Khintchine type inequalities and Fourier multipliers on HNN extensions

Runlian Xia

University of Glasgow

Analysis Seminar —IASM

3 April 2024

Fourier Multipliers

Definition

Let $f : \mathbb{R} \to \mathbb{C}$ be a sufficiently regular function and let \hat{f} be its Fourier transform. Let $m : \mathbb{R} \to \mathbb{C}$ be a bounded measurable function, which we will call the **symbol**. Then the **Fourier multiplier** with symbol m is an operator T_m defined by

$$\widehat{T_mf}(\xi)=m(\xi)\widehat{f}(\xi).$$

Boundedness Problem

When is T_m well-defined and bounded on $L_p(\mathbb{R})$ $(p \neq 2 \text{ and } 1 ?$

The Hilbert transform on $\ensuremath{\mathbb{R}}$

Definition

For
$$f \in C_c^{\infty}(\mathbb{R})$$
,
 $(Hf)(x) = \text{p.v.} \int_{\mathbb{R}} f(y) \frac{1}{x-y} dy.$ As a Fourier multiplier:
 $\widehat{(Hf)}(\xi) = -i \operatorname{sgn}(\xi) \cdot \widehat{f}(\xi), \quad \xi \in \mathbb{R}.$

Question

Is *H* well-defined and bounded on $L_p(\mathbb{R})$ $(p \neq 2)$?

Motivation I:

$$C^{\infty}(\mathbf{R}) \xrightarrow{P_r} \mathcal{H}(\mathbf{H}^2)$$

$$\downarrow H \qquad \qquad \downarrow J$$

$$C^{\infty}(\mathbf{R}) \xleftarrow{P_r} \mathcal{H}(\mathbf{H}^2)$$

u + iJ(u) is holomorphic.

Motivation II:

$$\lim_{N\to\infty}\sum_{k=-N}^{N}\widehat{f}(k)e^{2\pi ik\theta}\longrightarrow f$$

in L_p -norm, for any $f \in L_p(\mathbb{T})$?

Mikhlin Multipliers

Theorem (Mikhlin '1956)

Let m be a smooth function on $\mathbb{R}^d \setminus \{0\}$ such that

$$\sup_{0 \le |j| \le \frac{d}{2} + 1} |\xi^j \nabla^j m(\xi)| \le C \quad \text{ for any } x \in \mathbb{R}^d \setminus \{0\}.$$

The Fourier multiplier $T_m : e^{2\pi i\xi x} \mapsto m(\xi)e^{2\pi i\xi x}$ extends to a bounded map on $L_p(\mathbb{R}^d)$ for any 1 .

Theorem (Discrete case)

Let m be a function on \mathbb{Z} such that

$$\sup_{k\in\mathbb{Z}}\{|m(k)|,|k(m(k)-m(k-1))|\}\leq C.$$

The Fourier multiplier $T_m : z^k \mapsto m(k)z^k$ extends to a bounded map on $L_p(\mathbb{T})$ for any 1 .

Non-Abelian groups

G: countable discrete group. Left regular representation

$$\lambda: \mathrm{G} \to \mathcal{U}(\ell_2(\mathrm{G})) \text{ with } \lambda_g \varphi(h) = \varphi(g^{-1}h). \mathcal{L}(\mathrm{G}) = \{\lambda_g\}_{g \in \mathrm{G}}^{''}.$$

Non-abelian Fourier transform

For
$$\widehat{f} \in \ell_1(G), f := \sum_G \widehat{f}(g) \lambda_g$$
 is a bounded linear map $\ell_2(G) \to \ell_2(G)$.

Non-commutative L_p -spaces

$$\mathcal{L}_p(\widehat{\mathrm{G}}) := \mathcal{L}_p(\mathcal{L}(\mathrm{G}), \tau) = ``\{f : \tau(|f|^p)^{\frac{1}{p}} < \infty\}'' \text{ with } \tau(f) = \widehat{f}(e).$$

Fourier multipliers on $\mathcal{L}(G)$:

$$m \in \ell_{\infty}(\mathbf{G}) \rightsquigarrow T_m f := \sum_{\mathbf{G}} m(g) \widehat{f}(g) \lambda_g.$$

Fourier multipliers on groups

Question

Problem: What kind of conditions to put on *m* to make $||T_m : L_p(\widehat{G}) \to L_p(\widehat{G})|| < \infty$?

