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Introduction

Gauss’s Circle Problem

● Error term function:

R(X) = ∑
m2+n2≤X

1 − πX (1)

● The sum counts the number of integer lattice points inside the circle of
radius

√
X centered at origin (including points on the boundary), and the

second term is the area of the disk enclosed by the circle.

● Each lattice point is the left lower corner of some unit square. Through this
correspondence, we see that the above sum is approximately the area of the
disk. We subtract the main term from the sum and aim to bound the error
term.
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Introduction

Dirichlet’s Divisor Problem

● Error term function:

∆(X) = ∑
1≤n≤X

d(n) −X logX − (2γ − 1)X, (2)

where
d(n) = ∑

s∣n,s∈N
1

is the divisor function, and γ = 0.5772 . . . is Euler’s constant.

● The sum counts the number of integer lattice points under the hyperbola
xy =X. The terms we subtract are the main terms of the sum derived using
standard hyperbola method in number theory.
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Introduction

Our Goal

● We would like to show that

R(X) ≲ϵ X
θ+ϵ, ∆(X) ≲ϵ X

θ+ϵ,

with θ as small as possible. Here ≲ is a substitute for Vinogradov’s notation.

● Using simple geometric observation, C. F. Gauss showed that θ =
1

2
in the

Circle Problem.

● By the above mentioned hyperbola method, we can obtain θ =
1

2
in the

Divisor Problem.
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Introduction

Conjectures

On the other direction, G. H. Hardy showed that both R(X) and ∆(X) are

Ω((X logX)
1
4 ), (3)

where f = Ω(g) means that for any constant C > 0, ∣f ∣ ≥ C ∣g∣ infinitely often in
the limit process. His theorems naturally lead to the following conjecture.

Conjecture

In Gauss’s Circle Problem and Dirichlet’s Divisor Problem,

θ =
1

4
.
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Literature and Current Record

History
● θ =

1

2
,

Gauss(≈ 1800), Dirichlet(1849)

● θ =
1

3
,

Voronoi(1904), Sierpinski(1906), Landau(1913)

● θ =
15

46
= 0.3260 . . . ,

Titchmarsh(1934), Chih(1950), Richert(1953)

● θ =
13

40
= 0.3250 . . . ,

Hua(1942)

● θ =
12

37
= 0.3243 . . . ,

Chen(1963), Kolesnik(1969)

● θ =
7

22
= 0.3181 . . . ,

Iwaniec and Mozzochi(1988)

● θ =
131

416
= 0.3149 . . . ,

Huxley(2003)

Limit of current method is
5

16
= 0.3125. For a complete reference list, please go

to the survey paper by B. C. Berndt, S. Kim, and A. Zaharescue.
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Literature and Current Record

Our result

Theorem (Li and Y.)

R(X) = Oϵ(X
θ∗+ϵ
) and ∆(X) = Oϵ(X

θ∗+ϵ
)

for all ϵ > 0, where
θ∗ = 0.314483⋯

is defined below.

Definition

θ∗ = 0.3144831759741⋯ is defined in such a way that −θ∗ is unique solution to
the equation

−
8

25
x −

1

200
(
√
2(1 − 14x) − 5

√
−1 − 8x)

2

+
51

200
= −x (4)

on the interval [−0.35,−0.3].
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Literature and Current Record
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Intersection

g(x) = −x

f(x) = −
8

25
x −

1

200
(
√
2(1 − 14x) − 5

√
−1 − 8x)

2

+
51

200

x

y
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Bombieri-Iwaniec Method Circle Method

Hardy-Littlewood Circle Method

Currently, the most efficient method for estimating exponential sums on Z is the
Bombieri-Iwaniec method, otherwise known as the discrete Hardy-Littlewood
method. It was initiated by the two authors in their famous paper “On the order

of ∣ζ(
1

2
+ it)∣”. In this paper, they obtained

ζ(
1

2
+ it) = Oϵ(t

9
56+ϵ).

Let us first introduce Hardy-Littlewood Circle method. It is most often used in
additive number theory and additive combinatorics. Two famous examples are
“3-term APs in Primes” and ”Ternary Goldbach Theorem”.
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Bombieri-Iwaniec Method Circle Method

3-term Arithmetic Progressions in Primes

Theorem

Fix A > 0. For x ≥ 2, we have

∣{(p1, p2, p3) ∶ pi ≤ x and prime, p1 + p3 = 2p2}∣ =
C1x

2

(logx)3
+OA(

x2

(logx)A+3
),

where

C1 =∏
p≥3
(1 −

1

(p − 1)2
).

