Semigroup C*-Algebras arising from Graphs of monoids

Cheng Chen

IASM, Harbin Institute of Technology
21 June 2023
(1) Preliminaries
(2) Main results
(3) References
(1) Preliminaries
(2) Main results
(3) References

A C*-algebra A is a Banach algebra endowed with an involution * satisfying: For all $\lambda \in \mathbb{C}$ and all $x, y \in A$,

1. $(\lambda x+y)^{*}=\bar{\lambda} x^{*}+y^{*}$;
2. $x^{* *}=x$;
3. $(x y)^{*}=y^{*} x^{*}$;
4. $\left\|x^{*} x\right\|=\|x\|^{2}$.

Examples: $M_{n}(\mathbb{C}), C_{0}(X), L_{\infty}(X), \mathcal{L}(H), \mathcal{K}(H) ; L_{p}(X), 1 \leq p<\infty$.

Gelfand-Naimark Theorem: Every C*-algebra is isometrically *-isomorphic to a C^{*}-subalgebra of $\mathcal{L}(H)$.

Here we consider only discrete groups.

Given a group G, its left regular representation λ is the homomorphism of G into the unitary group of $\mathcal{L}\left(\ell_{2}(G)\right)$, defined by $s \mapsto \lambda_{s}$ with $\lambda_{s} f(t)=f\left(s^{-1} t\right)$ for all $s \in G$ and all $f \in \ell_{2}(G)$. The left reduced group C^{*}-algebra of G, denoted by $C_{r}^{*}(G)$, is defined to be the smallest C^{*}-algebra in $\mathcal{L}\left(\ell_{2}(G)\right)$, containg $\lambda_{s}, \forall s \in G$.

Theorem: If G is an abelian group, then $C_{r}^{*}(G)=C(\hat{G})$, where \hat{G} is the Pontryagin dual group of G (consisting of all characters on G).

Example: $C_{r}^{*}(\mathbb{Z})=C(\mathbb{T})$.

Let P be a left cancellative and discrete semigroup, its left regular representation is given as follows:

$$
P \rightarrow \mathcal{L}\left(\ell_{2}(P)\right), p \mapsto V_{p}\left[\delta_{x} \mapsto \delta_{p x}\right], \forall p \in P
$$

The left reduced semigroup C^{*}-algebra of P, denoted by $C_{r}^{*}(P)$, is defined to be the smallest C^{*}-algebra in $\mathcal{L}\left(\ell_{2}(P)\right)$, containg $V_{p}, \forall p \in P$.

Example: $C_{r}^{*}(\mathbb{N})$ is the Toeplitz algebra.

1 Graphs of groups

A graph Γ is a pair (V, E) with two maps $E \rightarrow V \times V, e \mapsto(o(e), t(e))$ and $E \rightarrow E, e \mapsto \bar{e}$, satisfying: $\overline{\bar{e}}=e$ and $\bar{e} \neq e$ and $o(e)=t(\bar{e})$. A tree is connected non-empty graph without circuits.

A graph of groups: $\Gamma=(V, E)$ connected, G_{v} and G_{e}.
$G_{\bar{e}}=G_{e}, G_{e} \rightarrow G_{t(e)}: x \mapsto x^{e}, G_{e} \rightarrow G_{o(e)}: x \mapsto x^{\bar{e}}$.
T maximal subtree, $E=T \cup A \cup \bar{A}$, The fundamental group
$G=\pi_{1, T}:=<\left\{G_{v}\right\}_{v \in V} \cup A \mid g^{e}=g^{\bar{e}}, \forall e \in T, g \in G_{e}, e g^{e}=g^{\bar{e}} e, \forall e \in$ $A, g \in G_{e}>$.

