Noncommutative formal geometry of a contractive quantum plane Slide presentation

Anar Dosi

Harbin Engineering University, China

Seminar HIT, November 2024

つひひ

Recall that by a geometric object we mean a ringed space (X, \mathcal{O}_X) of a topological space X and the structure sheaf \mathcal{O}_X of local rings on X. To find out the geometry (X, \mathcal{O}_X) of a noncommutative (associative) algebra A is a challenging task of noncommutative geometry. In this case, the global sections $\Gamma(X, \mathcal{O}_X)$ of the structure sheaf \mathcal{O}_X should represent (or stay closer to) the original algebra A, that is

$$
\begin{array}{ccc}\nA & \implies (X, \mathcal{O}_X) \\
\parallel & & \parallel \\
\Gamma(X, \mathcal{O}_X) & \Longleftarrow (X, \mathcal{O}_X)\n\end{array}
$$

つへへ

In algebraic geometry that relation defines an anti-equivalence between

{commutative rings} \Leftrightarrow {affine schemes}.

In the complex analytic geometry we have an anti-equivalence between

 $\{\text{locally compact topological spaces}\}\Leftrightarrow \{\text{commutative } \text{C^*-algebras}\}\,.$

Noncommutative complex analytic geometry deals with the Banach space representations of a noncommutative complex algebra. A geometric space (X, \mathcal{O}_X) of a finitely generated noncommutative complex algebra A consists of the spectrum X (analytic space) of A to be the set of all irreducible Banach space representations, and a noncommutative Fréchet $\widehat{\otimes}$ -algebra (pre)sheaf \mathcal{O}_X so that $\Gamma\left(X, \mathcal{O}_X\right)$ represents (or stay closer) the noncommutative algebra of all entire functions in the generators of A.

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

The noncommutative algebra of all entire functions in the generators of A is well known in the literature as the Arens-Michael envelope of A (introduced by A. Ya. Helemskii). It turns out that the Arens-Michael envelope of a complex algebra A is the completion of A with respect to the family of all multiplicative seminorms defined on A .

If \overline{A} is the algebra of all polynomial functions on a complex affine algebraic variety X , then its Arens-Michael envelope is the algebra of holomorphic functions on X (A. Yu. Pirkovskii, Trans. Moscow Math. Soc. 2008). In particular, the Arens-Michael envelope of the algebra $A = \mathbb{C} [x_1, \ldots, x_n]$ of all complex polynomials in *n*-variables is the Fréchet algebra $\mathcal{O}\left(\mathbb{C}^n\right)$ of all entire functions on **C**ⁿ .

 Ω

∢ ロ ▶ (x 伊 ▶ ((后) ((后)

In the case of a noncommutative polynomial algebra A its Arens-Michael envelope represents the algebra of all entire functions in noncommuting variables generating A . Our main focus will be on the the quantum plane. The quantum plane (or just q -plane) is the free associative algebra

$$
\mathfrak{A}_q=\mathbb{C}\left\langle x,y\right\rangle/\left\langle xy-q^{-1}yx\right\rangle,\quad q\in\mathbb{C}\backslash\left\{0,1\right\}
$$

generated by x and y modulo $xy=q^{-1}yx$. The Arens-Michael envelope of \mathfrak{A}_q is denoted by $\mathcal{O}_q(\mathbb{C}^2)$. If x and y are invertible additionally, then the algebra represents the quantum 2-torus. If $|q| \neq 1$, then we deal with the contractive quantum plane.

つへへ

The Arens-Michael envelope $\mathcal{O}_q\left(\mathbb{C}^2\right)$ representing the algebra of all noncommutative entire functions in x and y consists of the following absolutely convergent power series

$$
\mathcal{O}_{q}(\mathbb{C}^{2}) = \left\{ f = \sum_{i,k} a_{ik} x^{i} y^{k} : ||f||_{\rho} = \sum_{i,k} |a_{ik}| \rho^{i+k} < \infty, \rho > 0 \right\}
$$

if $|q| \leq 1$

(A. Yu. Pirkovskii 2008). The case of $|q| > 1$ can be reduced to the case of $|q|$ < 1 by flipping the variables x and y, thereby whatever construction over the q-plane done for $|q| < 1$ can be conveyed to the case of $|q| > 1$ too.

