A dual and a conjugate system for q-Gaussians

Roland Speicher

Saarland University
Saarbrücken, Germany
joint work with Akihiro Miyagawa
arXiv:2203.00547

A dual and a conjugate system for q-Gaussians for all q

Roland Speicher

Saarland University
Saarbrücken, Germany
joint work with Akihiro Miyagawa
arXiv:2203.00547

The q-relations

Consider operators a_{i} and their adjoints a_{i}^{*} for $i \in I$; for $I=[d]$ or $I=\mathbb{N}$

The q-relations

Consider operators a_{i} and their adjoints a_{i}^{*} for $i \in I$; for $I=[d]$ or $I=\mathbb{N}$
Bosonic relations

$$
a_{i} a_{j}^{*}-a_{j}^{*} a_{i}=\delta_{i j} 1 \quad a_{i} a_{j}=a_{j} a_{i}
$$

The q-relations

Consider operators a_{i} and their adjoints a_{i}^{*} for $i \in I$; for $I=[d]$ or $I=\mathbb{N}$

Bosonic relations

$$
a_{i} a_{j}^{*}-a_{j}^{*} a_{i}=\delta_{i j} 1 \quad a_{i} a_{j}=a_{j} a_{i}
$$

Fermionic relations

$$
a_{i} a_{j}^{*}+a_{j}^{*} a_{i}=\delta_{i j} 1 \quad a_{i} a_{j}=-a_{j} a_{i}
$$

The q-relations

Consider operators a_{i} and their adjoints a_{i}^{*} for $i \in I$; for $I=[d]$ or $I=\mathbb{N}$

Bosonic relations

$$
a_{i} a_{j}^{*}-a_{j}^{*} a_{i}=\delta_{i j} 1 \quad a_{i} a_{j}=a_{j} a_{i}
$$

Fermionic relations

$$
a_{i} a_{j}^{*}+a_{j}^{*} a_{i}=\delta_{i j} 1 \quad a_{i} a_{j}=-a_{j} a_{i}
$$

Cuntz relations

$$
a_{i} a_{j}^{*}=\delta_{i j} 1
$$

The q-relations

Consider operators a_{i} and their adjoints a_{i}^{*} for $i \in I$; for $I=[d]$ or $I=\mathbb{N}$

Bosonic relations

$$
a_{i} a_{j}^{*}-a_{j}^{*} a_{i}=\delta_{i j} 1
$$

Fermionic relations

$$
a_{i} a_{j}^{*}+a_{j}^{*} a_{i}=\delta_{i j} 1
$$

Cuntz relations

$$
a_{i} a_{j}^{*}=\delta_{i j} 1
$$

The q-relations

Consider operators a_{i} and their adjoints a_{i}^{*} for $i \in I$; for $I=[d]$ or $I=\mathbb{N}$
Bosonic relations $(q=1)$

$$
a_{i} a_{j}^{*}-a_{j}^{*} a_{i}=\delta_{i j} 1
$$

Fermionic relations ($q=-1$)

$$
a_{i} a_{j}^{*}+a_{j}^{*} a_{i}=\delta_{i j} 1
$$

Cuntz relations $(q=0)$

$$
a_{i} a_{j}^{*}=\delta_{i j} 1
$$

q-relations for $-1 \leq q \leq 1$

$$
a_{i} a_{j}^{*}-q a_{j}^{*} a_{i}=\delta_{i j} 1
$$

Bozejko, Speicher 1991

- there exists a realization of the q-relations on a Hilbert space for all $-1 \leq q \leq 1$, such that a_{i} is adjoint to a_{i}^{*}
- this is a Fock representation, i.e., there is vacuum vector Ω such that

$$
a_{i} \Omega=0 \quad \text { for all } i
$$

- if $q \neq 1$, then the a_{i} are bounded operators

Bozejko, Speicher 1991

- there exists a realization of the q-relations on a Hilbert space for all $-1 \leq q \leq 1$, such that a_{i} is adjoint to a_{i}^{*}
- this is a Fock representation, i.e., there is vacuum vector Ω such that

$$
a_{i} \Omega=0 \quad \text { for all } i
$$

- if $q \neq 1$, then the a_{i} are bounded operators

Bozejko, Kümmerer, Speicher 1997

- operatoralgebraic and probabilistic properties of the q-Gaussian operators and algebras
- q-Gaussian functor $\mathcal{H} \mapsto \Gamma_{q}(\mathcal{H})$

The q C^{*}-algebras and von Neumann algebras

- $C^{*}\left(a_{i}, a_{i}^{*} \mid i \in I\right)$
- $C^{*}\left(a_{i}+a_{i}^{*} \mid i \in I\right)$
- $\operatorname{vN}\left(a_{i}, a_{i}^{*} \mid i \in I\right)$
- $\operatorname{vN}\left(a_{i}+a_{i}^{*} \mid i \in I\right)$

The q C^{*}-algebras and von Neumann algebras

- $C^{*}\left(a_{i}, a_{i}^{*} \mid i \in I\right)$
- $C^{*}\left(a_{i}+a_{i}^{*} \mid i \in I\right)$
- $\mathrm{vN}\left(a_{i}, a_{i}^{*} \mid i \in I\right)$ isomorphic to $B(\mathcal{H})$
- $\mathrm{vN}\left(a_{i}+a_{i}^{*} \mid i \in I\right)$

The q C^{*}-algebras and von Neumann algebras

- $C^{*}\left(a_{i}, a_{i}^{*} \mid i \in I\right)$
- for $q=0$: (extension of) Cuntz algebra O_{d}
- $C^{*}\left(a_{i}+a_{i}^{*} \mid i \in I\right)$
- for $q=0$: the free Gaussian functor of Voiculescu
- $\mathrm{vN}\left(a_{i}, a_{i}^{*} \mid i \in I\right)$ isomorphic to $B(\mathcal{H})$
- $\mathrm{vN}\left(a_{i}+a_{i}^{*} \mid i \in I\right)$
- for $q=0$: the free group factor $L\left(\mathbb{F}_{d}\right)$

The q C^{*}-algebras and von Neumann algebras

- $C^{*}\left(a_{i}, a_{i}^{*} \mid i \in I\right) \quad(I=[d]$, where $d<\infty)$
- for $q=0$: (extension of) Cuntz algebra O_{d}
- for $|q|<\sqrt{2}-1$ isomorphic to $q=0$ (Jorgensen,Schmitt,Werner 1995)
- for $|q|<0.44$ isomorphic to $q=0$ (Dykema, Nica 1993)
- $C^{*}\left(a_{i}+a_{i}^{*} \mid i \in I\right)$
- for $q=0$: the free Gaussian functor of Voiculescu
- $\operatorname{vN}\left(a_{i}, a_{i}^{*} \mid i \in I\right)$ isomorphic to $B(\mathcal{H})$
- $\operatorname{vN}\left(a_{i}+a_{i}^{*} \mid i \in I\right)$
- for $q=0$: the free group factor $L\left(\mathbb{F}_{d}\right)$

The q C^{*}-algebras and von Neumann algebras

- $C^{*}\left(a_{i}, a_{i}^{*} \mid i \in I\right) \quad(I=[d]$, where $d<\infty)$
- for $q=0$: (extension of) Cuntz algebra O_{d}
- for $|q|<\sqrt{2}-1$ isomorphic to $q=0$ (Jorgensen,Schmitt,Werner 1995)
- for $|q|<0.44$ isomorphic to $q=0$ (Dykema, Nica 1993)
- $C^{*}\left(a_{i}+a_{i}^{*} \mid i \in I\right)$
- for $q=0$: the free Gaussian functor of Voiculescu
- for q sufficiently small (depending on $d, d<\infty$): isomorphic to $q=0$ (Guionnet, Shlyakhtenko 2014)
- $\mathrm{vN}\left(a_{i}, a_{i}^{*} \mid i \in I\right)$ isomorphic to $B(\mathcal{H})$
- $\operatorname{vN}\left(a_{i}+a_{i}^{*} \mid i \in I\right)$
- for $q=0$: the free group factor $L\left(\mathbb{F}_{d}\right)$
- for q sufficiently small (depending on $d, d<\infty$): isomorphic to $q=0$ (Guionnet, Shlyakhtenko 2014)