1 Graphs of groups

Examples

$T=(V, E)$ a tree of groups $\Longrightarrow G$ is the amagamated free product of G_{v} along G_{e}

Assume $G_{e}=\{\epsilon\}, \forall e \in E$: then G is the free product of G_{v}.
Γ a bouquet of circles, $V=\{v\}, G_{v} \cong \mathbb{Z}$ and $G_{e} \cong \mathbb{Z}, \forall e \in E$.
$\Longrightarrow G$ is a one vertex generalised Baumslag-Solitar group.

$$
G=<\{b\} \cup A \mid b^{n_{e}} e=e b^{\operatorname{sgn}(e) m_{e}}, \forall e \in A>,
$$

Here $n_{e}, m_{e} \in \mathbb{Z}_{+}$and $\operatorname{sgn}(e) \in\{ \pm 1\}$. $\sharp A=1 \Longrightarrow G$ is the classical Baumslag-Solitar group.
(V, E)
G_{v} totally ordered with positive cone $P_{v}, \forall v \in V$ and $P_{e}:=\left\{g \in G_{e}, g^{e} \in P_{t(e)}\right\}, \forall e \in E$.

Assume $P_{e}=P_{\bar{e}}$ for all $e \in T$ and either $P_{e}=P_{\bar{e}}$ or $P_{e}=P_{\bar{e}}^{-1}$ for all $e \in A$. Define $A_{+}:=\left\{e \in A \mid P_{e}=P_{\bar{e}}\right\}$ and $A_{-}:=\left\{e \in A \mid P_{e}=P_{\bar{e}}^{-1}\right\}$.

Remark

The embedding $P_{e} \rightarrow P_{o(e)}, g \mapsto g^{\bar{e}}$ is order preserving for all $e \in T \cup A_{+}$ and order reversing for all $e \in A_{-}$. For instance, in Example 2, A_{+}consists exactly of those $e \in A$ with $\operatorname{sgn}(e)=1$, and A_{-}consists exactly of those $e \in A$ with $\operatorname{sgn}(e)=-1$.

The fundamental monoid $P \subseteq G$: generated by $P_{v}, v \in V$ and A. The submonoid $P_{T} \subseteq P$: generated by $P_{v}, v \in V$.
(1) Preliminaries
(2) Main results
(3) References
P right LCM: for all $p, q \in P, p P \cap q P=\emptyset$ or $p P \cap q P=r P$.
condition (LCM) for P : for all $e \in E, p \in P_{o(e)}$, either $p^{-1} P_{\bar{e}}^{\bar{e}}=\emptyset$ or $p^{-1} P_{\bar{e}}^{\bar{e}}=q P_{\bar{e}}^{\bar{e}}$ for some $q \in P_{o(e)}$, where

$$
p^{-1} P_{\bar{e}}^{\bar{e}}:=\left\{x \in P_{o(e)}, p x \in P_{\bar{e}}^{\bar{e}}\right\} .
$$

Theorem (C. Chen, X. Li)
condition (LCM) for $P \Longrightarrow P$ right LCM.

2 Simplicity and pure infiniteness

For convenience, we introduce the notation \prec in $P: p, q \in P, p \prec q$ if $q \in p P$.

Theorem (C. Chen, X. Li)

Assume that condition (LCM) is satisfied. If $P_{e}=\{\epsilon\}$ for some $e \in T$ and there exists $v \in V$ and a sequence $x_{n} \in P_{v} \backslash\{\epsilon\}$ with $x_{n+1} \prec x_{n}$ such that, for every $p \in P_{v} \backslash\{\epsilon\}, x_{n} \prec p$ and $x_{n} \neq p$ for all sufficiently big n, then $C_{\lambda}^{*}(P)$ is purely infinite simple.

2 Closed invariant subsets

V, E, G_{v} countable, condition (LCM) for P
The associated character space Ω : all nonzero filters (multiplicative) χ

$$
\chi:\{p P, p \in P\} \cup\{\emptyset\} \rightarrow\{0,1\}
$$

with the pointwise convergence topology.
The partial action $G \curvearrowright \Omega: g: U_{g^{-1}} \rightarrow U_{g}, \chi \mapsto g \cdot \chi=\chi\left(g^{-1} \cdot\right)$, $\chi \in U_{g^{-1}} \Leftrightarrow g=p q^{-1}$ for some $p, q \in P$ and $\chi(q P)=1$.

Theorem [CELY17]
$C_{\lambda}^{*}(P) \cong C_{r}^{*}(G \ltimes \Omega)$.