Analytic expression:
Define f(α) = ∑

n≤x
1P(n)e(nα), where P is the set of primes, then

∣{(p1, p2, p3) ∶ pi ≤ x and prime, p1 + p3 = 2p2}∣ = ∫
1

0
f(α)2f(−2α)dα,

by the simple fact that ∫
1

0
e(nα)dα = 1 if n = 0 and = 1 otherwise.
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Bombieri-Iwaniec Method Circle Method

Ternary Goldbach Theorem

Theorem

Fix A > 0. For N ∈ N sufficiently large, we have

∣{(p1, p2, p3) ∶ pi prime, p1 + p2 + p3 = N}∣ =
GNx

2

(logx)3
+OA(

x2

(logx)A+3
),

where

GN =∏
p∣N
(1 −

1

(p − 1)2
)∏
p∤N
(1 +

1

(p − 1)3
).

Analytic expression:
Define g(α) = ∑

n≤N
1P(n)e(nα), then

∣{(p1, p2, p3) ∶ pi prime, p1 + p2 + p3 = N}∣ = ∫
1

0
g(α)3e(−Nα)dα.
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Bombieri-Iwaniec Method Circle Method

Major and Minor Arcs
● By Dirichlet’s Approximation, each α is close to some reduced fraction

a

q
.

When we talk about closeness, we usually take
1

qx
,
1

qN
-neighborhood of such

fractions. Thus we have cut T into many arcs described by ∣α−
a

q
∣ ≤

1

qx
,
1

qN
.

● When q is small, due to the “uniform” distribution of primes mod q,

f(α), g(α) is large in absolute value when ∣α −
a

q
∣ ≤

1

qx
,
1

qN
, so we define

them to be major arcs.

● The rest are called minor arcs. f(α), g(α) are small in absolute value.

● In the above expressions, we have f3 = f2 ⋅ f . When we compute L2 norms,
we have square root cancellation. Combining L2 estimates with L∞ bounds
on minor arcs, we can show that the contributions on minor arcs are relatively
small.

● At last, we explicitly compute the contributions from major arcs. The trick is

to first work with fractions α =
a

q
, and then to show that the functions f, g

do not change much in the small neighborhood of these fractions.
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Bombieri-Iwaniec Method Circle Method

von Mongoldt function

● In practice, we replace the indictor function 1P by von Mongoldt function Λ,
where

Λ(n) =

⎧⎪⎪
⎨
⎪⎪⎩

log p, if n = pb;

0, otherwise.

● Due to the scarcity of prime powers pb, b ≥ 2, we have

1P(n) ≈
Λ(n)

logn
.

● We use Vaughan’s Identity to treat the exponential sum ∑
n≤x

Λ(n)e(nα).
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Bombieri-Iwaniec Method Discrete Circle Method

Discrete Circle Method

● In the Circle and Divisor Problems, we encounter the following exponential
sum:

S = ∑
h∼H

∑
m∼M

e(
hT

m
),

where H =Mβ for
1

3
≤ β ≤

1

2
, and T =M2.

● Here h appears as a linear term, so we focus on the sum over m first. Our
best knowledge of estimating an exponential sum

∑
m∼M

e(F (m))

on Z is when F is a polynomial. So we use Taylor expansion to replace the

function
T

m
by quadratic polynomials.

Xiaochun Li, Xuerui Yang (UIUC) An Improvement on Gauss’s Circle Problem and Dirichlet’s Divisor ProblemTalk at HIT 12/20/2023 14 / 33



Bombieri-Iwaniec Method Discrete Circle Method

● We dissect the interval [M,2M] evenly into intervals Ij of length N . On
each interval Ij , we fix some mj ∈ N to be chosen later as the “center” of
Taylor expansion. Then

hT

mj + n
= h(

T

mj
−
T

m2
j

n +
T

m3
j

n2) +O(
HTN3

M4
)

=
hT

mj
−
hT

m2
j

n +
hT

m3
j

n2 +O(1).

● The original sum becomes

S =∑
Ij

∑
h∼H

e(
hT

mj
) ∑
n,n+mj∈Ij

e( −
hT

m2
j

n +
hT

m3
j

n2).

● We notice that the linear term −
T

m2
j

∼ 1, so we approximate it by rationals
a

q
.

Observe that now each interval Ij corresponds to a unique
a

q
, that means the

sum over Ij can be rewritten as sum over
a

q
. In the end, we will look for the

cancellation between different arcs Ij , and we exploit the information of
rational approximation of linear coefficient.
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Bombieri-Iwaniec Method Discrete Circle Method

Rational Approximation
● The sum over n becomes

∑
∣n∣≤N

e(
ah

q
n +

hT

m3
j

n2)

and we apply Poisson summation to it.