Idea 1 : Using a cocycle. An affine representation of *G* is an orthogonal representation $\alpha : G \to O(H)$ over a real Hilbert space *H* together with a mapping $b : G \to H$ satisfying the cocycle law

 $b(gh) = \alpha_g(b(h)) + b(g)$

 G unimodular locally compact group. b injective finite-dimensional. [Junge/Mei/Parcet '14 '18 + González Pérez/Junge/Parcet '17] SL₂(ℝ) no fin-dim orthogonal actions / SL_n(ℝ)(n ≥ 3) has (T): Bad cohomology. **Idea 2:** If G is a Lie group, one can use the natural differential structure on G to be formulate the condition on m.

Theorem (Parcet-Ricard-de la Salle '18)

Assume that $m \in C^{[\frac{n^2}{2}]+1}(\mathrm{SL}_n(\mathbb{R}) \setminus \{e\}) (n \geq 3)$ satisfies

$$|L(g)^{|\gamma|}|d_g^{\gamma}m(g)| \leq C \quad ext{ for all } |\gamma| \leq [rac{n^2}{2}] + 1.$$

Then T_m is bounded on $L_p(\widehat{\mathrm{SL}}_n(\mathbb{R}))$ for any 1 .

Remark

 d_g is the Lie derivative. The length function L(g) is locally Euclidean and asymptotically exponential...

Idea 3: If ${\rm G}$ is a free product, study multipliers on ${\rm G}$ coming from free product of that on building blocks.

Consider $G = \mathbb{F}_{\infty}$, a free group with infinite generators g_1, g_2, \cdots . For $g \in \mathbb{F}_{\infty}$, g can be written as a reduced word

$$g = g_{i_1}^{k_1} g_{i_2}^{k_2} \cdots g_{i_n}^{k_n} \quad \text{with } i_1 \neq i_2 \neq \cdots \neq i_n, k_j \in \mathbb{Z}/\{0\}.$$

Given a complex function m on \mathbb{Z} , we define $T_{\tilde{m}}: \mathbb{C}[\mathbb{F}_{\infty}] \to \mathbb{C}[\mathbb{F}_{\infty}]$ by

$$T_{\tilde{m}}(\lambda(g)) = m(k_1)\lambda(g).$$

If T_m is bounded on $L_p(\mathbb{T})$, is $T_{\tilde{m}}$ bounded on $L_p(\mathbb{F}_{\infty})$?

- Mei/Ricard '17+Mei/Ricard/Xu '21: Hilbert transforms and Fourier multipliers on free products
- Gonzalez/Parcet/X. : '22 Hilbert transforms on graph of groups.

HNN extensions

Base group: Γ Subgroup of Γ : *A* Isomorphism of *A*: $\theta : A \to B \subset \Gamma$

Construction of HNN extension of Γ :

Let Γ be a group, and let $\theta : A \to B \subset \Gamma$ be an isomorphism between two subgroups of Γ . Let t be a symbol not in Γ . The HNN extension of Γ (relative to A, B and θ) is

$$\Gamma *_{\theta} = \{\Gamma, t : tat^{-1} = \theta(a), \forall a \in A\}.$$

The new generator *t* is called the **stable letter**.

Remark

• If $A = \Gamma$, and θ is an automorphism of Γ , then $\Gamma *_{\theta} = \langle t \rangle \ltimes_{\theta} \Gamma$.

Γ*_θ = ⟨t⟩ κ H, where H is the normal subgroup generated by conjugates Γ_n = tⁿΓt⁻ⁿ, n ∈ Z.

Understanding HNN extensions and amalgamated free products from Bass-Serre theory

• Fundamental groups for graph of groups which look like

are HNN extensions of Γ .

- If there are multiple loops connecting to Γ, we call the corresponding fundamental group a **multiple HNN extension**.
- Fundamental groups for graph of groups which look like

are amalgamated free products of Γ_1 and Γ_2 .

• Fundamental groups of graphs of groups can always be written as iterated amalgamated free products or multiple HNN-extensions of amalgamated free products.

Normal forms of HNN extensions

Normal forms of group elements in HNN extensions:

$$g = g_0 t^{\epsilon_1} g_1 t^{\epsilon_2} \cdots g_{n-1} t^{\epsilon_n} g_n, \ g_i \in \Gamma, \epsilon_i = \pm 1.$$

The above normal form is unique if

•
$$g = e$$
 iff $n = 0, g_0 = e$.

- if $\epsilon_i = -1$, g_i is a representation of a coset of A in G.
- if $\epsilon_i = 1$, g_i is a representation of a coset of B in G.
- no subsequence $t^{\epsilon}et^{-\epsilon}$.