The q C^{*}-algebras and von Neumann algebras

- $C^{*}\left(a_{i}, a_{i}^{*} \mid i \in I\right) \quad(I=[d]$, where $d<\infty)$
- for $q=0$: (extension of) Cuntz algebra O_{d}
- for $|q|<\sqrt{2}-1$ isomorphic to $q=0$ (Jorgensen,Schmitt,Werner 1995)
- for $|q|<0.44$ isomorphic to $q=0$ (Dykema, Nica 1993)
- for all $|q|<1$ isomorphic to $q=0$ (Kuzmin, March 2022)
- $C^{*}\left(a_{i}+a_{i}^{*} \mid i \in I\right)$
- for $q=0$: the free Gaussian functor of Voiculescu
- for q sufficiently small (depending on $d, d<\infty$): isomorphic to $q=0$ (Guionnet, Shlyakhtenko 2014)
- for all $-1<q<1, q \neq 0, d=\infty$: not isomorphic to $q=0$ (Borst, Caspers, Klisse, Wasilewski, Feb 2022)
- $\mathrm{vN}\left(a_{i}, a_{i}^{*} \mid i \in I\right)$ isomorphic to $B(\mathcal{H})$
- $\mathrm{vN}\left(a_{i}+a_{i}^{*} \mid i \in I\right)$
- for $q=0$: the free group factor $L\left(\mathbb{F}_{d}\right)$
- for q sufficiently small (depending on $d, d<\infty$): isomorphic to $q=0$ (Guionnet, Shlyakhtenko 2014)

The q-Fock space

Fix $q \in[-1,1]$ and consider Hilbert space \mathcal{H}. The q-Fock space

$$
\mathcal{F}_{q}(\mathcal{H})=\bar{\bigoplus}_{n \geq 0} \mathcal{H}^{\otimes n}\langle\cdot \cdot\rangle_{q} \quad \quad\left(\mathcal{H}^{\otimes 0}=\mathbb{C} \Omega\right)
$$

is completion of algebraic Fock space with respect to inner product

$$
\left\langle f_{1} \otimes \cdots \otimes f_{n}, g_{1} \otimes \cdots \otimes g_{m}\right\rangle_{q}=\delta_{n m} \sum_{\sigma \in S_{n}} \prod_{r=1}^{n}\left\langle f_{r}, g_{\sigma(r)}\right\rangle q^{i(\sigma)}
$$

- $i(\sigma)=\#\{(k, l) \mid 1 \leq k<l \leq n ; \sigma(k)>\sigma(l)\}$ is number of inversions

The q-Fock space

Fix $q \in[-1,1]$ and consider Hilbert space \mathcal{H}. The q-Fock space

$$
\mathcal{F}_{q}(\mathcal{H})=\bar{\bigoplus}_{n \geq 0} \mathcal{H}^{\otimes n}\langle\cdot \cdot\rangle_{q} \quad \quad\left(\mathcal{H}^{\otimes 0}=\mathbb{C} \Omega\right)
$$

is completion of algebraic Fock space with respect to inner product

$$
\left\langle f_{1} \otimes \cdots \otimes f_{n}, g_{1} \otimes \cdots \otimes g_{m}\right\rangle_{q}=\delta_{n m} \sum_{\sigma \in S_{n}} \prod_{r=1}^{n}\left\langle f_{r}, g_{\sigma(r)}\right\rangle q^{i(\sigma)}
$$

- $i(\sigma)=\#\{(k, l) \mid 1 \leq k<l \leq n ; \sigma(k)>\sigma(l)\}$ is number of inversions
- inner product is positive definite, and has a kernel only for $q=1$ and $q=-1$ (Bozejko, Speicher 1991)
- for $q=1$ and $q=-1$ first divide out the kernel, thus leading to the symmetric and anti-symmetric Fock space, respectively

Creation and annihilation operators

- $a^{*}(f) \Omega=f \quad$ and $\quad a^{*}(f) f_{1} \otimes \cdots \otimes f_{n}=f \otimes f_{1} \otimes \cdots \otimes f_{n}$
- its adjoint is given by $a(f) \Omega=0$ and

$$
a(f) f_{1} \otimes \cdots \otimes f_{n}=\sum_{r=1}^{n} q^{r-1}\left\langle f, f_{r}\right\rangle f_{1} \otimes \cdots \otimes f_{r-1} \otimes f_{r+1} \otimes \cdots \otimes f_{n}
$$

Creation and annihilation operators

- $a^{*}(f) \Omega=f \quad$ and $\quad a^{*}(f) f_{1} \otimes \cdots \otimes f_{n}=f \otimes f_{1} \otimes \cdots \otimes f_{n}$
- its adjoint is given by $a(f) \Omega=0$ and

$$
a(f) f_{1} \otimes \cdots \otimes f_{n}=\sum_{r=1}^{n} q^{r-1}\left\langle f, f_{r}\right\rangle f_{1} \otimes \cdots \otimes f_{r-1} \otimes f_{r+1} \otimes \cdots \otimes f_{n}
$$

- those operators satisfy the q-commutation relations

$$
a(f) a^{*}(g)-q a^{*}(g) a(f)=\langle f, g\rangle \cdot 1 \quad(f, g \in \mathcal{H})
$$

Creation and annihilation operators

- $a^{*}(f) \Omega=f \quad$ and $\quad a^{*}(f) f_{1} \otimes \cdots \otimes f_{n}=f \otimes f_{1} \otimes \cdots \otimes f_{n}$
- its adjoint is given by $a(f) \Omega=0$ and

$$
a(f) f_{1} \otimes \cdots \otimes f_{n}=\sum_{r=1}^{n} q^{r-1}\left\langle f, f_{r}\right\rangle f_{1} \otimes \cdots \otimes f_{r-1} \otimes f_{r+1} \otimes \cdots \otimes f_{n}
$$

- those operators satisfy the q-commutation relations

$$
a(f) a^{*}(g)-q a^{*}(g) a(f)=\langle f, g\rangle \cdot 1 \quad(f, g \in \mathcal{H})
$$

- prominent special cases:
- $q=1$: CCR relations
- $q=0$: Cuntz relations
- $q=-1$: CAR relations
- with the exception of the case $q=1$, the operators $a^{*}(f)$ are bounded

q-Gaussian Distribution

- consider q-Gaussian operators

$$
X(f)=a(f)+a^{*}(f) \quad f \in \mathcal{H}_{\text {real }}
$$

- consider vacuum expectation state

$$
\tau(T)=\langle\Omega, T \Omega\rangle_{q}, \quad \text { for } \quad T \in \mathcal{B}\left(\mathcal{F}_{q}(\mathcal{H})\right)
$$

- multivariate q-Gaussian distribution is the non commutative distribution of a collection of q-Gaussians with respect to the vacuum expectation state τ

q-Gaussian Distribution

- consider q-Gaussian operators

$$
X(f)=a(f)+a^{*}(f) \quad f \in \mathcal{H}_{\text {real }}
$$

- consider vacuum expectation state

$$
\tau(T)=\langle\Omega, T \Omega\rangle_{q}, \quad \text { for } \quad T \in \mathcal{B}\left(\mathcal{F}_{q}(\mathcal{H})\right)
$$

- multivariate q-Gaussian distribution is the non commutative distribution of a collection of q-Gaussians with respect to the vacuum expectation state τ
- is given by q-deformed version of the Wick/Isserlis formula

$$
\tau\left(X\left(f_{1}\right) \cdots X\left(f_{n}\right)\right)=\sum_{\pi \in \mathcal{P}_{2}(k)} q^{c r(\pi)} \prod_{(l, r) \in \pi}\left\langle f_{l}, f_{r}\right\rangle
$$

where $\operatorname{cr}(\pi)$ denotes number of crossings of pairing π

Contribution of Pairing to Moment

 $\tau\left[X\left(f_{1}\right) X\left(f_{2}\right) X\left(f_{3}\right) X\left(f_{4}\right) X\left(f_{5}\right) X\left(f_{6}\right)\right]$
non-crossing

$$
\left\langle f_{1}, f_{4}\right\rangle \cdot\left\langle f_{2}, f_{3}\right\rangle \cdot\left\langle f_{5}, f_{6}\right\rangle
$$