Lemma

Let f be a continuous function compactly supported on R and let c, d be integers,
c ≥ 1. We then have

∑
n≡d(mod c)

f(n) =
1

c
∑
k

e( −
dk

c
)f̂(

k

c
).

● After that, we use stationary phase approximation to replace each integral by
an exponential function. Thus we have a new exponential sum and h appears
in the denominator of the new phase function. Now we exchange the sum,
and apply Poisson summation to h. The power of two Poisson summations is
that we replace long sums by a short sums.
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Spacing Problems

Double Large Sieve Inequality
● After two steps Poisson summation, we have the following form:

S = V ∑
a
q

∑
l∼L
∑
k∼K

e(x⃗k,l ⋅ y⃗ a
q
),

where L≪H, K ≪ N , and

x⃗k,l = (l, kl, l
√
k,

l
√
k
).

Theorem (Double large sieve inequality)

Suppose that we have two sets of vectors X ,Y, where every x⃗ = (x1, . . . , x4) ∈ X
satisfies

∣xi∣ ≤Xi, ∀i = 1, . . . ,4, (5)

and every y⃗ = (y1, . . . , y4) ∈ Y satisfies

∣yj ∣ ≤ Yj , ∀y = 1, . . . ,4. (6)

Moreover, we require that XiYi ≥ 1 for every i.
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Spacing Problems

Double Large Sieve Inequality continued

Theorem (Double large sieve inequality continued)

Then

∣ ∑
x⃗∈X
∑
y⃗∈Y

e(x⃗ ⋅ y⃗)∣

≲(
n

∏
i=1
XiYi)

1
p

∣Y ∣
1− 2

p ∥ ∑
x⃗∈X

e(x⃗ ⋅ t⃗)∥
Lp

#
(D)
( ∑
y⃗1,y⃗2∈Y

1y⃗1−y⃗2∈2B)
1
p

,

where p ≥ 2, and

B =
n

∏
i=1
[ −

1

10Xi
,

1

10Xi
],

D =
n

∏
j=1
[−Yj , Yj].
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Spacing Problems

Second Spacing Problem

The second spacing problem seeks for the number of rational pairs (
a

q
,
a1
q1
) s.t.

y⃗ a
q
− y⃗ a1

q1

∈ 2B, which is equivalent to

∥
a

q
−
a1
q1
∥ ≤∆1, where ∆1 ≪ 1, (7)

∥
ac

q
−
a1c1
q1
∥ ≤∆2, (8)

∣
µ1q

3
1

µq3
− 1∣ ≤∆3, (9)

∣κ − κ1∣ ≤∆4, (10)

We resort to Huxley’s result for this part. His novel observation is that this
problem is related to finding the distribution of integers points near a C3-curve.

Improvement in this direction can be directly applied in estimating ∣ζ(
1

2
+ it)∣.
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Spacing Problems

First Spacing Problem I
● Relations between variables:

KL ≥
1

η
≥K ≫ L.

G∗p = ∥ ∑
k∼K
∑
l∼L

akle(lx1 + klx2 + l
√
kx3 +

l
√
k
x4)∥

Lp
#
(B(K,1, 1

ηL
√

K
, 1

ηL
√

K
))
,

where ∣akl∣ ≤ 1, and # means we normalize the measure space. Let ψ be a
smooth bump function supported on [−1,1],

1

T
∫ ψ(

t

T
)e(xt)dt = ψ̂(Tx) ≈

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, if ∣x∣ ≲
1

T
;

0, if ∣x∣≫
1

T
.

If we let p = 2, we realize that the last condition

∣
l
√
k
−

l1
√
k1
∣ ≲ ηL

√
K

is a weak condition, so we ignore it.
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Spacing Problems

First Spacing Problem II

● We aim to estimate

Gp = ∥ ∑
k∼K
∑
l∼L

akle(lx1 + klx2 + l
√
kx3)∥

Lp
#
(B(K,1, 1

ηL
√

K
))
.