Theorem (Connections to groups acting on trees)

Let G be a group acting on a tree X without inversion. G can be identified with the fundamental group of a certain graph of groups (G, Y), where $Y = G \setminus X$, i.e.

$$\mathbf{G}=\pi_1(G,Y,x_0),$$

where x_0 is a vertex of Y.

Examples– $\mathbb{F}_2 \ltimes \mathbb{Z}_2$

• $\mathbb{F}_2 \ltimes \mathbb{Z}_2$ is the fundamental group of

 $\mathbb{F}_2 \ltimes \mathbb{Z}_2$ is a multiple HNN-extension based on $\Gamma = \mathbb{Z}_2$ associated with $A = A' = \mathbb{Z}_2$.

• $\mathbb{F}_2 \ltimes \mathbb{Z}_2$ acts on the Cayley tree of \mathbb{F}_2 by means of the quotient map.

Examples–Baumslag-Solitar groups

The group presentation of B(m, n) is given by

$$\langle r,t:tr^mt^{-1}=r^n\rangle.$$

B(m, n) is an HNN-extension based on $\Gamma = \mathbb{Z} = \langle r \rangle$ associated with $A = m\mathbb{Z}$ and $B = n\mathbb{Z}.$

• B(m, n) is the fundamental group of

• B(m, n) acts on its Bass-Serre tree:

Lyndon's length function

A real-valued function on G is called a **Lyndon's length function** if it satisfies the following three axioms:

•
$$L(e) = 0.$$

•
$$L(g) = L(g^{-1})$$
 for any $g \in G$.

• If $\rho(g,h) = \frac{1}{2}(L(g) + L(h) - L(gh^{-1}))$, then for all $g, h, \omega \in G$, we have

$$\rho(g,h) \geq \min(\rho(g,\omega),\rho(\omega,h)).$$

Theorem (Bozejko '89)

Every Lyndon's length function on a discrete group is negative-definite and for each $\lambda \ge 0$ the function $\gamma_{\lambda}(x) = e^{-\lambda L(x)}$ is positive-definite.

Length functions on groups acting on $\ensuremath{\mathbb{R}}\xspace$ -trees

G: a group acting on an \mathbb{R} -tree (X, d) by isometries. A **based length function** L_{x_0} associated to a base point $x_0 \in X$ is defined by

$$L_{x_0}(g)=d(g\cdot x_0,x_0).$$

Theorem (Chiswell '76)

 L_{x_0} defined above gives a Lyndon's length function on G. Conversely, given a Lyndon's length function L on G, there exists an \mathbb{R} -tree on which G acts and such that $L = L_{x_0}$ for some point $x_0 \in X$.

Remark

The function $\rho(g, h)$ corresponds to the largest common path of the path from x_0 to $g^{-1}x_0$ and that from x_0 to $h^{-1}x_0$.

Examples

• $G = \mathbb{F}_n$, the word length and block length are both Lyndon's Length functions.

Figure: Bass-Serre tree of \mathbb{F}_2 , pink $\mathbb{Z} = \langle a \rangle$ and blue $\mathbb{Z} = \langle b \rangle$

Examples

• $G = \Gamma *_{\theta}$ and consider its action on its Bass-Serre tree X.

For any $x_0 \in X$, the based length function L_{x_0} is given by

$$L_{x_0}(g)=n,$$

for any $g = g_0 t^{\epsilon_1} g_1 t^{\epsilon_2} \cdots g_{n-1} t^{\epsilon_n} g_n, \ g_i \in \Gamma, \epsilon_i = \pm 1.$

In other words, *L* counts the number of loops of *g* goes through, as an element in fundamental group of the loop of group Γ .

Runlian Xia

Khintchine type inequalities for free groups/amalgamated free products

• Haagerup's inequality ('79): Let W_d be the subset of \mathbb{F}_n with word length d.

$$\|\sum_{w\in W_d} x_w\lambda(w)\|_{\mathcal{C}^*_r(\mathbb{F}_n)} pprox (\sum_{w\in W_d} |x_w|^2)^{rac{1}{2}}, x_w\in \mathbb{C}.$$

• Voiculescu ('98), Junge ('05): Let w_1 be the subset of $\Gamma = \Gamma_1 *_A \Gamma_2 *_A \cdots *_A \Gamma_n$ with block length 1. Let $x = \sum_{w \in w_1} x_w \lambda(w)$ and $L_i x$ be the part of x which is in $C_r^*(\Gamma_i)$.

$$\|x\|_{C^*_r(\Gamma)} \approx \max_i \|L_i(x)\|_{C^*_r(\Gamma_i)} + \|E_A(x^*x)\|^{\frac{1}{2}} + \|E_A(xx^*)\|^{\frac{1}{2}}.$$

• **Ricard-Xu** ('06): The corresponding equivalence for w_d ($d \in \mathbb{N}$) in Γ .

