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Twisted crossed product

• Given a von Neumann algebra M and a locally compact group, suppose
that there exists an action α of G on M, assume invariably that α is
strong ∗-cotinuous, that is, for each fixed x ∈ M, the map s 7→ αs(x) is
strong ∗-continuous.

Definition 1

A twisted dynamical system is a quadruple (M,G , α, σ) with a twisted
action (α, σ) of G on M. Here the two functions α : G → Aut(M) and
σ : G × G → U(M) satisfy the following conditions: for any s, t, r ∈ G

(i) αs ◦ αt = Adσ(s,t) ◦ αst ;

(ii) σ(r , s)σ(rs, t) = αr (σ(s, t))σ(r , st);

(iii) σ(e, s) = σ(s, e) = 1.
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Twisted crossed product

Definition 2

A covariant homomorphism of (M,G , α, σ) is a pair (ρ, u) of a normal
representation ρ of M on a Hilbert space K , and a function
u : G → U(K ) such that

(i) u(s)u(t) = ρ(σ(s, t))u(st), s, t ∈ G ;

(ii) ρ(αs(a)) = u(s)ρ(a)u(s)∗, a ∈ M, s ∈ G .

• (
πα(a)ξ

)
(t) = αt−1(a)ξ(t), ξ ∈ L2(G ,H), t ∈ G ,(

λσ(s)ξ
)
(t) = σ(t−1, s)ξ(s−1t), ξ ∈ L2(G ,H), s, t ∈ G .
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Twisted crossed product

Definition 3

The von Neumann algebra generated by πα(M) and λσ(G ) on L2(G ,H) is
called the twisted crossed product of M by (α, σ) and is denoted by
M⋊α,σ G .

• set
R = M⋊α,σ Rd and N = M⊗B(L2(Rd)).
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Twisted crossed product

• For an element f ∈ K (G ,M), we put λσ × πα(f ) to be

λσ × πα(f ) =

∫
G
λ(s)πα(f (s))ds.

Proposition 4

(λσ × πα(K (G ,M)))′′ = span{λσ(G ) ∪ πα(M)}′′ = M⋊α,σ G
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Preliminaries: Dual trace

• For a given weight τ on M, it is said to be semi-finite if

pτ = {x ∈ M+ : τ(x) < +∞}

generates M; while

nτ = {x ∈ M : x∗x ∈ pτ},

mτ = {
n∑

i=1

y∗i xi : x1, ..., xn, y1, ..., yn ∈ nτ}.

nτ is a left ideal of M, and mτ ∩M+ = pτ . For a fixed weight τ on M.
The set

Nτ = {x ∈ M : τ(x∗x) = 0}

is a left ideal of M contained in nτ .
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Preliminaries: Dual trace

• Define a canonical quotient map ητ : nτ → nτ/Nφ by:

ητ (x) = x + Nτ ∈ nτ/Nτ .

Define a sesquilinear functional:

⟨ητ (x), ητ (y)⟩ = τ(y∗x)

on nτ/Nτ .

• Take the completion of nτ/Nτ with respect to this sesquilinear
functional and denote it by Hτ .

ZENG Kai Schatten properties of commutators on twisted crossed productOctober 9, 2024 7 / 43



Preliminaries: Dual trace

• Define a representation πτ of M on Hτ by

πτ (a)ητ (x) = ητ (ax).

• The triplet {πτ ,Hτ , ητ} is called the semi-cyclic representation of M.

• Let K (G ,M) be the space of all σ-strongly-∗ continuous M valued
functions on G with compact support.
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Preliminaries: Dual trace

• For x , y ∈ K (G ,M) define

x ∗σ y(s) =

∫
G
σ(s−1, s)∗σ(s−1, st)αt(x(st))σ(t, t

−1)y(t−1)dt,

x#(s) = δG (s)
−1σ(s−1, s)∗αs−1(x(s−1))∗.

and

⟨x , y⟩M =

∫
G
y(t)∗x(t)dt.

Where δG is the modular function of G .
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Preliminaries: Dual trace

• We define

(x · a)(s) = x(s)a,

(a · x)(s) = α−1
s (a)x(s),

for x ∈ K (G ,M), a ∈ M, then K (G ,M) is a right module over M.

• Set

bτ = K (G ,M) · nτ = span{x · a : x ∈ K (G ,M), a ∈ nτ}.
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Preliminaries: Dual trace

• Define the map η̃τ : x ∈ bτ 7→ η̃τ (x) ∈ L2(G ,Hτ ) by

η̃τ (x)(s) = ητ (σ(s
−1, s)x(s))

for x ∈ bτ and s ∈ G .