つへへ

It turns out that if $|q| < 1$ then $\mathcal{O}_q(\mathbb{C}^2)$ is commutative modulo its Jacobson radical \mathcal{R} ad \mathcal{O}_q (\mathbb{C}^2) , that is, all irreducible Banach space representations (the spectrum X of \mathfrak{A}_{q}) are just continuous characters (trivial modules) and

$$
Spec\left(\mathcal{O}_q\left(\mathbb{C}^2\right)\right)=\mathbb{C}_{xy}=\mathbb{C}_x\cup\mathbb{C}_y,
$$

where $\mathbb{C}_x = \mathbb{C} \times \{0\} \subseteq \mathbb{C}^2$, $\mathbb{C}_y = \{0\} \times \mathbb{C} \subseteq \mathbb{C}^2$, and we use the notation $\mathcal{O}_q(\mathbb{C}_{\mathsf{x}\mathsf{y}})$ instead of $\mathcal{O}_q(\mathbb{C}^2)$. Moreover,

$$
\mathcal{O}_{q}\left(\mathbb{C}_{xy}\right)/\operatorname{Rad}\mathcal{O}_{q}\left(\mathbb{C}_{xy}\right)=\mathcal{O}\left(\mathbb{C}_{xy}\right)
$$

is the algebra of holomorphic functions on \mathbb{C}_{xv} .

The space $X = \text{Spec } \mathcal{O}_q(\mathbb{C}_{X\vee})$ stands for the noncommutative "analytic" space of \mathfrak{A}_q , whose structure sheaf would consists of noncommutative Fréchet $\hat{\otimes}$ -algebras extending the algebra \mathcal{O}_q $(\mathbb{C}_{\mathsf{x}\mathsf{y}})$.

But there is a problem: the spectrum X is not uniquely defined by the algebra $\mathcal{O}_q(\mathbb{C}^2)$:

$$
\begin{array}{ccc}\n\mathcal{F}_q\left(\mathbb{C}_{xy}\right) & \Longrightarrow & \operatorname{Spec}\mathcal{F}_q\left(\mathbb{C}_{xy}\right) \\
\uparrow & & \parallel \\
\mathcal{O}_q\left(\mathbb{C}_{xy}\right) & \Longrightarrow & X\n\end{array}
$$

つひひ

So, to restore the geometry that stands for \mathfrak{A}_q , $|q| < 1$ one needs to pass to a certain formal completion of $\mathcal{O}_{q}(\mathbb{C}_{xV})$. It is important to define a Fréchet $\hat{\otimes}$ -algebra structure sheaf \mathcal{F}_q on $\mathbb{C}_{\mathsf{x}\mathsf{y}}$ so that

$$
X = \operatorname{Spec} \Gamma\left(X, \mathcal{F}_q\right)
$$

and $\Gamma(X, \mathcal{F}_q)$ should be a Fréchet $\mathcal{O}_q(\mathbb{C}_{XV})$ -algebra (or bimodule). It turns out $\mathcal{O}_q(C_{xy})$ is not suitable to have a self-satisfactory geometric construction but it is essential for the functional calculus problem.

つひい

The same phenomenon was detected in the case of the universal enveloping algebra

 $A = U(\mathfrak{g})$

of a finite dimensional nilpotent Lie algebra g whose Arens-Michael envelope \mathcal{O}_q stands for the algebra of all noncommutative entire function in elements of g.

(1) Dosi, Cohomology of Sheaves of Fréchet Algebras and Spectral Theory, Funct. Anal. its Appl. (2005);

(2) Dosi, Cartan-Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems, J. Funct. Anal., (2006);

(3) Dosi, Taylor functional calculus for supernilpotent Lie algebra of operators, J. Oper. Th. (2010).