Khintchine type inequalities on (multiple) HNN extensions

Theorem (X.)

Let $G = \Gamma *_{\theta}$ be an (multiple) HNN extension of a discrete group Γ . Let $W_1 = \{g : L(g) = 1\}$, $x = \sum_{w \in W_1} x_w \lambda(w)$, $L_i^+ x = \sum_{w \in \Gamma_{i_i} \Gamma} x_w \lambda(w)$ and $L_i^- x = \sum_{w \in \Gamma_{t_i}^{-1} \Gamma} x_w \lambda(w)$. Then we have, for any $x \in W_1$,

$$\|x\|_{\mathcal{L}(\Gamma)} \approx \max_{i} \left(\|L_{i}^{+}(x)\|_{\mathcal{L}(\Gamma)}, \|L_{i}^{-}(x)\|_{\mathcal{L}(\Gamma)} \right) + \|E_{\Gamma}(x^{*}x)\|^{\frac{1}{2}} + \|E_{\Gamma}(xx^{*})\|^{\frac{1}{2}}.$$

A sketch of proof:

- It is easy to check " \gtrsim ".
- To prove " \lesssim ", the main idea is the decomposition

$$x = \sum_{i} L_{i}^{+} x + \sum_{i} L_{i}^{-} x = \sum_{i} (P_{i}^{+} + (1 - P_{i}^{+}))L_{i}^{+} x + \sum_{i} (P_{i}^{-} + (1 - P_{i}^{-}))L_{i}^{-} x,$$

where P_i^+ and P_i^- are the projections from $L_2(\Gamma)$ to the subspaces $\overline{\text{span}}\{\lambda(g) : g \in \Gamma t_i \Gamma\}$ and $\overline{\text{span}}\{\lambda(g) : g \in \Gamma t_i^{-1}\Gamma\}$ respectively.

Remark

The constants in the equivalence are independent of the number of stable letters.

$$\begin{split} \|\sum_{i} (P_{i} + (1 - P_{i}))L_{i}x\| \\ &\leq \|\sum_{i} P_{i}L_{i}x\| + \|\sum_{i} (1 - P_{i})L_{i}x\| \\ &= \|\sum_{i} L_{i}x^{*}P_{i}L_{i}x\|^{\frac{1}{2}} + \|\sum_{i,j} (1 - P_{i})L_{i}xL_{j}x^{*}(1 - P_{j})\|^{\frac{1}{2}} \\ &\leq \|\sum_{i} L_{i}x^{*}L_{i}x\|^{\frac{1}{2}} + \|\sum_{i} E_{\Gamma}(L_{i}xL_{i}x^{*})(1 - P_{j})\|^{\frac{1}{2}} \\ &\leq \|\sum_{i} L_{i}x^{*}L_{i}x\|^{\frac{1}{2}} + \|\sum_{i} E_{\Gamma}(L_{i}xL_{i}x^{*})\|^{\frac{1}{2}} \\ &= \|\sum_{i} L_{i}x^{*}L_{i}x(\sum_{i} P_{i}^{\pm} + Q)\|^{\frac{1}{2}} + \|\sum_{i} E_{\Gamma}(L_{i}xL_{i}x^{*})\|^{\frac{1}{2}} \\ &\cdots \end{split}$$

Proposition (González Pérez-Parcet-X. '22)

Let $T_m: L_2(\widehat{\mathrm{G}}) \to L_2(\widehat{\mathrm{G}})$ be bounded. If

$$(m(gh) - m(g))(\overline{m(g^{-1})} - \overline{m(h)}) = 0, \forall g \in G - \Gamma, \forall h \in G$$

and *m* is left Γ -invariant relative to a multiplicative character \mathcal{X} on Γ ($m(kg) = \mathcal{X}(k)m(g), \forall k \in \Gamma, g \in G$), then $||T_m : L_p(\widehat{G}) \to L_p(\widehat{G})|| \leq p^{\beta}$, $\beta = \log_2(1 + \sqrt{2})$ for any $2 \leq p < \infty$.