● If we let p = 2, then it is easy to derive that G2 = (KL)
1
2 . In general, if

p = 2n is an even integer, and we let akl = 1, then G
p
p is equal to the number

of integer solutions of the following system:

l1 + ⋅ ⋅ ⋅ + ln = ln+1 + ⋅ ⋅ ⋅ + l2n, (11)

k1l1 + ⋅ ⋅ ⋅ + knln = kn+1ln+1 + ⋅ ⋅ ⋅ + k2nl2n, (12)

l1
√
k1 + ⋅ ⋅ ⋅ + ln

√
kn = ln+1

√
kn+1 + ⋅ ⋅ ⋅ + l2n

√
k2n +O(ηL

√
K), (13)

ki ∼K, li ∼ L, ∀i = 1, ...,2n. (14)
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Spacing Problems

First Spacing Problem III

● There are many trivial solutions to the above system. If we set ki+n = ki and
li+n = li for all i = 1, ..., n, the system always holds, no matter what values
k1, . . . , kn, l1, . . . , ln we take. So the number of solutions is ≳KnLn, which
implies

Gp ≳K
1
2L

1
2 , (15)

when p = 2n ≥ 2. This is true for any real p ≥ 2. By computation, we realize
that square root cancellation is only possible when p ≤ p0 where p0 is a
number determined by the relations between η,K,L and it is a little bit > 4.
Our first job is obtain square root cancellation at p = 4.

l1 + l2 = l3 + l4, (16)

k1l1 + k2l2 = k3l3 + k4l4, (17)

l1
√
k1 + l2

√
k2 = l3

√
k3 + l4

√
k4 +O(ηL

√
K), (18)

ki ∼K, li ∼ L, ∀i = 1, ...,4. (19)
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Spacing Problems

First Spacing Problem IV

Definition (The truncated cone and its neighborhood)

Let
C = {(ξ1, ξ2, ξ3) ∶ ξ

2
1 + ξ

2
2 = ξ

2
3 , ξ3 ∼ 1} (20)

be the truncated cone, and let Nη(C) be a η-neighborhood of C in R3.

●
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 =
l

L

√
k

√
K
∼ 1,

ξ2 =
l

L

k/K − 1

2
,

ξ3 =
l

L

k/K + 1

2
∼ 1.

(21)

we find that

Gp = ∥∑

ξ⃗∈Γ
aξ⃗ e(ξ1y1 + ξ2y2 +

√

ξ21 + ξ
2
2y3)∥

Lp
#
(B( 1

η ,KL,KL))
. (22)
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Spacing Problems

Cone Decoupling I

At this step, we apply the small cap decoupling theorem of Guth and Maldague to
(22). Before stating their result, we introduce some concepts first. A generic plate
σ of dimensions ηβ2 × ηβ1 × η is a rectangular box in a η-neighborhood of C such
that ηβ2 is the length in the null direction, ηβ1 is the length in the circular
direction, and η is the thickness of the plate. Nη(C) can be covered by essentially

pairwise disjoint generic plates σ of dimensions ηβ2 × ηβ1 × η, where β2 ∈ [0,1],

β1 ∈ [
1

2
,1]. By the essential disjointness, we mean that those plates may have

finite overlaps but can be divided into finitely many sets, each of which contains
disjoint plates. Thus we can view the collection of those essentially disjoint
generic plates as a partition of Nη(C). Given a Schwartz function f , we define fσ
by setting its Fourier transform

f̂σ = f̂ ⋅ χσ,

where χσ is the characteristic function of σ. We now are ready to state Guth and
Maldague’s theorem.
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Spacing Problems

Cone Decoupling II

Theorem (Small cap decoupling, Guth and Maldague, 2022)

Let β1 ∈ [
1

2
,1] and β2 ∈ [0,1]. For p ≥ 2 and any Schwartz function f ∶ R3

→ C
with Fourier transform supported in Nη(C), we have

∫
R3
∣f ∣p ≲ϵ η

−ϵDp
β1,β2,p∑

σ

∥fσ∥
p
Lp(R3) , (23)

where the decoupling constant Dβ1,β2,p is given by

Dβ1,β2,p = η
−(β1+β2)( 12−

1
p ) + η−(β1+β2)(1− 2

p )+
1
p + η−(β1+β2− 1

2 )(1−
2
p ) .

This is essentially sharp since we have examples in each extremal case.
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Spacing Problems

Application of small cap decoupling
Applying the theorem to the right side of (22), we get the following lemma
immediately.

Lemma

Let β1 ∈ [
1

2
,1] and β2 ∈ [0,1]. For p ≥ 4,

Gp ≲ϵ η
−ϵDβ1,β2,p(∑

σ

∥∑

ξ⃗∈σ
Fξ⃗ (x1, x2, x3)∥

p

Lp
#
(B( 1

η ,KL,KL))
)

1
p

, (24)

where

Fξ⃗ (x1, x2, x3) = aξ⃗ e(ξ1x1 + ξ2x2 +
√

ξ21 + ξ
2
2x3).