Contribution of Pairing to Moment $\tau\left[X\left(f_{1}\right) X\left(f_{2}\right) X\left(f_{3}\right) X\left(f_{4}\right) X\left(f_{5}\right) X\left(f_{6}\right)\right]$

one crossing

$$
q \cdot\left\langle f_{1}, f_{3}\right\rangle \cdot\left\langle f_{2}, f_{4}\right\rangle \cdot\left\langle f_{5}, f_{6}\right\rangle
$$

Contribution of Pairing to Moment

 $\tau\left[X\left(f_{1}\right) X\left(f_{2}\right) X\left(f_{3}\right) X\left(f_{4}\right) X\left(f_{5}\right) X\left(f_{6}\right)\right]$three crossings

$$
q^{3} \cdot\left\langle f_{1}, f_{4}\right\rangle \cdot\left\langle f_{2}, f_{5}\right\rangle \cdot\left\langle f_{3}, f_{6}\right\rangle
$$

The q-Gaussian von Neumann algebras $\Gamma_{q}(\mathcal{H})$

q-Gaussian operators

$$
X(f):=a(f)+a^{*}(f)
$$

The q-Gaussian von Neumann algebras $\Gamma_{q}(\mathcal{H})$

q-Gaussian operators and q-Gaussian algebras

$$
X(f):=a(f)+a^{*}(f), \quad \Gamma_{q}\left(\mathcal{H}_{\text {real }}\right):=\mathrm{vN}\left(X(f) \mid f \in \mathcal{H}_{\text {real }}\right)
$$

The q-Gaussian von Neumann algebras $\Gamma_{q}(\mathcal{H})$

q-Gaussian operators and q-Gaussian algebras

$$
X(f):=a(f)+a^{*}(f), \quad \Gamma_{q}\left(\mathcal{H}_{\text {real }}\right):=\mathrm{vN}\left(X(f) \mid f \in \mathcal{H}_{\text {real }}\right)
$$

$\Gamma_{q}\left(\mathbb{R}^{d}\right)$ has the following properties:

- it is a non-injective, prime, strongly solid II_{1}-factor for all $-1<q<1$ (Ricard 2005, Nou 2004, Avsec 2011)

The q-Gaussian von Neumann algebras $\Gamma_{q}(\mathcal{H})$

q-Gaussian operators and q-Gaussian algebras

$$
X(f):=a(f)+a^{*}(f), \quad \Gamma_{q}\left(\mathcal{H}_{\text {real }}\right):=\mathrm{vN}\left(X(f) \mid f \in \mathcal{H}_{\text {real }}\right)
$$

$\Gamma_{q}\left(\mathbb{R}^{d}\right)$ has the following properties:

- it is a non-injective, prime, strongly solid II_{1}-factor for all $-1<q<1$ (Ricard 2005, Nou 2004, Avsec 2011)
- it is isomophic to $\Gamma_{0}\left(\mathbb{R}^{d}\right)$ for small q (Guionnet, Shlyakhtenko 2014)

The q-Gaussian von Neumann algebras $\Gamma_{q}(\mathcal{H})$

q-Gaussian operators and q-Gaussian algebras

$$
X(f):=a(f)+a^{*}(f), \quad \Gamma_{q}\left(\mathcal{H}_{\text {real }}\right):=\mathrm{vN}\left(X(f) \mid f \in \mathcal{H}_{\text {real }}\right)
$$

$\Gamma_{q}\left(\mathbb{R}^{d}\right)$ has the following properties:

- it is a non-injective, prime, strongly solid II_{1}-factor for all $-1<q<1$ (Ricard 2005, Nou 2004, Avsec 2011)
- it is isomophic to $\Gamma_{0}\left(\mathbb{R}^{d}\right)$ for small q (Guionnet, Shlyakhtenko 2014)
- we have a couple of distributional properties of the generators X_{1}, \ldots, X_{d} for small q (Dabrowski 2014)

The q-Gaussian von Neumann algebras $\Gamma_{q}(\mathcal{H})$

q-Gaussian operators and q-Gaussian algebras

$$
X(f):=a(f)+a^{*}(f), \quad \Gamma_{q}\left(\mathcal{H}_{\text {real }}\right):=\mathrm{vN}\left(X(f) \mid f \in \mathcal{H}_{\text {real }}\right)
$$

$\Gamma_{q}\left(\mathbb{R}^{d}\right)$ has the following properties:

- it is a non-injective, prime, strongly solid II_{1}-factor for all $-1<q<1$ (Ricard 2005, Nou 2004, Avsec 2011)
- it is isomophic to $\Gamma_{0}\left(\mathbb{R}^{d}\right)$ for small q (Guionnet, Shlyakhtenko 2014)
- we have a couple of distributional properties of the generators X_{1}, \ldots, X_{d} for small q (Dabrowski 2014)
- combinatorial description is nice and concrete
- analytic description is more abstract and mostly perturbative around the case $q=0$

Regularity properties of generators

Consider X_{1}, \ldots, X_{d} selfadjoint operators in a tracial vN-algebra (M, τ)
Conjugate system: $\xi_{1}, \ldots, \xi_{d} \in L^{2}\left(X_{1}, \ldots, X_{d}\right)$

$$
\tau\left(\xi_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right)=\tau \otimes \tau\left[\partial_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right], \quad \text { i.e. } \quad \xi_{i}=\partial_{i}^{*} \Omega \otimes \Omega
$$

Regularity properties of generators

Consider X_{1}, \ldots, X_{d} selfadjoint operators in a tracial vN-algebra (M, τ)
Conjugate system: $\xi_{1}, \ldots, \xi_{d} \in L^{2}\left(X_{1}, \ldots, X_{d}\right)$

$$
\tau\left(\xi_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right)=\tau \otimes \tau\left[\partial_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right], \quad \text { i.e. } \quad \xi_{i}=\partial_{i}^{*} \Omega \otimes \Omega
$$

ξ_{1}, \ldots, ξ_{d} are Lipschitz conguate if

- $\xi_{i} \in \operatorname{dom}\left(\partial_{j}\right)$
- $\partial_{j} \xi_{i} \in W^{*}(X) \otimes W^{*}(X)$

Regularity properties of generators

Consider X_{1}, \ldots, X_{d} selfadjoint operators in a tracial vN-algebra (M, τ)
Conjugate system: $\xi_{1}, \ldots, \xi_{d} \in L^{2}\left(X_{1}, \ldots, X_{d}\right)$

$$
\tau\left(\xi_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right)=\tau \otimes \tau\left[\partial_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right], \quad \text { i.e. } \quad \xi_{i}=\partial_{i}^{*} \Omega \otimes \Omega
$$

ξ_{1}, \ldots, ξ_{d} are Lipschitz conguate if

- $\xi_{i} \in \operatorname{dom}\left(\partial_{j}\right)$
- $\partial_{j} \xi_{i} \in W^{*}(X) \otimes W^{*}(X)$

Normalized dual system: D_{1}, \ldots, D_{d}

- unbounded operators on $L^{2}(X, \tau)$ with $\mathbb{C}\langle X\rangle \subset$ domain
- $D_{i} \Omega=0,1 \in \operatorname{dom}\left(D_{i}^{*}\right)$
- $\left[D_{i}, X_{j}\right]=\delta_{i j} P_{\Omega}$

Regularity properties of generators

Consider X_{1}, \ldots, X_{d} selfadjoint operators in a tracial vN-algebra (M, τ)
Conjugate system: $\xi_{1}, \ldots, \xi_{d} \in L^{2}\left(X_{1}, \ldots, X_{d}\right)$

$$
\tau\left(\xi_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right)=\tau \otimes \tau\left[\partial_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right], \quad \text { i.e. } \quad \xi_{i}=\partial_{i}^{*} \Omega \otimes \Omega
$$