• Ãτ = η̃τ (bτ ∩ b#τ ) is a left Hilbert algebra with respect to the following
operations:

η̃τ (x)η̃τ (y) = η̃τ (x ∗σ y), x , y ∈ bτ ∩ b#τ ,

η̃τ (x)
# = η̃τ (x

#).
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Preliminaries: Dual trace

• Given a normal, semi-finite and faithful weight τ on M, the normal,
semi-finite and faithful weight τ̃ associated with the left Hilbert algebra
Ãτ is called the dual weight of τ , namely, the weight is in the following
form for x ∈ Rℓ(Ãτ )+:

τ̃(x) =

{
∥ξ∥2 if x = πℓ(ξ)

∗πℓ(ξ), ξ ∈ Ãτ

+∞ otherwise .

• By the Plancherel formula, the map f 7→ λσ × πα(f ) establishes an
isometry from L2(Rd , L2(M)) onto L2(R).
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Preliminaries: Dual trace

Theorem 5

For x ∈ bτ ,

τ̃((λσ × πα(x))
∗(λσ × πα(x))) = τ((x# ∗ x)(e)).

In addition, there exists uniquely an operator valued weight T from
M⋊α,σ G onto πα(M) such that for x ∈ (M⋊α,σ G )+,

τ̃(x) = τ ◦ π−1
α (T (x))

for any faithful semi-finite normal weight τ on M.
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Preliminaries: Takesaki Duality

• Suppose the group G is abelian, the action α admits a dual action α̂ of
the dual group Ĝ on the twisted crossed product M⋊α,σ G as follows, let

ω be the unitary representation of Ĝ on L2(G ,H) in the following form:(
w(γ)ξ

)
(h) = γ(h)ξ(h), ξ ∈ L2(G ,H), h ∈ G , γ ∈ Ĝ .

Then the dual action α̂ is implemented by w :

α̂γ(x) = w(γ)xw(γ)∗, x ∈ M⋊α,σ G , γ ∈ Ĝ . (1)

•

α̂γ(πα(x)) = πα(x), α̂γ(λσ(g)) = γ(g)λσ(g), x ∈ M, g ∈ G , γ ∈ Ĝ .
(2)
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Preliminaries: Takesaki Duality

•

Definition 6

The action α̂ defined in (1) and (2) is called the dual action of Ĝ on
M⋊α,σ G and {M⋊α,σ G , Ĝ , α} is called the dual twisted covariant
system.

•

Theorem 7

The dual action α̂ of Ĝ on M⋊α,σ G has the following properties:

(i) A faithful weight τ̃ on M⋊α,σ G is dual to a faithful weight τ on M
if and only if τ̃ is α̂ invariant.

(ii) Considering the second crossed product M⋊α,σ G ⋊α̂ Ĝ , there exists

a unique isomorphism Φ of M⋊α,σ G ⋊α̂ Ĝ onto M⊗B(L2(G )).
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Preliminaries: Takesaki Duality

• α̂γ is τ̃ invariant, α̂γ extends to an isometric action α̂
(p)
γ on

Lp(M⋊α,σ G ).

• We can define the convolution between a function f ∈ L1(Rd) and an
element x ∈ Lp(R).

f ∗ x =

∫
Rd

f (s)α̂
(p)
−s (x)ds. (3)
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Preliminaries: Distribution space

• M∞ is the smooth subalgebra with x ∈ M such that the map
s 7→ αs(x) is smooth.

• The class of Schwartz functions on R is defined as the image of the
Schwartz class S(Rd ,M∞) under λσ × πα. That is,

S(R) = {λσ × πα(f ) : f ∈ S(Rd ,M∞)}. (4)

• The space of tempered distributions on R is the topological dual space
S ′(R) of S(R), i.e., the space of continuous linear functionals on S(R).
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Preliminaries: Derivatives on twisted crossed product

• For x = λσ × πα(f ) ∈ S(R), α = (α1, · · · , αd) ∈ Nd
0 , we set

∂αx =

∫
Rd

sαλσ(s)πα(f (s))ds,

where sα = sα1
1 · · · sαd

d .