Define

Ep(β1, β2) ∶= (∑
σ

∥ ∑
(k,l)∈Rσ

akle(lx1 + klx2 + l
√
kx3)∥

p

Lp
#
(B(1,1, 1

ηL
√

K
))
)

1
p

. (25)
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Spacing Problems

First Spacing Problem V

● A plate σ corresponds to a small rectangle in the big box
{(k, l) ∶ k ∼K, l ∼ L}.

● When p = 4, if we express the norm in terms of algebraic equations, then we
have

l1 + l2 = l3 + l4, (26)

k1l1 + k2l2 = k3l3 + k4l4, (27)

l1
√
k1 + l2

√
k2 = l3

√
k3 + l4

√
k4 +O(ηL

√
K), (28)

ki ∼K, li ∼ L, ∀i = 1, ...,4, (29)

diam(k1,⋯, k4) ≲ η
β1K, (30)

diam(l1,⋯, l4) ≲ η
β2L. (31)

Here diam(k1, . . . , k4) ≲ η
β1K means ∣ki − kj ∣ ≲ η

β1K for any 1 ≤ i, j ≤ 4. We call
the last two conditions “localization conditions”. With them, we can drop
condition (28) and still get essentially sharp estimate.
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Spacing Problems

First Spacing Problem VI
Lemma

E4(β1, β2) ≲ϵ K
1
4+ϵL

1
4 (η2(β1+β2)K2L + η2β1K2

+ η2β2L2
)

1
4

. (32)

Proof.

The trick we repeatedly use is that if we have an equation

ab = cd,

where a, b, c, d ∈ Z and abcd ≠ 0, then once we fix a, b, then c, d are essentially
determined. This is because d(n) ≲ϵ n

ϵ.

We plug (11) back into (24) and optimize our choice of β1, β2 to derive that

G4 ≲ϵ K
1
2+ϵL

1
2 .

This is essentially sharp. This result was proven by Huxley in his book, with a
relatively complicated method. Then we turn to look at p ≥ 4.
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Spacing Problems

The Case When p ≥ 4

● Now p is not an even integer any more, we cannot relate the norm with
number of solutions of some Diophantine system. It is really hard to derive
essentially sharp estimate for a non-even p, but we can still get pretty good
one.

● The trick is to write ∣f ∣p = ∣f ∣4 ⋅ ∣f ∣p−4. Since p − 4 is small, we do not lose
much.

● Each σ determines a small rectangle in the big box {(k, l) ∶ k ∼K, l ∼ L}, and
we simply count the number of pairs (k, l) s.t. ξ⃗ ∈ σ, which is

≲ ηβ1+β2KL.
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Spacing Problems

Estimation of Ep I
Lemma

For p ≥ 4,

Ep(β1, β2) ≲ (η
β1+β2KL)1−

4
pE4(β1, β2)

4
p . (33)

Proof.

For each σ,

∥ ∑
(k,l)∈Rσ

akle(lx1 + klx2 + l
√
kx3)∥

L∞
≲ ηβ1+β2KL.

Accordingly,

∥ ∑
(k,l)∈Rσ

akle(lx1 + klx2 + l
√
kx3)∥

p

Lp
#
(B(1,1, 1

ηL
√

K
))

≤∥ ∑
(k,l)∈Rσ

akle(lx1 + klx2 + l
√
kx3)∥

p−4

L∞

(34)
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Spacing Problems

Estimation of Ep II

Proof.

×∥ ∑
(k,l)∈Rσ

akle(lx1 + klx2 + l
√
kx3)∥

4

L4
#
(B(1,1, 1

ηL
√

K
))

≲(ηβ1+β2KL)p−4

×∥ ∑
(k,l)∈Rσ

akle(lx1 + klx2 + l
√
kx3)∥

4

L4
#
(B(1,1, 1

ηL
√

K
))
.

(35)

Thence, by comparing the definition of Ep(β1, β2), (25) and (34), we find that

Ep(β1, β2)
p
≲ (ηβ1+β2KL)p−4E4(β1, β2)

4. (36)

The inequality (33) follows by taking the
1

p
-th power on both sides of (36).
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Spacing Problems

Gp

● At last, we plug (33) into (24) and optimize with respect to β1, β2 to attain
the following result:

G4.29 ≲ϵ K
ϵ
(KL)0.505.

● Combining the results in the first spacing problem and second spacing
problem, we finally reach an improvement for the Circle Problem and the
Divisor Problem.
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Spacing Problems

Thank you!

xueruiy3@illinois.edu

arXiv:2308.14859
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