Normalized dual system: D_{1}, \ldots, D_{d}

- unbounded operators on $L^{2}(X, \tau)$ with $\mathbb{C}\langle X\rangle \subset$ domain
- $D_{i} \Omega=0,1 \in \operatorname{dom}\left(D_{i}^{*}\right)$
- $\left[D_{i}, X_{j}\right]=\delta_{i j} P_{\Omega}$

Regularity properties of generators

Consider X_{1}, \ldots, X_{d} selfadjoint operators in a tracial vN-algebra (M, τ)
Conjugate system: $\xi_{1}, \ldots, \xi_{d} \in L^{2}\left(X_{1}, \ldots, X_{d}\right)$

$$
\tau\left(\xi_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right)=\tau \otimes \tau\left[\partial_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right], \quad \text { i.e. } \quad \xi_{i}=\partial_{i}^{*} \Omega \otimes \Omega
$$

Normalized dual system: D_{1}, \ldots, D_{d}

- unbounded operators on $L^{2}(X, \tau)$ with $\mathbb{C}\langle X\rangle \subset$ domain
- $D_{i} \Omega=0,1 \in \operatorname{dom}\left(D_{i}^{*}\right)$
- $\left[D_{i}, X_{j}\right]=\delta_{i j} P_{\Omega}$

Theorem

If $\left(D_{1}, \ldots, D_{d}\right)$ is a normalized dual system, then a conjugate system is given by

$$
\partial_{i}^{*} \Omega \otimes \Omega=\xi_{i}=D_{i}^{*} \Omega
$$

Regularity properties of generators

Consider X_{1}, \ldots, X_{d} selfadjoint operators in a tracial vN-algebra (M, τ)
Conjugate system: $\xi_{1}, \ldots, \xi_{d} \in L^{2}\left(X_{1}, \ldots, X_{d}\right)$

$$
\tau\left(\xi_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right)=\tau \otimes \tau\left[\partial_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right], \quad \text { i.e. } \quad \xi_{i}=\partial_{i}^{*} \Omega \otimes \Omega
$$

Regularity properties of generators

Consider X_{1}, \ldots, X_{d} selfadjoint operators in a tracial vN-algebra (M, τ)
Conjugate system: $\xi_{1}, \ldots, \xi_{d} \in L^{2}\left(X_{1}, \ldots, X_{d}\right)$

$$
\tau\left(\xi_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right)=\tau \otimes \tau\left[\partial_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right], \quad \text { i.e. } \quad \xi_{i}=\partial_{i}^{*} \Omega \otimes \Omega
$$

- note that the non-commutative derivative ∂_{f} :

$$
\begin{aligned}
\mathbb{C}\langle X(f) \mid f \in \mathcal{H}\rangle & \rightarrow \mathbb{C}\langle X(f) \mid f \in \mathcal{H}\rangle \otimes \mathbb{C}\langle X(f) \mid f \in \mathcal{H}\rangle \\
X\left(f_{1}\right) \cdots X\left(f_{n}\right) & \mapsto \sum_{k=1}^{n}\left\langle f, f_{k}\right\rangle X\left(f_{1}\right) \cdots X\left(f_{k-1}\right) \otimes X\left(f_{k+1}\right) \cdots X\left(f_{n}\right)
\end{aligned}
$$

has an easy (independent of q) description on the algebra generated by all $X(f)$

Regularity properties of generators

Consider X_{1}, \ldots, X_{d} selfadjoint operators in a tracial vN-algebra (M, τ)

Conjugate system: $\xi_{1}, \ldots, \xi_{d} \in L^{2}\left(X_{1}, \ldots, X_{d}\right)$

$$
\tau\left(\xi_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right)=\tau \otimes \tau\left[\partial_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right], \quad \text { i.e. } \quad \xi_{i}=\partial_{i}^{*} \Omega \otimes \Omega
$$

- note that the non-commutative derivative ∂_{f} :

$$
\begin{aligned}
\mathbb{C}\langle X(f) \mid f \in \mathcal{H}\rangle & \rightarrow \mathbb{C}\langle X(f) \mid f \in \mathcal{H}\rangle \otimes \mathbb{C}\langle X(f) \mid f \in \mathcal{H}\rangle \\
X\left(f_{1}\right) \cdots X\left(f_{n}\right) & \mapsto \sum_{k=1}^{n}\left\langle f, f_{k}\right\rangle X\left(f_{1}\right) \cdots X\left(f_{k-1}\right) \otimes X\left(f_{k+1}\right) \cdots X\left(f_{n}\right)
\end{aligned}
$$

has an easy (independent of q) description on the algebra generated by all $X(f)$

- in order to calculate its adjoint ∂_{f}^{*}, however, we have to understand the behaviour of ∂_{f} as an unbounded operator on the Hilbert space

$$
\partial_{f}: L^{2}(M, \tau) \rightarrow L^{2}(M, \tau) \otimes L^{2}(M, \tau)
$$

Embedding of vN-algebra into Fock space

$$
\begin{aligned}
\Gamma_{q}(\mathcal{H}) & \rightarrow \mathcal{F}_{q}(\mathcal{H})=L^{2}\left(\Gamma_{q}(\mathcal{H}), \tau\right) \\
T & \mapsto T \Omega
\end{aligned}
$$

Embedding of vN-algebra into Fock space

$$
\begin{aligned}
\Gamma_{q}(\mathcal{H}) & \rightarrow \mathcal{F}_{q}(\mathcal{H})=L^{2}\left(\Gamma_{q}(\mathcal{H}), \tau\right) \\
T & \mapsto T \Omega
\end{aligned}
$$

$$
X\left(f_{1}\right) \cdots X\left(f_{n}\right) \mapsto X\left(f_{1}\right) \cdots X\left(f_{n}\right) \Omega
$$

Embedding of vN-algebra into Fock space

$$
\begin{aligned}
\Gamma_{q}(\mathcal{H}) & \rightarrow \mathcal{F}_{q}(\mathcal{H})=L^{2}\left(\Gamma_{q}(\mathcal{H}), \tau\right) \\
T & \mapsto T \Omega \\
X\left(f_{1}\right) \cdots X\left(f_{n}\right) & \mapsto X\left(f_{1}\right) \cdots X\left(f_{n}\right) \Omega \\
& \mapsto f_{1} \otimes \cdots \otimes f_{n}
\end{aligned}
$$

Embedding of vN-algebra into Fock space

$$
\begin{aligned}
\Gamma_{q}(\mathcal{H}) & \rightarrow \mathcal{F}_{q}(\mathcal{H})=L^{2}\left(\Gamma_{q}(\mathcal{H}), \tau\right) \\
T & \mapsto T \Omega
\end{aligned}
$$

$$
X\left(f_{1}\right) \cdots X\left(f_{n}\right) \mapsto X\left(f_{1}\right) \cdots X\left(f_{n}\right) \Omega
$$

$$
W\left(f_{1} \otimes \cdots \otimes f_{n}\right) \mapsto f_{1} \otimes \cdots \otimes f_{n}
$$

Wick product
stochastic integral

Embedding of vN-algebra into Fock space

$$
\begin{aligned}
\Gamma_{q}(\mathcal{H}) & \rightarrow \mathcal{F}_{q}(\mathcal{H})=L^{2}\left(\Gamma_{q}(\mathcal{H}), \tau\right) \\
T & \mapsto T \Omega \\
X\left(f_{1}\right) \cdots X\left(f_{n}\right) & \mapsto X\left(f_{1}\right) \cdots X\left(f_{n}\right) \Omega \\
W\left(f_{1} \otimes \cdots \otimes f_{n}\right) & \mapsto f_{1} \otimes \cdots \otimes f_{n}
\end{aligned}
$$

Wick product
stochastic integral

Embedding of vN-algebra into Fock space

$$
\begin{aligned}
& \Gamma_{q}(\mathcal{H}) \rightarrow \mathcal{F}_{q}(\mathcal{H})=L^{2}\left(\Gamma_{q}(\mathcal{H}), \tau\right) \\
& T \mapsto T \Omega \\
& X\left(f_{1}\right) \cdots X\left(f_{n}\right) \mapsto X\left(f_{1}\right) \cdots X\left(f_{n}\right) \Omega \\
& W\left(f_{1} \otimes \cdots \otimes f_{n}\right) \mapsto f_{1} \otimes \cdots \otimes f_{n}
\end{aligned}
$$

Wick product
stochastic integral

From $X(\cdots)$ to $W(\cdots)$ and back

There are combinatorial relations between

... in both directions.

