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Background



Background: Open Quantum Systems

An ideal quantum system is not realistic because it should be perfectly isolated;
however, in practice, it is influenced by coupling to an environment.

System

Enviroment

Time evolution is governed by the global
Hamiltonian

H = HS + HE + Hint.

By taking the partial trace and
assuming the Markov property we have
the following Lindblad equation:

dρS(t)
dt = L∗(ρS(t)).
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Background: Quantum Markov Semigroups

Mathematically, from a closed quantum system to an open quantum system,
the Hamiltonian is replaced by a Lindblad operator

HS ⇝ L∗.

Meanwhile, the time evolution is no longer described by means of
one-parameter groups of unitary maps eitHS , but one needs to introduce
semigroups of completely positive maps etL∗ , thus leading to the concept of
quantum Markov semigroups.
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Background: Quantum Markov Semigroups

Definition 1 (Quantum Markov semigroup)
Let A be a von Neumann algebra. A quantum dynamical semigroup (Tt)t≥0

on A is a family of bounded operators on A with the following properties:

• T0(a) = a for all a ∈ A and Tt+s = TtTs for all t, s ≥ 0,
• Tt is completely positive for all t ≥ 0,
• Tt is σ-weakly continuous on A for all t ≥ 0,
• for each a ∈ A, the map t 7→ Tt(a) is continuous w.r.t. the σ-weak

topology.

If Tt(1) = 1 in addition, we call (Tt)t≥0 a quantum Markov semigroup.

Definition 2 (Predual semigroup)
The predual semigroup of (Tt)t≥0, (T∗t)t≥0, is a semigroup on A∗ defined by

T∗t(ω)(a) := ω(Tt(a)), ∀a ∈ A, ω ∈ A∗.

4/19



Background: GKSL Forms

The characterization of the generator of a quantum dynamical semigroup due
to Lindblad [Lin76] in the case of an arbitrary Hilbert space and to Gorini,
Kossakowski and Sudarshan [GKS76] in the case of a finite-dimensional Hilbert
space.

Theorem 3
A bounded operator L on B(H) is the generator of a uniformly continuous
quantum dynamical semigroup if and only if

L(a) = i[H, a] − 1
2
∑

j

(
V †

j Vja − V †
j aVj + aV †

j Vj
)
,

where Vj ∈ B(H),
∑

j Vj ∈ B(H) and H ∈ B(H) self-adjoint. In this case,
the predual generator is of the form

L∗(ρ) = −i[H, ρ] − 1
2
∑

j

(
V †

j Vjρ− VjρV †
j + ρV †

j Vj
)
.

5/19



Exponential Ergodicity



Exponential Ergodicity: Induced Semigroup

Let (Tt)t≥0 be a quantum Markov semigroup on the von Neumann algebra A.
Assume that (Tt)t≥0 possesses a faithful normal invariant state ρ, i.e.

ρ(a) > 0, a ∈ A+ \ {0}; ρ(Tt(a)) = ρ(a), ∀t ≥ 0, ∀a ∈ A.

Induced semigroup
Let (H, π, ξ) be the Gelfand-Naimark-Segal representation associated to the
faithful normal state ρ. Then, we can construct a strongly continuous
contraction semigroup (Tt)t≥0 on the Hilbert space H by

Tt(π(a)ξ) := π(Tt(a))ξ, a ∈ A.

(Tt)t≥0 is referred to be the induced semigroup of (Tt)t≥0. By L we denote
the generator of the induced semigroup (Tt)t≥0.
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Exponential Ergodicity: Special States

We use S(A) to denote all normal states on the von Neumann algebra A.

Special states
By Sρ(A) we denote the set of all normal states on A which are majorized by
a scalar multiple of ρ. That is,

Sρ(A) := {ϕ ∈ S(A) : ∃λ ≥ 0 s.t. ϕ ≤ λρ}.

Sρ(A) is dense in S(A), and the linear span of Sρ(A) is dense in A∗.