• ∂αx belongs to S(R) too. By duality, these partial derivations extend to
all distributions.
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Preliminaries: Derivatives on twisted crossed product

• Let ∆ = ∂2
1 + · · ·+ ∂2

d be the Laplacian. We will frequently use the

Bessel and Riesz operators (1 + ∆)
1
2 and ∆

1
2 which will be abbreviated as

J and I respectively. More generally, for a ∈ R, define Ja = (1 +∆)
a
2 and

I a = ∆
a
2 .

• The Bessel potential Ja operates on S ′(R). While for the Riesz
potential I a. Let

S0(Rd ,M∞) = {x : ∂̂αx(0) = 0 ∀ α ∈ Nd
0}.

Then I a operates on S0(R) = λσ × πα
(
S0(Rd ,M∞)

)
, and by duality, on

the dual space S ′
0(Rd

θ ).
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Preliminaries: Fourier multipliers and convolution

• We denote ϕ̌ as the inverse Fourier transform of ϕ. Now assume that
ϕ̌ ∈ L1(Rd). Define

ϕ̌ ∗ x =

∫
Rd

ϕ̌(t)α̂−t(x)dt. (5)

• For x = λσ × πα(f ) with f ∈ S(Rd ,M∞), we have for the Fourier
multiplier Tϕ,

Tϕ(x) = λσ × πα(ϕf ) = ϕ̌ ∗ x .
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Preliminaries: Commutators

• Given x ∈ R, denote by Mx : y 7→ xy the left multiplication on L2(R).
Then Mx is a bounded linear operator on L2(R). We now define the
commutator

Cϕ,x = [Tϕ,Mx ].

This is a so-called Calderón-Zygmund transform on R, it is bounded on
L2(R).
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Function spaces ontwisted crossed product

•The homogeneous Sobolev space Ẇm
p (R) consists of those x ∈ S ′(R)

such that every partial derivative of order m is in Lp(R), equipped with
the seminorm:

∥x∥Ẇm
p
=

( ∑
|α|=m

∥∂αx∥p
) 1

p
.
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Function spaces on twisted crossed product

• Besov spaces are defined by using a fixed test function φ ∈ S(Rd) such
that 

suppφ ⊂ {ξ : 2−1 ≤ |ξ| ≤ 2},
φ > 0 on {ξ : 2−1 < |ξ| < 2},∑
k∈Z

φ(2−kξ) = 1, ξ ̸= 0.
(6)

The sequence {φ(2−k ·)}k∈Z is a Littlewood-Paley decomposition of Rd ,
modulo constant functions. Denote by φk the inverse Fourier transform of
φ(2−k ·).
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Function spaces on twisted crossed product

Definition 8

Let 1 ≤ p, q ≤ ∞ and a ∈ R. The homogeneous Besov space on Rd
θ is

defined by
Ba
p,q(R) =

{
x ∈ Lp(R) : ∥x∥Ba

p,q
< ∞

}
,

where

∥x∥Ba
p,q

=
(∑

k∈Z
2qka∥φk ∗ x∥qp

) 1
q
.

Let Ba
p,c0(R) be the subspace of Ba

p,∞(R) consisting of all x such that

2kr∥φk ∗ x∥p → 0 as |k | → ∞.
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Function spaces on twisted crossed product

• Denote by A(Ĝ ) the Fourier algebra of Ĝ which is the image of L1(G )
under the Fourier transform.
• For an action β of G on M, with a function f ∈ A(Ĝ ), define

βf (x) =

∫
G
f̌ (t)β−t(x)dt.

• For each x ∈ M, putting

I (x) = {f ∈ A(Ĝ ) : βf (x) = 0}

• The Arveson’s β- spectrum σβ(x) is defined by

σβ(x) = {p ∈ Ĝ : f (p) = 0, f ∈ I (x)}.
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Function spaces on twisted crossed product

• Define A(R) = {x ∈ R ∩ L1(R) : σα̂(x) is compact}.

• A(R) is a ∗-algebra.

• A(R) is dense in Ba
p,q(R) for 1 ≤ p < ∞ and 1 ≤ q < ∞.
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Function spaces on twisted crossed product

• A(R) is norm-dense in Wm
p (R) when m ≥ 0 and 1 ≤ p < ∞; the

density of A(R) in Ẇm
p (R) holds only when m ≥ 0 and 1 < p < ∞

• The dual space of Ba
p,q(R) coincides isomorphically with B−a

p′,q′(R) for
1 ≤ p < ∞ and 1 ≤ q < ∞

• Jb and I b are isomorphisms between Ba
p,q(R) and Ba−b

p,q (R).
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Backgrouds and motivations

• The first results [Mcdonald, Sukochev and Xiong, Commun. Math.
Phys. 2019] concerning quantum differentiability in the noncommutative
euclidean space are the characterizations of the Schatten Sd ,∞ properties
of

d̄x :=
d∑

j=1

γj ⊗ d̄xj (7)

on noncommutative euclidean space Rd
θ .