From $X(\cdots)$ to $W(\cdots)$ and back

There are combinatorial relations between

... in both directions.

From $X(\cdots)$ to $W(\cdots)$

$$
X\left(f_{1} \otimes f_{2}\right) \quad=W\left(f_{1} \otimes f_{2}\right) \quad+\quad\left\langle f_{1}, f_{2}\right\rangle W(\Omega)
$$

From $X(\cdots)$ to $W(\cdots)$ and back

$$
X\left(f_{1} \otimes f_{2}\right) \quad=W\left(f_{1} \otimes f_{2}\right) \quad+\quad\left\langle f_{1}, f_{2}\right\rangle W(\Omega)
$$

$$
W\left(f_{1} \otimes f_{2}\right) \quad=X\left(f_{1} \otimes f_{2}\right) \quad-\quad\left\langle f_{1}, f_{2}\right\rangle X(\Omega)
$$

From $X(\cdots)$ to $W(\cdots)$ and back

$$
\left.\begin{array}{rl}
X\left(f_{1} \otimes f_{2}\right) & =W\left(f_{1} \otimes f_{2}\right) \\
\mathbf{o} & +\quad\left\langle f_{1}, f_{2}\right\rangle W(\Omega) \\
\mathbf{O} & = \\
\mathbf{f}_{1} & \mathbf{f}_{2}
\end{array}\right)
$$

From $X(\cdots)$ to $W(\cdots)$ and back

$X\left(f_{1} \otimes f_{2}\right)$	$=W\left(f_{1} \otimes f_{2}\right)$	$+\quad\left\langle f_{1}, f_{2}\right\rangle W(\Omega)$	
\mathbf{f}_{1}	\mathbf{f}_{2}	$=$	\mathbf{f}_{1}
\mathbf{f}_{2}			
\mathbf{f}_{1}	\mathbf{f}_{2}		

$W\left(f_{1} \otimes f_{2}\right) \quad=\quad X\left(f_{1} \otimes f_{2}\right) \quad-\quad\left\langle f_{1}, f_{2}\right\rangle X(\Omega)$

From $X(\cdots)$ to $W(\cdots)$

$$
\begin{aligned}
& +1 \\
& \begin{array}{lllll}
i & & & & \\
j & g & g & f
\end{array} \\
& +q^{2} \\
& \begin{array}{llll}
\hline \begin{array}{lll}
1 & 1 & \\
0 & 0 & 0
\end{array} \\
f & g & g & f
\end{array} \\
& +1 \quad \begin{array}{lll}
0 & 0 & 0 \\
f & g & g
\end{array}
\end{aligned}
$$

From $X(\cdots)$ to $W(\cdots)$ and back

$$
\begin{aligned}
& -q^{2} \begin{array}{lllll}
& 0 & 1 & 1 \\
\vdots & 0 & 0 & 0 \\
f & g & g & f
\end{array} \\
& \begin{array}{lllll}
-1 & 0 & \circ & 0 & 0 \\
f & g & g & f
\end{array} \\
& -1 \begin{array}{llll}
0 & 0 & 0 \\
f & g & f
\end{array}
\end{aligned}
$$

From $X(\cdots)$ to $W(\cdots)$ and back

$$
\begin{aligned}
& -q^{2} 0000 \\
& \text { f g g f } \\
& \begin{array}{lllll}
-1 & \circ & 0 & 0 & o \\
& f & g & g & f
\end{array}
\end{aligned}
$$

From $X(\cdots)$ to $W(\cdots)$ and back

$$
\begin{aligned}
& -q^{2} \begin{array}{lllll}
& 0 & 1 & 1 & 0 \\
i & 0 & 0 \\
f & g & g & f
\end{array} \\
& \begin{array}{lllll}
-1 & 0 & 0 & 0 \\
f & g & g & f
\end{array} \\
& -1 \text { OOO } \begin{array}{llll}
1 & 0 & 0
\end{array} \\
& +1 \\
& \begin{array}{lll}
\hline 000 \\
f & g & f
\end{array} \\
& \begin{array}{llll}
-1 & 0 & 0 \\
f & g & f
\end{array} \\
& \begin{array}{llll}
-1 & 0 & 0 & 0 \\
f & g & f
\end{array}
\end{aligned}
$$

From $X(\cdots)$ to $W(\cdots)$ and back

$$
\begin{aligned}
& -q^{2} \begin{array}{llll}
\hline & \begin{array}{lll}
1 & 1 \\
i & 0 & 1 \\
f & g & g
\end{array} & f
\end{array} \\
& \begin{array}{lllll}
-1 & 0 & 0 & 0 & 0 \\
f & g & g & f
\end{array} \\
& -1 \text { ○○○。 } \\
& +1 \\
& \begin{array}{lll}
0 & 0 & 0 \\
f & g & f
\end{array} \\
& \begin{array}{llll}
\hline & 0 & 0 \\
f & g & g
\end{array} \\
& -1 \begin{array}{llll}
0 & 0 & 0 \\
f & g & g
\end{array}
\end{aligned}
$$

From $X(\cdots)$ to $W(\cdots)$ and back

$$
\begin{aligned}
& -q^{2} \begin{array}{llll}
\hline & \begin{array}{lll}
1 & 1 \\
i & 0 & 0 \\
f & g & g
\end{array} & f
\end{array} \\
& \begin{array}{lllll}
-1 & 0 & 0 & 0 & 0 \\
& f & g & g & f
\end{array} \\
& -q^{2} \quad \begin{array}{llll}
& 0 & 0 & 0 \\
\text { f g f }
\end{array} \\
& +q^{2} \\
& \begin{array}{lll}
0 & 0 & 0 \\
f & g & f
\end{array} \\
& -1 \text { oroo } \\
& \begin{array}{rlrl}
-1 & 000 \\
f & g & g
\end{array}
\end{aligned}
$$

From $X(\cdots)$ to $W(\cdots)$ and back

$$
\begin{aligned}
& -q^{2} \begin{array}{llll}
\hline & \begin{array}{lll}
1 & 1 \\
i & 0 & 0 \\
f & g & g
\end{array} & f
\end{array} \\
& \begin{array}{lllll}
-1 & 0 & 0 & 0 & 0 \\
& f & g & g & f
\end{array} \\
& -q^{2} \begin{array}{llll}
& 0 & 0 & 0 \\
\text { f g g f }
\end{array} \\
& +q^{2} \\
& \begin{array}{lll}
0 & 0 & 0 \\
f & g & f
\end{array} \\
& -1 \text { oroo } \\
& \begin{array}{rlrl}
-1 & 000 \\
f & g & g
\end{array}
\end{aligned}
$$

From $X(\cdots)$ to $W(\cdots)$ and back

$$
\begin{aligned}
& -q^{2} \begin{array}{llll}
\hline & \begin{array}{lll}
1 & 1 \\
i & 0 & 0 \\
f & g & g
\end{array} & f
\end{array} \\
& \begin{array}{lllll}
-1 & 0 & 0 & 0 & 0 \\
& f & g & g & f
\end{array} \\
& -q^{2} \begin{array}{llllllll}
& 0 & 0 & 0 \\
f & g & g & f
\end{array} \\
& +q^{2} \\
& \begin{array}{llll}
\hline 0 & 0 & 0 & 0 \\
f & g & g & f
\end{array} \\
& -1 \text { o o o o } \\
& \begin{array}{rl}
-1 & 000 \\
f \text { g } & 0
\end{array}
\end{aligned}
$$