Lemma 4
ϕ is a positive σ-weakly continuous functional on A that is majorized by λρ
for some λ ≥ 0 if and only if there exists a unique xϕ ∈ π(A)′ with
0 ≤ xϕ ≤ λ1 such that

ϕ(a) = ⟨xϕξ, π(a)ξ⟩ , ∀a ∈ A,

where π(A)′ denotes the commutant of π(A).
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Exponential Ergodicity: Spectral Gap

Spectral gap
The spectral gap of the induced generator L is the non-negative number α
defined as follows:

α := inf
{

− Re⟨x , Lx⟩ : x ∈ Dom L ⊂ H, ∥x∥ = 1, x ∈ ker L⊥} .
Notice that ker L characterizes invariant vectors of (Tt)t≥0.

This term is referred to as the “spectral gap” because in the case where the
generator L is self-adjoint, α represents the maximum value for which there is
no part of the spectrum of L within the interval (−α, 0).

Remark
Roughly speaking, the self-adjointness of L is equivalent to the reversibility
(detailed balance) of (Tt)t≥0. We do not assume it in our work.
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Exponential Ergodicity: Main Results

Theorem 5 (Exponential Ergodicity)
Assume that the infinitesimal generator L of the induced semigroup (Tt)t≥0

has a spectral gap α > 0, and there exists a common core for L and L∗.
Then, there exists a projection P onto σ-weakly continuous functionals that
are invariant under (T∗t)t≥0, and for all ψ ∈ A∗, T∗t(ψ) → P(ψ) in the norm
topology as t → +∞. In particular, if ψ ∈ Span{Sρ(A)}, then

∥T∗t(ψ) − P(ψ)∥A∗
≤ e−αt

∥∥∥∥∥
n∑

k=1

ckxψk ξ − P

(
n∑

k=1

ckxψk ξ

)∥∥∥∥∥
H

,

where P is the projection onto invariant vectors of (Tt)t≥0.

In the following we will answer the following two questions: In general, can we
observe uniform exponential convergence for normal states in Sρ(A)? Do
σ-weakly continuous functionals in A∗ \ Span{Sρ(A)} demonstrate exponential
convergence?
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

A quantum Ornstein-Uhlenbeck semigroup models the evolution of an open
quantum system that is coupled to a reservoir with inverse temperature β > 0.

Let H be a complex separable Hilbert space with an orthonormal basis (en)n∈N.
The quantum Ornstein-Uhlenbeck semigroup (T β

t )t≥0 associated with the
inverse temperature β is given by the generator

Lβ(x) = eβ

eβ − 1

(
−1

2a†ax + a†xa − 1
2xa†a

)
+ 1

eβ − 1

(
−1

2aa†x + axa† − 1
2xaa†

)
,

where x ∈ Dom Lβ ⊂ B(H), a is the annihilation operator, and a† is the
creation operator.

aen =
√

n en−1, n ≥ 1, ae0 = 0; a†en =
√

n + 1 en+1, n ≥ 0.

. Moreover, the position operator q, the momentum operator p and the
number operator N are given by

qen = a + a†
√

2
en, pen = i(a† − a)√

2
en, Nen = nen.
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

Remarks

1. a and a† are unbounded operators.
2. (T β

t )t≥0 is indeed self-adjoint due to the lack of a Hamiltonian part in its
generator.

It was proved in [CFL00] that (T β
t )t≥0 has a unique faithful normal invariant

state

ρβ := (1 − e−β)e−βN = (1 − e−β)
∞∑

k=0

e−βk |ek⟩⟨ek | ,

and its induced semigroup admits a spectral gap.
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

The restriction of the quantum Ornstein-Uhlenbeck semigroup (T β
t )t≥0 to the

subalgbera of the position operator corresponds to a classical
Ornstein-Uhlenbeck process. The restriction of its predual semigroup (T β

∗t )t≥0

to the subalgebra of the number operator is a classical birth-and-death process.

Lemma 6

(T β
∗t ↾ l1(N))t≥0 is the classical birth-and-death process with birth rates

((n + 1)/(eβ − 1))n∈N and death rates (neβ/(eβ − 1))n∈N. In addition,
(T β

t ↾ l∞(N))t≥0 has a spectral gap α = 1.