 200

K ロ ▶ K 御 ▶ K 君 ▶ K 君

The space $\mathbb{C}[[x, y]]$ of all formal power series in variables x and y is a Fréchet space equipped with the direct product topology of $\prod \mathbb{C}x^{i}y^{k}.$ If i,k

 $f=\sum_{i,k} \mathsf{a}_{ik}\mathsf{x}^i\mathsf{y}^k$ and $\mathsf{g}=\sum_{i,k} b_{ik}\mathsf{x}^i\mathsf{y}^k$, then we put

$$
f \cdot g = \sum_{m,n} \left(\sum_{s+t=m, i+j=n} a_{si} q^{it} b_{tj} \right) x^m y^n.
$$

It defines an Arens-Michael-Fréchet $\hat{\otimes}$ -algebra structure on $\mathbb{C}\left[\left[x,y\right] \right]$, and

$$
\mathfrak{A}_q \to \mathbb{C}\left[[x,y] \right]
$$

is a (unital) algebra homomorphism. In particular, $\mathbb{C}[[x, y]]$ is a Fréchet \mathcal{O}_q (\mathbb{C}_{xv})-algebra.

つへへ

It can be treated as a formal stalk at zero - the intersection point of two complex lines \mathbb{C}_x and \mathbb{C}_y . In the direction of the x-line \mathbb{C}_x the algebra $\mathbb{C}\left[\left[x,y \right] \right]$ can be reconsidered as $\mathbb{C}\left[\left[x \right] \right]\left[\left[y \right] \right]$. Every $h = \sum_{i,k} c_{ik} x^i y^k$ can be rewritten in the form $h=\sum_n h_n\left(x\right)y^n$ with $h_n\left(x\right)=\sum_i c_{in}x^i$. Then

$$
f\cdot g=\sum_{n}\left(\sum_{i+j=n}f_{i}\left(x\right)g_{j}\left(q^{i}x\right)\right)y^{n},
$$

where $f_i\left(x\right)g_j\left(q^ix\right)$ is the multiplication in the algebra $\mathbb{C}\left[\left[x\right]\right]$, which is commutative.

In a similar way, $\mathbb{C}\left[[x,y]\right]=\left[[x]\right]\mathbb{C}\left[[y]\right]$ and every $h=\sum_{i,k}c_{ik}x^iy^k$ can be rewritten in the form $h=\sum_n x^m h_m\left(y\right)$ with $h_m\left(y\right)=\sum_i c_{mi} y^i$. Then

$$
f \cdot g = \sum_{m} x^{m} \left(\sum_{s+t=m} f_{s} \left(q^{t} y \right) g_{t} \left(y \right) \right),
$$

where $f_{s}\left(q^{t}y\right)g_{t}\left(y\right)$ is the multiplication in the algebra $\mathbb{C}\left[\left[y\right]\right]$, which is commutative.

Thus the formal q-multiplication in $\mathbb{C}[[x, y]]$ can be defined in two different ways by extending the multiplication of the q-plane \mathfrak{A}_q .

 200

The algebra $\mathbb{C}[[x, y]]$ has the continuous trivial character

$$
(0,0): \mathbb{C}\left[\left[x,y \right] \right] \rightarrow \mathbb{C}
$$

annihilating both variables x and y. The notation $(0, 0)$ will be justified below as a point of the q-plane \mathbb{C}_{xv} . The algebra $\mathbb{C}[[x, y]]$ is local with its

$$
Rad\,C\,[[x,y]]=\mathsf{ker}\,(0,0)
$$

to be the closed two sided ideal generated by x and y . In particular,

$$
Spec\left(\mathbb{C}\left[[x,y]\right]\right)=\left\{ (0,0)\right\} .
$$

Fix $q \in \mathbb{C} \setminus \{0\}$, $|q| < 1$. A subset $S \subseteq \mathbb{C}$ is called a *q-spiraling set* if it contains the origin and $\{q^n x : n \in \mathbb{Z}_+\} \subseteq S$ for every $x \in S$. Thus S is a q-spiraling set iff $S_q = S$, where

$$
S_q = \{0\} \cup (\cup_{n=1}^{\infty} q^n S)
$$

is the *q-hull of S*. If $S = \{x\}$ is a singleton, then $\{x\}_{q}$ is a spiraling sequence which tends to zero including its limit point, that is,

$$
\{x\}_q = \{q^n x : n \in \mathbb{Z}_+\} \cup \{0\}
$$

is a compact set.