For $w=x_{1} x_{2} x_{3} \cdots, x_{*} \in\left\{P_{v} \backslash \epsilon\right\}_{v \in V} \cup A$, define $\chi_{w} \in \Omega$:
$\chi_{w}(x P)=1 \Longleftrightarrow[w]_{j}:=x_{1} x_{2} \cdots x_{j} \in x P$ for some j.
$\chi=\chi_{w}$ by [LOS18].
$\Omega_{\infty}: \chi \neq \chi_{w}$ with w finite word.
$\{\infty\}=\partial \Omega_{P_{T}}$.
$\Omega_{b, \infty}:=\left\{\chi \in \Omega,(g \cdot \chi)\left(b^{i} P\right)=1, \forall g \in G, \forall i \in \mathbb{N}\right\}$, where $b \in P_{u}$ for some $u \in V$ is fixed.

Assume $G_{v} \subseteq(\mathbb{R},+), v \in V$

Condition (D)
$P_{e}=\{\epsilon\}$ or $P_{e} \cong \mathbb{Z}_{+}$for all $e \in T \cup A$.

2 Closed invariant subsets

Theorem (C. Chen, X. Li)
Suppose that $G_{v} \subseteq(\mathbb{R},+)$ for all $v \in V$, and that $\sharp V>1$ or $V=\{v\}, G_{v} \subseteq(\mathbb{R},+)$ dense and $A \neq \emptyset$. Further assume that conditions (LCM) and (D) are satisfied. The lists of all closed invariant subspaces of Ω are as follows:
(i) Assume that $P_{e}=\{\epsilon\}$ for some $e \in T$.
$\left(i_{1}\right) G_{v}$ dense in \mathbb{R} for some $v: \partial \Omega=\Omega$.
$\left(\mathrm{i}_{2}\right) \mathrm{P}_{v} \cong \mathbb{Z}_{\geq 0}$ for all $v: \partial \Omega=\overline{\Omega_{\infty}} \subseteq \Omega$.
(ii) Assume that $P_{e} \neq\{\epsilon\}$ for all $e \in T$.
(ii $) \sharp A=0: \partial \Omega=\{\infty\} \subsetneq \overline{\Omega_{\infty}} \subseteq \Omega$.
(iii $) \mathrm{G}_{v}$ dense in \mathbb{R} for some v and $\sharp A \geq 1: \partial \Omega=\Omega_{b, \infty} \subsetneq \Omega$.
(ii3) $\mathrm{P}_{v} \cong \mathbb{Z}_{\geq 0}$ for all $v, \sharp A \geq 1$ and $\sharp V>1: \partial \Omega=\Omega_{b, \infty} \subsetneq \overline{\Omega_{\infty}} \subseteq \Omega$.

2 Topological freeness

$G \curvearrowright X$ topologically free
$\Longleftrightarrow \exists X^{\prime} \subseteq X$ dense s.t. $g \cdot x=x, g \in G, x \in X^{\prime}$ implies $g=\epsilon$.

Assume that $G_{v} \subseteq(\mathbb{R},+)$ for all $v \in V$, and $\sharp V>1$ or $A \neq \emptyset$, and that conditions (LCM) and (D) are satisfied.
Assume in addition $P_{e} \neq\{\epsilon\}$ for all $e \in T$. Given $e \in A$, let $v=o(e)$ and $w=t(e)$. Let b_{v} be the generator of P_{v} and b_{w} the generator of P_{w}. Let $m_{e}, n_{e} \in \mathbb{Z}_{+}$be such that ()$^{\bar{e}}: P_{\bar{e}} \rightarrow P_{v}$ is given by $z \mapsto n_{e} z$ and ()$^{e}: P_{\bar{e}} \rightarrow P_{w}$ is given by $z \mapsto \pm m_{e} z$. Then we have $b_{v}^{n_{e}} e=e b_{w}^{ \pm m_{e}}$ in G. Moreover, as $P_{e} \neq\{\epsilon\}$ for all $e \in T$, $\left.\left.\left.<b_{v}^{n_{e}}\right\rangle \cap<b_{w}^{m_{e}}\right\rangle=<b_{v}^{l_{e} n_{e}}\right\rangle=\left\langle b_{w}^{k_{e} m_{e}}>\right.$ for some $k_{e}, l_{e} \in \mathbb{Z}_{+}$.

