

3 References

[BL18] C. Bönicke and K. Li, Ideal structure and pure infiniteness of ample groupoid C^* -algebras, Ergodic Theory and Dynamical Systems (2020), 40, 34–63.

[CELY17] J. Cuntz, S. Echterhoff, X. Li and G. Yu, K-Theory for group C^* -algebras and semigroup C^* -algebras, Birkhauser (2017), Oberwolfach Seminars, vol. 47.

[CL22] C. Chen and X. Li, Semigroup C^* -algebras arising from graphs of monoids, Inter. Math. Research Notices (2022), Vol. 00, No. 0, 1-56.

[KP00] E. Kirchberg and N. C. Phillips, Embedding of exact C*-algebras in O_2 the Cuntz algebra, J. Reine Angew. Math. 525 (2000), 17-53.

3 References

[LOS18] X. Li, T. Omland and J. Spielberg, *C**-algebras of right LCM one-relator monoids and Artin-Tits monoids of finite type, arXiv:1807.08288.

[Phi00] N. C. Phillips, A classification theorem for nuclear purely infinite simple C*-algebras, Doc. Math. 5 (2000), 49-114.

[Ser80] J. P. Serre, Trees, Springer-Verlag, Berlin-Heidelberg-New York, 1980, 1-68.

[Spi12] J. Spielberg, C*-algebras for categories of paths associated to the Bamuslag-Solitar groups, J. London Math. Soc. 86 (2012), 728-754.

Thank you for listening!