• γj ’s denote the d-dimensional euclidean gamma matrices, and
d̄xj := i[Rj ,Mx ], where for 1 ≤ j ≤ d , Rj = Tϕ for ϕ(s) =

sj
|s| denote the

quantum counterpart of Riesz transforms on Rd
θ .
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Backgrounds and motivations

• Our research in the second part is motivated by the following:

Theorem 9 (Mcdonald, Sukochev and Xiong, 2019)

d̄xi has bounded extension in Sd ,∞ for every 1 ≤ i ≤ d iff x belongs to the
homogeneous Sobolev space Ẇ 1

d (Rd
θ ).

• One related result is the formula on Dixmier Trace. For any continuous
normalised trace tr on S1,∞ we have

Trω(|d̄x |d) = cd

∥∥∥ d∑
j=1

γj ⊗
(
∂jx − sj

d∑
k=1

sk∂kx
)∥∥∥d

d
. (8)

ZENG Kai Schatten properties of commutators on twisted crossed productOctober 9, 2024 29 / 43



Main results

• We aim to extend the aforementioned results to a more general setting.
Here are our results.

Theorem 10

Let d < p < ∞. If x ∈ B
d
p
p,p(R), then Cϕ,x has a bounded extension in Sp

and ∥∥Cϕ,x

∥∥
Sp

≲d ,p

[
sup

s∈Sd−1

|ϕ(s)|+ sup
s∈S=d−1

|∇ϕ(s)|
]∥∥x∥∥

B
d
p
p,p

.

Conversely, assume additionally that ϕ is not constant. If x ∈ R and

Cϕ,x ∈ Sp, then x ∈ B
d
p
p,p(R) and∥∥x∥∥

B
d
p
p,p

≲d ,p

[
sup

s∈Sd−1

|ϕ(s)|+ sup
s∈Sd−1

| ∇ϕ(s)|
]∥∥Cϕ,x

∥∥
Sp
.
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Main results: Application to noncommutative Euclidean
space

• For the critical case, i.e., the Sd ,∞ properties of Cϕ,x for p ≤ d .

Theorem 11

If x ∈ Ẇ 1
d (Rd

θ ), then Cϕ,x has bounded extension in Sd ,∞.
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Main results: Applications to noncommutative Euclidean
space

• The following trace formula is new even for classical setting.

Theorem 12

Let x ∈ Ẇ 1
d (Rd

θ ). Then for every continuous normalised trace Trω on
S1,∞, we have

Trω(|Cϕ,x |d) = Cd

∫
Sd−1

τθ(
∣∣ ∑
1≤k≤d

∂skϕ ∂kx
∣∣d)ds.

Here the integral over Sd−1 is taken with respect to the rotation-invariant
measure ds on Sd−1.
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Proof of Theorem 10: Basic ingredients

• We view M⋊α,σ G as a right Hilbert w* module on M with the inner
product

⟨x , y⟩ = T (x∗y).

• M⋊α,σ G can be embedded as a submodule of CI (M) =
⊕

i∈I M for
an index sets I , i.e., there exist right module map u = (ui )i∈I such that for
x , y ∈ M⋊α,σ G , we have

⟨x , y⟩ = ⟨u(x), u(y)⟩

=
∑
i∈I

ui (x)
∗ui (y)

(9)
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Proof of Theorem 10: Basic ingredients

• For a element x ∈ Lp(R), we define the Fourier transform of x by

x̂(s) = T (λσ(s)
∗x).

• With this Fourier coefficient, we can write x formally as

x =

∫
Rd

λσ(s)πα(x̂(s))ds.

• For instance, if we have f ∈ L1(G ,M) + L∞(G ,M), then we can
calculate

̂λσ × πα(f )(s) = f (s).
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Proof of Theorem 10: Upper bounds estimate

We use the complex interpolation to obtain the desired estimate. Indeed,
we have the following three endpoint cases.

• Let a > 0, b > 0 and a+ b < 1. If x ∈ Ba+b
∞,∞(R), then

I aCϕ,x I
b ∈ S∞(L2(R)) and

∥I aCϕ,x I
b∥S∞ ≲d ,a,b ∥x∥Ba+b

∞,∞
.