2 Topological freeness

Theorem

$G \curvearrowright X$ is topologically free for every closed invariant subspace $X \subseteq \Omega$ if and only if one of the following holds:
(i) $P_{e}=\{\epsilon\}$ for some $e \in T$.
(ii) $P_{e} \neq\{\epsilon\}$ for all $e \in T, \sharp V>1, A \neq \emptyset$, and one of the following holds:
(iii) $k_{e} \nmid l_{e}$ for some $e \in A$,
(ii 2$) k_{e} \mid l_{e}$ for all $e \in A$ and $\left(\cap_{e \in A}<b_{v}^{k_{e} n_{e}}\right) \cap\left(\cap_{v \in V} G_{v}\right)=\{\epsilon\}$.
(iii) $\sharp V=1, \sharp A=\infty, \sharp A_{+} \in\{0, \infty\}$, and (i_{1}) or (iii) holds.
(iv) $\sharp V=1, \sharp A=\infty, \sharp A_{+}<\infty$, (iii) or (ii 2) holds, and either $\sharp A_{+} \geq 2$ or $\sharp A_{+}=1, A_{+}=\{e\}$ and $m_{e} \neq 1$.

Corollary

If one of (i)-(iv) in the above theorem is satisfied, the the map $X \mapsto C_{r}^{*}(G \ltimes(\Omega \backslash X))$ is a one-to-one correspondence between closed invariant subspaces of Ω and ideals of $C_{\lambda}^{*}(P) \cong C_{r}^{*}(G \ltimes \Omega)$.

Theorem (C. Chen, X. Li)
If condition (LCM) for P is satisfied, then $C_{\lambda}^{*}(P)$ is nuclear iff $C_{\lambda}^{*}\left(P_{T}\right)$ nuclear.

Assume, in addition, $G_{v} \subseteq(\mathbb{R},+), \sharp V>1$ or $\sharp A>0, C_{\lambda}^{*}(P)$ is nuclear iff For all $T^{\prime} \subseteq T$ with $P_{e} \neq\{\epsilon\}$ for all $e \in T^{\prime}$, either T^{\prime} consists of a single vertex or T^{\prime} consists of two vertices v, w and a pair of edges e, \bar{e} with $o(e)=v, t(e)=w$, such that $P_{v} \cong \mathbb{Z}_{+}, P_{w} \cong \mathbb{Z}_{+}$, and the embeddings ()$^{e},()^{\bar{e}}$ are both given by $\mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}, \quad z \mapsto 2 z$.

Theorem (C. Chen, X. Li)

Suppose that $G_{v} \subseteq(\mathbb{R},+)$ for all $v \in V$, and that $\sharp V>1$ or $V=\{v\}$, $G_{v} \subseteq(\mathbb{R},+)$ dense and $A \neq \emptyset$. Further assume that conditions (LCM) and (D) are satisfied.
(i)

$$
\begin{aligned}
& K_{0}\left(C_{r}^{*}(G \ltimes \Omega)\right) \cong \mathbb{Z} \text { and } K_{1}\left(C_{r}^{*}(G \ltimes \Omega)\right) \cong 0 ; \\
& K_{*}\left(C_{r}^{*}\left(G \ltimes \Omega_{b, \infty}\right)\right) \cong K_{*}\left(C\left(\Omega_{b, \infty}\right) \rtimes_{r} G\right) \cong K_{*}\left(C_{\lambda}^{*}\left(G_{T}\right)\right) ; \\
& K_{*}\left(C_{r}^{*}(G \ltimes\{\infty\})\right) \cong K_{*}\left(C_{\lambda}^{*}\left(G_{T}\right)\right) \\
& \text { if }\{\infty\} \text { is closed in } \Omega \text {. }
\end{aligned}
$$