A subset $U \subseteq \mathbb{C}$ is said to be a q-open set if it is an open subset of \mathbb{C} in the standard topology, which is also a q-spiraling set. The whole plane **C** is q -open, and the empty set is assumed to be q -open set.

The family of all q -open subsets defines a new topology q in $\mathbb C$, which is weaker than the original standard topology of the complex plane. Every open disk $B(0, r)$ centered at the origin is a q-open set. Thus the neighborhood filter base of the origin is the same in both q-topology and the standard topology.

Notice that $\{0\}$ is a generic point of the topological space $(\mathbb{C}, \mathfrak{q})$ being dense in it. If $x \in \mathbb{C} \setminus \{0\}$ then its closure in $(\mathbb{C}, \mathfrak{q})$ is given by

$$
\{x\}^{-\mathfrak{q}} = \left\{q^{-k}x : k \in \mathbb{Z}_+\right\}.
$$

Thus (C, q) satisfies the axiom T_0 , and it turns out to be an irreducible topological space, which is not quasicompact.

If $K \subseteq \mathbb{C}$ is a compact subset then it is quasicompact in $(\mathbb{C}, \mathfrak{q})$, but not necessarily q-closed subset. All disks (open or closed) centered at the origin are quasicompact (nonclosed) subsets of (**C**, q). They are all dense in (C, q) . Every closure $\{x\}^-$ of a point $x \in C$ is not quasicompact. A nonempty subset $K \subseteq (\mathbb{C}, \mathfrak{q})$ is quasicompact iff so is its q-hull $K_{\mathfrak{q}}$. In this case, K is bounded automatically.

つへへ

K ロ ト K 何 ト K ヨ ト K ヨ

The standard sheaf

Let $\mathcal O$ be the standard Fréchet sheaf of stalks of the holomorphic functions on C and let $id : \mathbb{C} \to (\mathbb{C}, \mathfrak{q})$ be the identity (continuous) mapping. Put

$$
\mathcal{O}^{\mathfrak{q}} = \mathrm{id}_{*}\,\mathcal{O}
$$

to be the direct image of $\mathcal O$ along the identity mapping. It is a Fréchet algebra sheaf on (C, q) . For every q-open set U and its quasicompact subset $K \subseteq U$ we define the related seminorm

$$
\|f\|_{K} = \sup |f(K)|, \quad f \in \mathcal{O}(U)
$$

on the algebra $\mathcal{O}^{\mathfrak{q}}\left(U\right)$. The family $\left\{ \left\Vert \cdot\right\Vert _{\mathcal{K}}\right\}$ of seminorms over all q-compact subsets $K \subseteq U$ (that is, $K = K_q$) defines the same original Fréchet topology of $\mathcal{O}(U)$, that is,

$$
\mathcal{O}^{\mathfrak{q}}\left(\mathit{U}\right)=\mathcal{O}\left(\mathit{U}\right)
$$

as the Fréchet algebras.

つへへ

But $\mathcal{O}^{\mathfrak{q}}$ and $\mathcal O$ are different sheaves having quite different stalks. The stalks of the sheaves $\mathcal{O}^\mathfrak{q}$ and $\mathcal O$ at zero coincide, whereas

$$
\mathcal{O}_{\lambda}^{\mathfrak{q}}=\mathcal{O}\left(\left\{ \lambda\right\} _{\mathfrak{q}}\right)=\mathcal{O}_{0}+\sum_{n\in\mathbb{Z}_{+}}\mathcal{O}_{\mathfrak{q}^{n}\lambda}
$$

at every $\lambda \in \mathbb{C}\backslash\left\{0\right\}$. The algebra $\mathcal{O}^{\mathfrak{q}}_{\lambda}$ is not local for $\lambda \in \mathbb{C}\backslash\left\{0\right\}$. It has an ideal of those stalks $\langle U, f \rangle \in \mathcal{O}_\lambda^{\mathfrak{q}}$ with $f\left(\{ \lambda \}_q \right) = \{ 0 \}.$