Regularity properties of generators

Consider X_{1}, \ldots, X_{d} selfadjoint operators in a tracial vN-algebra (M, τ)

Conjugate system: $\xi_{1}, \ldots, \xi_{d} \in L^{2}\left(X_{1}, \ldots, X_{d}\right)$

$$
\tau\left(\xi_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right)=\tau \otimes \tau\left[\partial_{i} Q\left(X_{1}, \ldots, X_{d}\right)\right], \quad \text { i.e. } \quad \xi_{i}=\partial_{i}^{*} \Omega \otimes \Omega
$$

- note that the non-commutative derivative ∂_{f} :

$$
\begin{aligned}
\mathbb{C}\langle X(f) \mid f \in \mathcal{H}\rangle & \rightarrow \mathbb{C}\langle X(f) \mid f \in \mathcal{H}\rangle \otimes \mathbb{C}\langle X(f) \mid f \in \mathcal{H}\rangle \\
X\left(f_{1}\right) \cdots X\left(f_{n}\right) & \mapsto \sum_{k=1}^{n}\left\langle f, f_{k}\right\rangle X\left(f_{1}\right) \cdots X\left(f_{k-1}\right) \otimes X\left(f_{k+1}\right) \cdots X\left(f_{n}\right)
\end{aligned}
$$

has an easy (independent of q) description on the algebra generated by all $X(f)$

- in order to calculate its adjoint ∂_{f}^{*} we have to understand the behaviour of ∂_{f} as an unbounded operator on the Hilbert space

$$
\partial_{f}: L^{2}(M, \tau) \rightarrow L^{2}(M, \tau) \otimes L^{2}(M, \tau)
$$

Non-commutative derivative on the algebra

$$
\partial_{f} X\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\sum_{k}\left\langle f, f_{k}\right\rangle X\left(f_{1} \otimes \cdots \otimes f_{k-1}\right) \otimes X\left(f_{k+1} \otimes \cdots \otimes f_{n}\right)
$$

Non-commutative derivative on the Fock space

$$
\partial_{f} W\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\sum_{\pi}(-1) \cdots q^{\cdots} \delta_{\pi} W(\text { singl. left }) \otimes W(\text { singl. right })
$$

Non-commutative derivative on the Fock space

$\partial_{f} W\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\sum_{\pi}(-1) \cdots q^{\cdots} \delta_{\pi} W$ (singl. left) $\otimes W$ (singl. right)
-Oóooooooo = ... oooooooo

Non-commutative derivative on the Fock space

$\partial_{f} W\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\sum_{\pi}(-1) \cdots q^{\cdots} \delta_{\pi} W$ (singl. left) $\otimes W$ (singl. right)
-óóóodóo = ... -

Non-commutative derivative on the Fock space

$\partial_{f} W\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\sum_{\pi}(-1) \cdots q^{\cdots} \delta_{\pi} W$ (singl. left) $\otimes W$ (singl. right)
-ல்óóóóo = ... -

Non-commutative derivative on the Fock space

$\partial_{f} W\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\sum_{\pi}(-1) \cdots q^{\cdots} \delta_{\pi} W$ (singl. left) $\otimes W$ (singl. right)

Non-commutative derivative on the Fock space

$\partial_{f} W\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\sum_{\pi}(-1) \cdots q^{\cdots} \delta_{\pi} W$ (singl. left) $\otimes W$ (singl. right)

Non-commutative derivative on the Fock space

$\partial_{f} W\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\sum_{\pi}(-1) \cdots q^{\cdots} \delta_{\pi} W$ (singl. left) $\otimes W$ (singl. right)

- OOOOOOOO = $\cdots-q^{8}$.0000®000 ...

Non-commutative derivative on the Fock space

$$
\partial_{f} W\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\sum_{\pi}(-1)^{\cdots} q^{\cdots} \delta_{\pi} W(\text { singl. left }) \otimes W(\text { singl. right })
$$

Note: For conjugate variable we only need the vacuum part of ∂

Non-commutative derivative on the Fock space vacuum part

Non-commutative derivative on the Fock space vacuum part

$$
\left\langle\partial_{f} \eta_{1} \otimes f \otimes \eta_{2}, \Omega \otimes \Omega\right\rangle=
$$

$$
(m=3)
$$

Non-commutative derivative on the Fock space vacuum part

$$
\left\langle\partial_{f} \eta_{1} \otimes f \otimes \eta_{2}, \Omega \otimes \Omega\right\rangle=(-1)^{m}
$$

$$
(m=3)
$$

- ódóóó

$$
=\quad \cdots+
$$

$$
\eta_{1} \quad f \quad \eta_{2}
$$

Non-commutative derivative on the Fock space vacuum part

$$
\left\langle\partial_{f} \eta_{1} \otimes f \otimes \eta_{2}, \Omega \otimes \Omega\right\rangle=(-1)^{m}
$$

$$
(m=3)
$$

Non-commutative derivative on the Fock space vacuum part

$$
\left\langle\partial_{f} \eta_{1} \otimes f \otimes \eta_{2}, \Omega \otimes \Omega\right\rangle=(-1)^{m} q^{\frac{(m+1) m}{2}} \quad(m=3)
$$

$\eta_{1} \quad f \quad \eta_{2}$

Non-commutative derivative on the Fock space vacuum part

$$
\left\langle\partial_{f} \eta_{1} \otimes f \otimes \eta_{2}, \Omega \otimes \Omega\right\rangle=(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle\eta_{1}, \eta_{2}\right\rangle_{q} \quad(m=3)
$$

Non-commutative derivative on the Fock space vacuum part

$$
\left\langle\partial_{f} \eta_{1} \otimes f \otimes \eta_{2}, \Omega \otimes \Omega\right\rangle=(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle\eta_{1}, \eta_{2}\right\rangle_{q} \quad(m=3)
$$

$=\quad \cdots+$

$\eta_{1} \quad f \quad \eta_{2}$

Non-commutative derivative on the Fock space vacuum part

$$
\left\langle\partial_{f} \eta_{1} \otimes f \otimes \eta_{2}, \Omega \otimes \Omega\right\rangle=(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle\eta_{1}, \eta_{2}\right\rangle_{q} \quad(m=3)
$$

$=\quad \cdots+$

$\eta_{1} \quad f \quad \eta_{2}$

Non-commutative derivative on the Fock space vacuum part

$$
\left\langle\partial_{f} \eta_{1} \otimes f \otimes \eta_{2}, \Omega \otimes \Omega\right\rangle=(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle\eta_{1}, \eta_{2}\right\rangle_{q} \quad(m=3)
$$

$=\quad \cdots+$

$\eta_{1} \quad f \quad \eta_{2}$

Non-commutative derivative on the Fock space vacuum part

$$
\left\langle\partial_{f} \eta_{1} \otimes f \otimes \eta_{2}, \Omega \otimes \Omega\right\rangle=(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle\eta_{1}, \eta_{2}\right\rangle_{q} \quad(m=3)
$$

$=\cdots+\left(-q^{7}\right)$

$\eta_{1} \quad f \quad \eta_{2}$

Non-commutative derivative on the Fock space vacuum part

$$
\left\langle\partial_{f} \eta_{1} \otimes f \otimes \eta_{2}, \Omega \otimes \Omega\right\rangle=(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle\eta_{1}, \eta_{2}\right\rangle_{q} \quad(m=3)
$$

$$
\eta_{1} \quad f \quad \eta_{2}
$$

key factor: $q^{\frac{(m+1) m}{2}}$

Results for all q with a similar flavor as ours

Diagramatics and Wick products

- Effros, Popa: Feynman diagrams and Wick products associated with q-Fock space, 2003

Results for all q with a similar flavor as ours

Diagramatics and Wick products

- Effros, Popa: Feynman diagrams and Wick products associated with q-Fock space, 2003

Operator algebraic context

- Avsec: Strong solidity of the q-Gaussian algebras for all $-1<q<1$, preprint 2011 (weak*-completely contractive approximation property)