2 K-theory

Theorem (C. Chen, X. Li)
(ii) When Ω_{∞} is closed in Ω,

$$
K_{0}\left(C_{r}^{*}\left(G \ltimes \Omega_{\infty}\right)\right) \cong \mathbb{Z} \text { and } K_{1}\left(C_{r}^{*}\left(G \ltimes \Omega_{\infty}\right)\right) \cong \mathbb{Z}
$$

if $P_{e} \neq\{\epsilon\}$ for all $e \in T$ and

$$
K_{0}\left(C_{r}^{*}\left(G \ltimes \Omega_{\infty}\right)\right) \cong \mathbb{Z}_{n} \text { and } K_{1}\left(C_{r}^{*}\left(G \ltimes \Omega_{\infty}\right)\right) \cong 0
$$

if $P_{e}=\{\epsilon\}$ for some $e \in T$. Here $n:=1 / 2 \sharp\left\{e \in T: P_{e}=\{\epsilon\}\right\}$.

2 Classification of boundary quotients

Theorem (C. Chen, X. Li)
$\partial C_{\lambda}^{*}(P)=C_{r}^{*}(G \ltimes \partial \Omega)$ is a UCT kirchberg algebra and is completely classified by K -theory, if the following two conditions are satisfied:
(TF) One of the following holds.
(i) There exists $e \in T$ with $P_{e}=\{\epsilon\}$.
(ii) For all $e \in T, P_{e} \neq\{\epsilon\}, \sharp A>0$ and there exists $e \in A$ with $k_{e} \nmid l_{e}$.
(iii) For all $e \in T, P_{e} \neq\{\epsilon\}, \sharp A>0$, for all $e \in A, k_{e} \mid l_{e}$ and
$\left(\cap_{e \in A}<b_{t(e)}^{K_{e} e_{e}}>\right) \cap\left(\cap_{v \in V} G_{v}\right)=\{\epsilon\}$.
(N) For all $T^{\prime} \subseteq T$ with $P_{e} \neq\{\epsilon\}$ for all $e \in T^{\prime}$, either T^{\prime} consists of a single vertex or T^{\prime} consists of exactly two vertices v, w and one pair of edges e, \bar{e} with $o(e)=v, t(e)=w$ such that $P_{v} \cong \mathbb{Z}_{+}, P_{w} \cong \mathbb{Z}_{+}$, and the embeddings $(\cdot)^{e},(\cdot)^{\bar{e}}$ are both given by $\mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}, \quad z \mapsto 2 z$.

The discussion of closed invariant subsets and K-theory above is incomplete. Also, we have some work on the topological freeness of the group action on closed invariant subsets, ideal structures of the semigroup C^{*}-algebras and an application to Cartan pair in UCT kirchberg algebras. We refer interested readers to [CL22].
3 Outline
(1) Preliminaries
(2) Main results
(3) References
[BL18] C. Bönicke and K. Li, Ideal structure and pure infiniteness of ample groupoid C^{*}-algebras, Ergodic Theory and Dynamical Systems (2020), 40, 34-63.
[CELY17] J. Cuntz, S. Echterhoff, X. Li and G. Yu, K-Theory for group C^{*}-algebras and semigroup C^{*}-algebras, Birkhauser (2017), Oberwolfach Seminars, vol. 47.
[CL22] C. Chen and X . Li, Semigroup C^{*}-algebras arising from graphs of monoids, Inter. Math. Research Notices (2022), Vol. 00, No. 0, 1-56.
[KP00] E. Kirchberg and N. C. Phillips, Embedding of exact C*-algebras in \mathcal{O}_{2} the Cuntz algebra, J. Reine Angew. Math. 525 (2000), 17-53.
[LOS18] X. Li, T. Omland and J. Spielberg, C^{*}-algebras of right LCM one-relator monoids and Artin-Tits monoids of finite type, arXiv:1807.08288.
[Phi00] N. C. Phillips, A classification theorem for nuclear purely infinite simple C*-algebras, Doc. Math. 5 (2000), 49-114.
[Ser80] J. P. Serre, Trees, Springer-Verlag, Berlin-Heidelberg-New York, 1980, 1-68.
[Spi12] J. Spielberg, C*-algebras for categories of paths associated to the Bamuslag-Solitar groups, J. London Math. Soc. 86 (2012), 728-754.

Thank you for listening!