The sheaf \mathcal{O}^q has the following filtration $\{\mathfrak{m}_d\}$ of closed ideal subsheaves. If $U \subseteq (\mathbb{C}, \mathfrak{q})$ is a q-open subset, then it contains the origin and we put

$$
\mathfrak{m}_{d}\left(U\right)=\left\{ f\left(z\right)\in\mathcal{O}^{\mathfrak{q}}\left(U\right):z^{-d}f\left(z\right)\in\mathcal{O}^{\mathfrak{q}}\left(U\right)\right\}
$$

to be a closed ideal of $\mathcal{O}^{\mathfrak{q}}(U)$, where $d \in \mathbb{Z}_{+}$. Notice that $\mathfrak{m}_0 = \mathcal{O}^{\mathfrak{q}}$, and $\mathfrak{m}_d\left(U\right)$ consists of those $f\left(z\right) \in \mathcal{O}^\mathfrak{q}\left(U\right)$ such that

$$
f(0) = f'(0) = \cdots = f^{(d-1)}(0) = 0.
$$

The ideal $\mathfrak{m}_d\left(U\right)$ is the principal ideal of $\mathcal{O}^{\mathfrak{q}}\left(U\right)$ generated by z^d , that is,

$$
\mathfrak{m}_{d}\left(U\right)=z^{d}\mathcal{O}^{\mathfrak{q}}\left(U\right).
$$

The linear mapping

$$
\mathfrak{m}_d(U) \to \mathcal{O}^{\mathfrak{q}}(U), \quad f(z) \mapsto z^{-d} f(z)
$$

implements a topological isomorphism of the Fréchet spaces preserving the multiplication operator by z. Moreover,

$$
\mathcal{O}^{\mathfrak{q}}\left(U\right)=\mathfrak{m}_{d}\left(U\right)\oplus\mathbb{C}1\oplus\mathbb{C}z\oplus\cdots\oplus\mathbb{C}z^{d-1}
$$

is a topological direct sum of the subalgebras m_d (U) and (polynomial) $C1 \oplus Cz \oplus \cdots \oplus Cz^{d-1}$.

$$
3/11 \qquad 21 \ / \ 59
$$

 Ω

イロト イ部 トイヨ トイヨ トー

Thus m_d (U) defines a new Fréchet O-module sheaf on (\mathbb{C}, q) , which is an isomorphic copy of \mathcal{O}^q . We use the notation \mathcal{O}^q (*d*) for this Fréchet sheaf called the *d*-shift of $\mathcal{O}^{\mathfrak{q}}$. Thus

$$
\mathcal{O}^q = \mathcal{O}^q(d) \oplus \mathbb{C}1 \oplus \mathbb{C}z \oplus \cdots \oplus \mathbb{C}z^{d-1}
$$

is a direct sum of the Fréchet sheaves for every $d \in \mathbb{Z}_+$. In particular,

$$
\mathcal{O}^{\mathfrak{q}}\left(0\right)=\mathcal{O}^{\mathfrak{q}}.
$$

The spectrum \mathbb{C}_{xv} being the union $\mathbb{C}_{x} \cup \mathbb{C}_{v}$ can be equipped with the final topology so that both embeddings

$$
(\mathbb{C}_x,\mathfrak{q})\hookrightarrow \mathbb{C}_{xy}\hookleftarrow (\mathbb{C}_y,\mathfrak{q})
$$

are continuous, which is called the q-topology of \mathbb{C}_{xv} . The topology base in \mathbb{C}_{xv} consists of all open subsets $U = U_x \cup U_v$ with q-open sets $U_x \subset \mathbb{C}_x$ and $U_y \subset \mathbb{C}_y$. In this case,

$$
\mathbb{C}_{xy}=\mathbb{C}_x\cup\mathbb{C}_y
$$

is the union of two irreducible components, whose intersection is a unique generic point.