Geometric Model

Let G be a group acting on an \mathbb{R} tree X by homomorphisms. Choose a vertex x_0 in X and write $X \setminus \{x_0\} = \bigsqcup_i X_i$. For every connected component X_i , we choose a constant $C_i \in \mathbb{C}$ such that $\sup_i C_i < \infty$. Define a bounded function on X by

$$\widetilde{m}|_{X_i} \equiv C_i$$
, and $\widetilde{m}(x_0) = 0$.

Then the function \widetilde{m} induces a function on G by

$$m(g) = \widetilde{m}(g \cdot x_0)$$
 for any $g \in G$.

Let G be an HNN-extension of Γ . Consider its action on its Bass-Serre tree, if we choose x_0 to be the vertex labelled by Γ , the number of connected components of $X \setminus \{x_0\}$ is equal to |G/A| + |G/B|.

Corollary

Let Γ be a discrete abelian group and G be an HNN extension of Γ . For $g = g_0 t^{\epsilon_1} g_1 t^{\epsilon_2} \cdots g_{n-1} t^{\epsilon_n} g_n$, $g_i \in \Gamma, \epsilon_i = \pm 1$, define

$$\chi(g) = \begin{cases} \chi_1(P_1(g_0)), & \text{if } e_1 = 1, \\ \chi_2(P_2(g_0)), & \text{if } e_1 = -1, \end{cases}$$

where P_1 , P_2 are the canonical projections from G to G/A and to G/B, and χ_1 and χ_2 are two characters on G/A and G/B respectively. T_{χ} extends to a bounded Fourier multiplier on $L_p(\hat{G})$ for any 1 Given a A, B-invariant function m on Γ , we define a Fourier multiplier on $\mathbb{C}[G]$ by

$$M_m(\lambda(g)) = m(g_0)\lambda(g),$$

for $g = g_0 t^{\epsilon_1} g_1 t^{\epsilon_2} \cdots g_{n-1} t^{\epsilon_n} g_n$, $g_i \in \Gamma, \epsilon_i = \pm 1$.

Corollary

Let Γ be a discrete abelian group and G be an HNN extension of Γ . If T_m is a bounded A, B- invariant Fourier multiplier on $L_p(\widehat{\Gamma})$, then M_m extends to a bounded Fourier multiplier on $L_p(\widehat{G})$ for any 1 .

Question: What if Γ is not abelian?

$$\begin{array}{c|c} \Gamma \text{ abelian} & \Gamma \text{ non-abelian} \\ T_{\chi} : \mathbb{C}(\Gamma \ast_{\theta}) & \to & \mathbb{C}(\Gamma \ast_{\theta}) \\ \lambda(g) & \longmapsto & \chi_{1}(P_{1}(g_{0}))\lambda(g) \end{array} & \begin{array}{c} \Gamma \text{ non-abelian} \\ \alpha : \mathbb{C}(\Gamma \ast_{\theta}) & \to & \mathbb{C}(\Gamma \times \Gamma \ast_{\theta}) \\ \lambda(g) & \longmapsto & \lambda_{\Gamma}(P_{1}(g_{0})) \otimes \lambda(g) \end{array}$$

Lemma

For
$$1 , we have $\|\alpha(x)\|_{L_p(\mathcal{L}(\Gamma) \otimes \mathcal{L}(\Gamma * \theta))} \approx \|x\|_{L_p(\mathcal{L}(\Gamma * \theta))}$.$$

Idea of the proof:

Write $\Gamma \times \Gamma *_{\theta} = (\Gamma \times \Gamma) *_{\tilde{\theta}} + \text{length reduction} + \text{Khintchine inequality for}$ HNN extensions (length 1).

Theorem

Assume that $\Gamma_{*\theta}$ has QWEP. If the Fourier multiplier T_m is A and B-biinvariant and completely bounded on $L_p(\widehat{\Gamma})$, then M_m extends to a completely bounded Fourier multiplier on $L_p(\widehat{\Gamma_{*\theta}})$ for any 1 .

Keys: 1. $\Gamma *_{\theta}$ has QWEP, $T_m \otimes \mathrm{Id}_{L_{\rho}(\widehat{\Gamma} *_{\theta})}$ is bounded on $L_{\rho}(\mathcal{L}(\Gamma) \otimes \mathcal{L}(\Gamma *_{\theta}))$. 2. $(T_m \otimes \mathrm{Id})[\alpha(x)] = \alpha[M_m(x)]$. Thank you!