Results for all q with a similar flavor as ours

Diagramatics and Wick products

- Effros, Popa: Feynman diagrams and Wick products associated with q-Fock space, 2003

Operator algebraic context

- Avsec: Strong solidity of the q-Gaussian algebras for all $-1<q<1$, preprint 2011 (weak*-completely contractive approximation property)
- Wasilewski: A simple proof of the complete metric approximation property for q-Gaussian algebras, 2019
- Wildshut: Strong solidity of q-Gaussian algebras, Master's thesis 2020

Results for all q with a similar flavor as ours

Diagramatics and Wick products

- Effros, Popa: Feynman diagrams and Wick products associated with q-Fock space, 2003

Operator algebraic context

- Avsec: Strong solidity of the q-Gaussian algebras for all $-1<q<1$, preprint 2011 (weak*-completely contractive approximation property)
- Wasilewski: A simple proof of the complete metric approximation property for q-Gaussian algebras, 2019
- Wildshut: Strong solidity of q-Gaussian algebras, Master's thesis 2020

Stochastic context

- Donati-Martin: Stochastic integration with respect to q-Brownian motion, 2003
- Deya, Schott: On multiplication in q-Wiener chaoses, 2018

Linear basis for concrete calculations

- Let $\left\{e_{1}, \ldots, e_{d}\right\}$ be an ONB of \mathcal{H}. Then

$$
\left\{e_{i(1)} \otimes \cdots \otimes e_{i(m)} \mid m \geq 0,1 \leq i(1), \ldots i(m) \leq d\right\}
$$

is a linear basis, but not an ONB.

Linear basis for concrete calculations

- Let $\left\{e_{1}, \ldots, e_{d}\right\}$ be an ONB of \mathcal{H}. Then

$$
\left\{e_{i(1)} \otimes \cdots \otimes e_{i(m)} \mid m \geq 0,1 \leq i(1), \ldots i(m) \leq d\right\}
$$

is a linear basis, but not an ONB.

- Many calculations have a nice combinatorial form in this basis, but there is no explicit formula for inverse of the corresponding Gram matrix.

Linear basis for concrete calculations

- Let $\left\{e_{1}, \ldots, e_{d}\right\}$ be an ONB of \mathcal{H}. Then

$$
\left\{e_{i(1)} \otimes \cdots \otimes e_{i(m)} \mid m \geq 0,1 \leq i(1), \ldots i(m) \leq d\right\}
$$

is a linear basis, but not an ONB.

- Many calculations have a nice combinatorial form in this basis, but there is no explicit formula for inverse of the corresponding Gram matrix.
- Notation:

$$
e_{w}:=e_{i(1)} \otimes \cdots \otimes e_{i(m)} \quad \text { for } \quad w=(i(1), \ldots, i(m)) \in[d]^{*}
$$

Now let's look on the conjugate variable ξ_{i}

We want $\xi_{i}=\partial_{i}^{*} \Omega \otimes \Omega$, so we need ξ_{i} with

$$
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle=\left\langle e_{v}, \xi_{i}\right\rangle_{q}
$$

Now let's look on the conjugate variable ξ_{i}

We want $\xi_{i}=\partial_{i}^{*} \Omega \otimes \Omega$, so we need ξ_{i} with

$$
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle=\left\langle e_{v}, \xi_{i}\right\rangle_{q}
$$

Note that

$$
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle \neq 0
$$

only if

- $|v|=2 m+1$
- $v=\pi(w) i w$
- $|w|=m, \pi \in S_{m}$

$$
\pi(w) \quad i \quad w
$$

Now let's look on the conjugate variable ξ_{i}

We want $\xi_{i}=\partial_{i}^{*} \Omega \otimes \Omega$, so we need ξ_{i} with

$$
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle=\left\langle e_{v}, \xi_{i}\right\rangle_{q}
$$

Note that

$$
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle \neq 0
$$

only if

- $|v|=2 m+1$
- $v=\pi(w) i w$
- $|w|=m, \pi \in S_{m}$

Then

$$
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle_{q}=\left\langle\partial_{i} e_{\pi(w) i w}, \Omega \otimes \Omega\right\rangle_{q}=(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle e_{\pi(w)}, e_{w}\right\rangle_{q}
$$

Now for the conjugate variable ξ_{i}

Then

$$
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle_{q}=
$$

Now for the conjugate variable ξ_{i}

Then

$$
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle_{q}=\left\langle\partial_{i} e_{\pi(w) i w}, \Omega \otimes \Omega\right\rangle_{q}
$$

Now for the conjugate variable ξ_{i}

Then

$$
\begin{aligned}
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle_{q} & =\left\langle\partial_{i} e_{\pi(w) i w}, \Omega \otimes \Omega\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle e_{\pi(w)}, e_{w}\right\rangle_{q}
\end{aligned}
$$

Now for the conjugate variable ξ_{i}

Then

$$
\begin{aligned}
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle_{q} & =\left\langle\partial_{i} e_{\pi(w) i w}, \Omega \otimes \Omega\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle e_{\pi(w)}, e_{w}\right\rangle_{q}
\end{aligned}
$$

Now for the conjugate variable ξ_{i}

Then

$$
\begin{aligned}
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle_{q} & =\left\langle\partial_{i} e_{\pi(w) i w}, \Omega \otimes \Omega\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle e_{\pi(w)}, e_{w}\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle r_{i w} e_{\pi(w) i w}, e_{w}\right\rangle_{q}
\end{aligned}
$$

Now for the conjugate variable ξ_{i}

Then

$\pi(w) \quad i \quad w$

$$
\begin{aligned}
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle_{q} & =\left\langle\partial_{i} e_{\pi(w) i w}, \Omega \otimes \Omega\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle e_{\pi(w)}, e_{w}\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle r_{i w} e_{\pi(w) i w}, e_{w}\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle e_{v}, r_{i w}^{*} e_{w}\right\rangle_{q}
\end{aligned}
$$

Now for the conjugate variable ξ_{i}

Then

$\pi(w) \quad i \quad w$

$$
\begin{aligned}
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle_{q} & =\left\langle\partial_{i} e_{\pi(w) i w}, \Omega \otimes \Omega\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle e_{\pi(w)}, e_{w}\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle r_{i w} e_{\pi(w) i w}, e_{w}\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle e_{v}, r_{i w}^{*} e_{w}\right\rangle_{q} \\
& =\left\langle e_{v},(-1)^{m} q^{\frac{(m+1) m}{2}} r_{i w}^{*} e_{w}\right\rangle_{q}
\end{aligned}
$$

Now for the conjugate variable ξ_{i}

Then

$\pi(w) \quad i \quad w$

$$
\begin{aligned}
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle_{q} & =\left\langle\partial_{i} e_{\pi(w) i w}, \Omega \otimes \Omega\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle e_{\pi(w)}, e_{w}\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle r_{i w} e_{\pi(w) i w}, e_{w}\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle e_{v}, r_{i w}^{*} e_{w}\right\rangle_{q} \\
& =\left\langle e_{v},(-1)^{m} q^{\frac{(m+1) m}{2}} r_{i w}^{*} e_{w}\right\rangle_{q} \\
& =\left\langle e_{v}, \sum_{m, w}(-1)^{m} q^{\frac{(m+1) m}{2}} r_{i w}^{*} e_{w}\right\rangle_{q}
\end{aligned}
$$

Now for the conjugate variable ξ_{i}

Then

$\pi(w) \quad i \quad w$

$$
\begin{aligned}
\left\langle\partial_{i} e_{v}, \Omega \otimes \Omega\right\rangle_{q} & =\left\langle\partial_{i} e_{\pi(w) i w}, \Omega \otimes \Omega\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle e_{\pi(w)}, e_{w}\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle r_{i w} e_{\pi(w) i w}, e_{w}\right\rangle_{q} \\
& =(-1)^{m} q^{\frac{(m+1) m}{2}}\left\langle e_{v}, r_{i w}^{*} e_{w}\right\rangle_{q} \\
& =\left\langle e_{v},(-1)^{m} q^{\frac{(m+1) m}{2}} r_{i w}^{*} e_{w}\right\rangle_{q} \\
& =\langle e_{v}, \underbrace{\left.\sum_{m, w}(-1)^{m} q^{\frac{(m+1) m}{2}} r_{i w}^{*} e_{w}\right\rangle_{q}}_{\xi_{i}}
\end{aligned}
$$