つへへ

Consider the Fréchet sheaf \mathcal{O}^q and the constant Fréchet sheaf $\mathbb{C}[[y]]$ over the topological space $(\mathbb{C}_{x}, \mathfrak{q})$. Put

$$
\mathcal{O}^{\mathfrak{q}}\left[\left[y\right] \right] =\mathcal{O}^{\mathfrak{q}}\widehat{\otimes} \mathbb{C}\left[\left[y\right] \right]
$$

to be their projective tensor product. The space $\mathcal{O}^{\mathfrak{q}} \left[\left[y \right] \right] \left(U_{x} \right)$ of all its sections over a q-open subset U_x is the Fréchet space $\mathcal{O}(U_x)[[y]]$ equipped with the defining family $\big\{\|\cdot\|_{K,m}: K\subseteq U_\mathsf{x}, m\in \mathbb{Z}_+\big\}$ of seminorms, where

$$
|| f ||_{K,m} = \sum_{n=0}^{m} || f_n ||_{K}, \quad f \in \mathcal{O}(U_x) [[y]],
$$

and $K \subset U_{x}$ is a compact subset.

The sheaf on the x-direction

It turns out that $\mathcal{O}^{\mathfrak{q}}[[y]]$ is a Fréchet $\widehat{\otimes}$ -algebra sheaf equipped with the formal q -multiplication. Namely, if $f = \sum_n f_n(x) y^n$ and $g = \sum_n g_n(x) y^n$ are sections from $\mathcal{O}^{\mathfrak{q}}\left[\left[y\right] \right] \left(U_{x}\right)$, then we put

$$
f\cdot g=\sum_{n}\left(\sum_{i+j=n}f_{i}\left(x\right)g_{j}\left(q^{i}x\right)\right)y^{n}.
$$

Notice that $\left\{ q^i x : i \in \mathbb{Z}_+ \right\} \cup \left\{ 0 \right\} = \left\{ x \right\}_q \subseteq U_x$ whenever $x \in U_x$, and $f_i\left(x\right)g_j\left(q^ix\right)$ is the multiplication from the commutative algebra $\mathcal{O}\left(\left.U_\mathsf{x}\right)\right)$. Moreover,

$$
\left\{\left\|\cdot\right\|_{K,m}:K\subseteq U_x,\quad m\in\mathbb{Z}_+\right\}
$$

is a defining family of multiplicative seminorms of $\mathcal{O}^{\mathfrak{q}}\left(U_{\chi} \right) [[y]]$ whenever $K \subseteq U_x$ is running over all q-compact subsets and $m \in \mathbb{Z}_+$ (the Arens-Michael-Fréchet algebra)

つへへ

The canonical mapping

$$
I(U_x) : \mathcal{O}_q(C_{xy}) \to \mathcal{O}^q(U_x) [[y]],
$$

$$
f = \sum_{i,k} a_{ik} x^i y^k \mapsto I(U_x) (f) = \sum_n \left(\sum_i a_{in} x^i \right) y^n
$$

is a continuous algebra homomorphism. In particular, $\mathcal{O}(U_x)$ [[y]] is a Fréchet \mathcal{O}_q (\mathbb{C}_{xy})-algebra (or Fréchet \mathcal{O}_q (\mathbb{C}_{xy})-bimodule) and

$$
\text{Spec}\left(\mathcal{O}^{\mathfrak{q}}\left(\left.U_{x}\right)[[y]\right]\right)=U_{x}.
$$