• Let a > −d
2 , b > −d

2 and a+ b + d < 1. If x ∈ Ba+b+d
1,1 (R), then

I aCϕ,x I
b ∈ S1 and ∥∥I aCϕ,x I

b
∥∥
S1

≲d ,a,b

∥∥x∥∥
Ba+b+d
1,1

. (10)
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Proof of Theorem 10: Upper bounds estimate

• Let a, b > −d
2 and a+ b + d

2 < 1. If x ∈ B
a+b+ d

2
2,2 (R), then

I aCϕ,x I
b ∈ S2 and ∥∥I aCϕ,x I

b
∥∥
S2

≲d ,a,b

∥∥x∥∥
B

a+b+ d
2

2,2

.

Theorem 13

Let 1 ≤ p ≤ ∞, a+ b + d
p < 1 and a, b > max(−d

p ,−
d
2 ). If

x ∈ B
a+b+ d

p
p,p (R), then I aCϕ,x I

b belongs to B
a+b+ d

p
p,p (R) and∥∥I aCϕ,x I

b
∥∥
Sp

≲d ,p,a,b ∥x∥
B

a+b+ d
p

p,p

.
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Proof of Theorem 10: Upper bounds estimate

• We end this part with a generalization to higher commutators. Namely,
let ϕ1, · · · , ϕN ∈ C∞(Sd−1) be N non-constant functions. Define

Cϕ1,··· ,ϕN ,x = [TϕN
, ..., [Tϕ1 ,Mx ]...] (11)

• Theorem 13 extends to higher commutators.
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Proof of Theorem 10: Lower bounds estimate

• This part is devoted to the converse results of those in the previous part.

• We need the following nondegeneracy condition:

∀ s ∈ Rd \ {0} ∃ t ∈ Rd \ {0} such that
N∏
i=1

(ϕi (s)− ϕi (t)) ̸= 0. (12)

For N = 1, this condition means that ϕ1 is not a constant function.
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Proof of Theorem 10: Lower bounds estimate

• Denote γ = −(a+ a1 + b + b1 + d) and set

ω(s) = |s|γ
∫
Rd

N∏
i=1

|ϕi (s + t)− ϕi (t)|2k |s + t|a+a1 |t|b+b1dt. (13)

• Suppose that ϕ1, ..., ϕN satisfy condition 12, we can show that ω is a
homogeneous function of order 0 and never vanishes for s ̸= 0.

• ω is a Fourier multiplier on B r
1,1(R)) for some r . By a Tauberian result,

we see that ω−1 is a Fourier multiplier on Ba
p,p(R) for any a ∈ R.
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Proof of Theorem 10: Lower bounds estimate

• For k ≥ 1 set
CN,k,y = C

ϕ1, ..., ϕN︸ ︷︷ ︸
k tuple

, ϕ̄1, ...ϕ̄N︸ ︷︷ ︸
k−1 tuple

, y
,

• By the duality, we have

⟨I aCϕ1,...,ϕN ,x I
b, I a1CN,k,y I

b1⟩ = ⟨I−γTω(x), y⟩.

Thus,

∥Tω(x)∥
B

a+b+ d
p

p,p

≤ C∥I aCϕ1,...,ϕN ,x I
b∥Sp .
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The trace formula: Pseudodifferential operator

• Given f ∈ S(Rd) and ρ ∈ Sm(Rd ;S(Rd
θ )), we set

Pρ(λθ(f )) =

∫
Rd

f (ξ)ρ(ξ)λθ(ξ)dξ.

The operator Pρ is called the pseudo-differential operator of symbol ρ.
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The trace formula

• We replace Tϕ by another Fourier multiplier T
ϕ̃
whose symbol is smooth

on the whole Rd .

• We put

A =
1

2πi

∑
1≤k≤d

T|ξ|∂ξk ϕ̃
M∂kx . (14)

We are going to reduce the computation of Trω(|Cϕ,x |d) to that of

Trω(|A|d(1 + ∆)−
d
2 ).
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The trace formula

• Compute the symbol of C
ϕ̃,x

− AJ−1 is of order −2. We see that

MyCϕ̃,x
−MyAJ

−1 ∈ S d
2
,∞.

Then we have
|MyCϕ,x |d − |MyA|dJ−d ∈ S1.

• We have
Trω(|MyCϕ,x |d) = Trω(|MyA|dJ−d).

So we can apply the trace formula in [McDonald, Sukochev and Zanin,
Math. Ann. 2018] to deduce our trace formula.
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