Theorem (Miyagawa, Speicher 2022): We have or all $-1<q<1$:

- a conjugate system $\left(\xi_{1}, \ldots, \xi_{d}\right)$ for the q-Gaussians $\left(X_{1}, \ldots, X_{d}\right)$ is given by

$$
\xi_{i}=\sum_{w \in[d]^{*}}(-1)^{|w|} q^{\frac{(|w|+1)|w|}{2}} r_{i w}^{*} e_{w}
$$

- the above sum converges in operator norm, thus $\xi_{i} \in \Gamma_{d}\left(\mathbb{R}^{d}\right)$
- $\left(\xi_{1}, \ldots, \xi_{d}\right)$ is Lipschitz conjugate, i.e., $\partial_{j} \xi_{i}$ exists and belongs to the von Neumann algebra $\Gamma_{d}\left(\mathbb{R}^{d}\right) \otimes \Gamma_{d}\left(\mathbb{R}^{d}\right)$

Theorem (Miyagawa, Speicher 2022): We have or all $-1<q<1$:

- a conjugate system $\left(\xi_{1}, \ldots, \xi_{d}\right)$ for the q-Gaussians $\left(X_{1}, \ldots, X_{d}\right)$ is given by

$$
\xi_{i}=\sum_{w \in[d]^{*}}(-1)^{|w|} q^{\frac{(|w|+1)|w|}{2}} r_{i w}^{*} e_{w}
$$

- the above sum converges in operator norm, thus $\xi_{i} \in \Gamma_{d}\left(\mathbb{R}^{d}\right)$
- $\left(\xi_{1}, \ldots, \xi_{d}\right)$ is Lipschitz conjugate, i.e., $\partial_{j} \xi_{i}$ exists and belongs to the von Neumann algebra $\Gamma_{d}\left(\mathbb{R}^{d}\right) \otimes \Gamma_{d}\left(\mathbb{R}^{d}\right)$
- this relies on norm estimates (coming from work of Bożejko)

$$
\|\eta\| \leq(m+1) C_{|q|}^{3 / 2}\|\eta\|_{q} \quad \text { and } \quad\left\|r_{i}\right\| \leq \frac{1}{\sqrt{w(q)}}
$$

Theorem (Miyagawa, Speicher 2022): We have or all $-1<q<1$:

- a conjugate system $\left(\xi_{1}, \ldots, \xi_{d}\right)$ for the q-Gaussians $\left(X_{1}, \ldots, X_{d}\right)$ is given by

$$
\xi_{i}=\sum_{w \in[d]^{*}}(-1)^{|w|} q^{\frac{(|w|+1)|w|}{2}} r_{i w}^{*} e_{w}
$$

- the above sum converges in operator norm, thus $\xi_{i} \in \Gamma_{d}\left(\mathbb{R}^{d}\right)$
- $\left(\xi_{1}, \ldots, \xi_{d}\right)$ is Lipschitz conjugate, i.e., $\partial_{j} \xi_{i}$ exists and belongs to the von Neumann algebra $\Gamma_{d}\left(\mathbb{R}^{d}\right) \otimes \Gamma_{d}\left(\mathbb{R}^{d}\right)$
- this relies on norm estimates (coming from work of Bożejko)

$$
\|\eta\| \leq(m+1) C_{|q|}^{3 / 2}\|\eta\|_{q} \quad \text { and } \quad\left\|r_{i}\right\| \leq \frac{1}{\sqrt{w(q)}}
$$

- but note: in the end the factor $q^{\frac{(|w|+1)|w|}{2}}$ beats them all, even when taking the dimension d^{m} of $\mathcal{H}^{\otimes m}$ into account

Consequences for the q-Gaussians

For all $-1<q<1$ we have the following properties:

- division closure of the q-Gaussians in the unbounded operators affiliated to $\Gamma_{q}\left(\mathbb{R}^{d}\right)$ is isomorphic to the free field (Mai, Speicher, Yin)

Consequences for the q-Gaussians

For all $-1<q<1$ we have the following properties:

- division closure of the q-Gaussians in the unbounded operators affiliated to $\Gamma_{q}\left(\mathbb{R}^{d}\right)$ is isomorphic to the free field (Mai, Speicher, Yin)
- there is no non-zero non-commutative power series of radius of convergence $R>\left\|X_{i}\right\|$ such that $\sum \alpha_{w} X^{w}=0$ (Dabrowski)

Consequences for the q-Gaussians

For all $-1<q<1$ we have the following properties:

- division closure of the q-Gaussians in the unbounded operators affiliated to $\Gamma_{q}\left(\mathbb{R}^{d}\right)$ is isomorphic to the free field (Mai, Speicher, Yin)
- there is no non-zero non-commutative power series of radius of convergence $R>\left\|X_{i}\right\|$ such that $\sum \alpha_{w} X^{w}=0$ (Dabrowski)
- any self-adjoint non-commutative polynomial $p\left(X_{1}, \ldots, X_{d}\right)$ has Hölder continuous cumulative distribution function (Banna, Mai)

Consequences for the q-Gaussians

For all $-1<q<1$ we have the following properties:

- division closure of the q-Gaussians in the unbounded operators affiliated to $\Gamma_{q}\left(\mathbb{R}^{d}\right)$ is isomorphic to the free field (Mai, Speicher, Yin)
- there is no non-zero non-commutative power series of radius of convergence $R>\left\|X_{i}\right\|$ such that $\sum \alpha_{w} X^{w}=0$ (Dabrowski)
- any self-adjoint non-commutative polynomial $p\left(X_{1}, \ldots, X_{d}\right)$ has Hölder continuous cumulative distribution function (Banna, Mai)
- the q-Gaussians have maximal microstates free entropy dimension (Dabrowski)

$$
\delta_{0}\left(X_{1}, \ldots, X_{d}\right)=d
$$

Consequences for the q-Gaussians

For all $-1<q<1$ we have the following properties:

- division closure of the q-Gaussians in the unbounded operators affiliated to $\Gamma_{q}\left(\mathbb{R}^{d}\right)$ is isomorphic to the free field (Mai, Speicher, Yin)
- there is no non-zero non-commutative power series of radius of convergence $R>\left\|X_{i}\right\|$ such that $\sum \alpha_{w} X^{w}=0$ (Dabrowski)
- any self-adjoint non-commutative polynomial $p\left(X_{1}, \ldots, X_{d}\right)$ has Hölder continuous cumulative distribution function (Banna, Mai)
- the q-Gaussians have maximal microstates free entropy dimension (Dabrowski)

$$
\delta_{0}\left(X_{1}, \ldots, X_{d}\right)=d
$$

- $\Gamma_{q}\left(\mathbb{R}^{d}\right)$ does not have property Γ and does not have a Cartan subalgebra

Consequences for the q-Gaussians

For all $-1<q<1$ we have the following properties:

- division closure of the q-Gaussians in the unbounded operators affiliated to $\Gamma_{q}\left(\mathbb{R}^{d}\right)$ is isomorphic to the free field (Mai, Speicher, Yin)
- there is no non-zero non-commutative power series of radius of convergence $R>\left\|X_{i}\right\|$ such that $\sum \alpha_{w} X^{w}=0$ (Dabrowski)
- any self-adjoint non-commutative polynomial $p\left(X_{1}, \ldots, X_{d}\right)$ has Hölder continuous cumulative distribution function (Banna, Mai)
- the q-Gaussians have maximal microstates free entropy dimension (Dabrowski)

$$
\delta_{0}\left(X_{1}, \ldots, X_{d}\right)=d
$$

- $\Gamma_{q}\left(\mathbb{R}^{d}\right)$ does not have property Γ and does not have a Cartan subalgebra

Thank you for your attention!