つひひ

The sheaf on the y-direction

One can also consider the Fréchet $\widehat{\otimes}$ -algebra sheaf $[[x]]$ ${\cal O}^{\mathfrak{q}}$ over the topological space (C_y, q) with the formal q-multiplication

$$
f\cdot g=\sum_{n}x^{n}\left(\sum_{i+j=n}f_{i}\left(q^{j}y\right)g_{j}\left(y\right)\right)\in\left[\left[x\right]\right]\mathcal{O}^{q}\left(U_{y}\right),
$$

where $f = \sum_n x^n f_n(y)$, $g = \sum_n x^n g_n(y)$, The canonical mapping

$$
r(U_x) : \mathcal{O}_q(C_{xy}) \to [[x]] \mathcal{O}^q(U_y),
$$

$$
f = \sum_{i,k} a_{ik} x^i y^k \mapsto r(U_y) (f) = \sum_n x^n \left(\sum_k a_{nk} y^k \right)
$$

is a continuous algebra homomorphism. So $[[x]] \mathcal{O}^{\mathfrak{q}}(U_y)$ is a Fréchet \mathcal{O}_q (\mathbb{C}_{xy})-algebra and

$$
Spec ([[x]] \mathcal{O}^{\mathfrak{q}}(U_y)) = U_y.
$$

Both sheaves $\mathcal{O}^{\mathfrak{q}}\left[\left[\mathsf{y}\right] \right]$ and $\left[\left[\mathsf{x}\right] \right] \mathcal{O}^{\mathfrak{q}}$ are identified with the related Fréchet \otimes -algebra sheaves on \mathbb{C}_{xy} as the direct images along the canonical inclusions $\mathbb{C}_x \hookrightarrow \mathbb{C}_{xv}$ and $\mathbb{C}_v \hookrightarrow \mathbb{C}_{xv}$, respectively. Moreover, both Fréchet \otimes -algebras \mathcal{O}_q (\mathbb{C}_{xy}) and \mathbb{C} $[[x, y]]$ equipped with the formal q-multiplication are identified with the constant sheaves on \mathbb{C}_{xv} . Let $U \subset \mathbb{C}_{xv}$ be a q-open subset. The following topological algebra decompositions

$$
\mathcal{O}^{\mathfrak{q}}\left(U_{x}\right)[[y]] = \mathcal{O}^{\mathfrak{q}}\left(U_{x}\right) \oplus \text{Rad } \mathcal{O}^{\mathfrak{q}}\left(U_{x}\right)[[y]] ,[[x]] \mathcal{O}^{\mathfrak{q}}\left(U_{y}\right) = \mathcal{O}^{\mathfrak{q}}\left(U_{y}\right) \oplus \text{Rad } [[y]] \mathcal{O}^{\mathfrak{q}}\left(U_{y}\right)
$$

hold. In this case, $\operatorname{Rad} \mathcal{O}^{\mathfrak{q}} \left(\mathit{U}_{x} \right)[\![y]\!] = \prod_{\tau \in \mathbb{R}^n}$ $\prod_{n\in\mathbb{N}}\mathcal{O}^{\mathfrak{q}}\left(\mathit{U}_{x}\right)\mathit{y}^{n}$ and $\text{Rad}\left[\left[x\right] \right] \mathcal{O}^{\mathfrak{q}}\left(U_{y}\right) =\prod_{x\in\mathbb{R}}% \mathcal{O}^{\mathfrak{q}}\left(U_{y}\right)$ $n \in \mathbb{N}$ $x^n\mathcal{O}^{\mathfrak{q}}(\mathcal{U}_y)$.

つへへ

Let $U = U_x \cup U_y \subseteq \mathbb{C}_{xy}$ be a q-open subset. The canonical maps

$$
\mathcal{O}^{q}(U_{x})[[y]] \qquad \qquad [[x]] \mathcal{O}^{q}(U_{y})
$$
\n
$$
\mathbb{C}[[x,y]] \qquad \qquad \angle t(U_{y})
$$

$$
s(U_x): \sum_{n} f_n(x) y^n \mapsto \sum_{s,i} \frac{f_i^{(s)}(0)}{s!} x^s y^i,
$$

$$
t(U_y): \sum_{n} x^n g_n(y) \mapsto \sum_{t,j} \frac{g_t^{(j)}(0)}{j!} x^t y^j,
$$

are continuous algebra homomorphisms. They are formal evaluations of the stalks at zero from both directions $\mathcal{O}^{\mathfrak{q}}\left[\left[y\right] \right]$ and $\left[\left[x\right] \right] \mathcal{O}^{\mathfrak{q}}.$

つひひ

Thus there are Fréchet $\hat{\otimes}$ -algebra sheaf morphisms

 Ω

that makes the diagram commutative.