Just notice that

Lβ∗ (|en⟩ ⟨en|) = neβ

eβ − 1 |en−1⟩ ⟨en−1|−neβ + n + 1
eβ − 1 |en⟩ ⟨en|+ n + 1

eβ − 1 |en+1⟩ ⟨en+1| ,

and we can define the following transition probabilities

pβij (t) := Tr
(
T β

∗t (|ei⟩ ⟨ei |) |ej⟩ ⟨ej |
)
, i , j ∈ N.
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

Uniformly exponentially convergence for CTMCs
Let (Xt)t≥0 be a continuous-time Markov chain with state space I = N and
transition probabilities P(t) = (pij(t))i,j∈I . Suppose there exists a unique
invariant density (πi)i∈I for (Xt)t≥0. Similar to the case of quantum Markov
semigroups, we say that P(t) is uniformly exponentially convergent if there
exists M > 0 and α > 0 such that |pij(t) − πj | < Me−αt for all i , j ∈ I.

The following theorem shows that uniform exponential convergence can be
characterized by the mean hitting times to state 0. Recall that, starting from
state n ∈ N, the mean time taken for (Xt)t≥0 to reach state 0 is given by
kn := E[T |X0 = n], where T := inf{t ≥ 0 : Xt = 0}.
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

Theorem 7 (Characterizations of uniform exponential convergence)
The following statements are equivalent:

1. P(t) is uniformly exponentially convergent.
2. limt→+∞ supi∈I |pil(t) − πl | = 0 for some l ∈ I with πl > 0.
3. limt→+∞ supi∈I

∑
j∈I |pij(t) − πj | = 0.

4. δ(P(t)) < 1 for some t > 0, where
δ(P(t)) := 1

2 supi,j∈I
∑

h∈I |pih(t) − pjh(t)|.
5. the sequence of mean hitting times (kn)n≥0 is uniformly bounded.
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

Let (Xβ
t )t≥0 be the birth-and-death process associated to the quantum

Ornstein-Uhlenbeck semigroup (T β
t )t≥0. We have the following results:

Proposition 8

For the process (Xβ
t )t≥0, starting from state n, the mean hitting time of state

0 equals
∑n

m=1 1/m.

The following result is immediate:

Theorem 9

For the quantum Ornstein-Uhlenbeck semigroup (T β
t )t≥0, there does not

exist M > 0 and α > 0 such that∥∥T β
∗t (ϕ) − ρβ

∥∥ ≤ Me−αt , ∀ϕ ∈ Sρ(A).
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

In fact, we can conduct more detailed computations and analysis. The
transition probabilities of a birth-and-death process have what is known as the
Kendall representation. Let (Xβ

t )t≥0 be the birth-and-death process associated
to (T β

t )t≥0, and let (πβj )j∈N denote its unique invariant distribution. According
to [KM58], the Kendall representation of (pβij (t))i,j∈N is

pβij (t) = πβj

∞∑
n=0

e−tnQβ
i (n)Qβ

j (n)e−βn, i , j ∈ N. (1)

The above (Qβ
i )i∈N are Meixner polynomials defined by

Qβ
i (x) =

∞∑
k=0

(−i)k(−x)k(1 − eβ)k

(k!)2 , x ∈ R,

where
(a)k := Γ(a + k)

Γ(a) , a ∈ R, k ∈ N.

For a non-positive integer a, the above (a)k is defined by continuation.
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

The proposition below demonstrates that the convergence speed towards the
unique faithful normal invariant state ρβ for normal states in the form of
|ei⟩ ⟨ei | cannot have an exponential rate with parameter 1 + ϵ, where ϵ > 0.

Proposition 10
There does not exists ϵ > 0 and Mi > 0 such that∥∥T β

∗t (|ei⟩ ⟨ei |) − ρβ
∥∥ ≤ Mie−(1+ϵ)t .

Notice that ∥∥T β
∗t (|ei⟩ ⟨ei |) − ρβ

∥∥ =
∞∑
j=0

∣∣pβij (t) − (1 − e−β)e−βj∣∣.
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

Let ω̂ := κ
∑∞

k=1 k−2 |en⟩ ⟨en| with κ := 6/π2.

Proposition 11

When β > − log 1/2, there does not exist an M > 0 such that∥∥T β
∗t (ω̂) − ρβ

∥∥ ≤ Me−t , ∀t ≥ 0.

Therefore, we have discovered a normal state outside of Sρ(A) that is not
α-exponentially convergent.
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