Now we focus on sections from both directions that are compatible at zero. We define a new sheaf ${\mathcal F}_q$ of Fréchet \circledR -algebras on ${\mathbb C}_{xy}$ to be the fibered product

$$
\mathcal{F}_q = \mathcal{O}^\mathfrak{q}\left[[y]\right] \underset{\mathbb{C}[[\text{x},\text{y}]]}{\times} \left[[\text{x}]\right] \mathcal{O}^\mathfrak{q}
$$

of the Fréchet $\widehat{\otimes}$ -algebra sheaves $\mathcal{O}^{\mathfrak{q}}\left[[y]\right]$ and $\left[[x]\right]\mathcal{O}^{\mathfrak{q}}$ over the constant sheaf $\mathbb{C}[[x, y]]$. It is uniquely given by the following commutative diagram

つへへ

Let $U \subseteq \mathbb{C}_{xv}$ be a q-open subset. Then $\mathcal{F}_{q}(U)$ consists of those couples

$$
(f,g)\in\mathcal{O}^{\mathfrak{q}}\left(\left.U_{x}\right)\left[\left[y\right]\right]\oplus\left[\left[x\right]\right]\mathcal{O}^{\mathfrak{q}}\left(\left.U_{y}\right)\right]
$$

such that

$$
\frac{f_k^{(i)}(0)}{i!} = \frac{g_i^{(k)}(0)}{k!} \text{ for all } i, k \in \mathbb{Z}_+.
$$

There is a unique natural Fréchet \otimes -algebra sheaf morphism

$$
\mathcal{O}_q\left(\mathbb{C}_{xy}\right) \to \mathcal{F}_q
$$

given by the morphisms l and r .

Let X, Y, Z be objects with morphisms $s: X \to Z$, $t: Y \to Z$ from $\mathfrak{F}a$. The fibered product $X \times Y$ of X and Y over Z or the morphism couple (s, t) is the defined to be the pullback of the morphisms s and t in the category $\mathfrak F$ a. Thus $X \times Y$ is a Fréchet \otimes -algebra equipped with the projections p and q that make the diagram

commutative.

 200

It possesses the following universal-injective property: if

is another similar commutative diagram in \mathfrak{F} a then there is a unique morphism $u:W\to X\times Y$ such that $pu=p'$ and $qu=q'.$

The fibered product $X \times Y$ of the morphisms $s : X \to Z$, $t : Y \to Z$ from Fa does exist and

$$
X \underset{Z}{\times} Y = \{(x, y) \in X \oplus Y : s(x) = t(y)\}
$$

is a closed subalgebra of the direct sum $X\oplus Y$ of the Fréchet $\hat{\otimes}$ -algebras.

つひひ

The standard sheaf \mathcal{O}^q of stalks of holomorphic functions on $\mathbb{C}_{x\vee}$ can also be treated as the fibered product

$$
\mathcal{O}^{\mathfrak{q}} = \mathcal{O}^{\mathfrak{q}}_x \underset{\mathbb{C}}{\times} \mathcal{O}^{\mathfrak{q}}_y.
$$

For every q-open subset $U \subset \mathbb{C}_{xv}$ we have

$$
\mathcal{O}^{\mathfrak{q}}\left(U\right) = \mathcal{O}^{\mathfrak{q}}\left(U_{x}\right) \underset{\mathbb{C}}{\times} \mathcal{O}^{\mathfrak{q}}\left(U_{y}\right) \n= \left\{ \left(f_{0}, g_{0}\right) \in \mathcal{O}^{\mathfrak{q}}\left(U_{x}\right) \oplus \mathcal{O}^{\mathfrak{q}}\left(U_{y}\right) : f_{0}\left(0\right) = g_{0}\left(0\right) \right\}
$$

to be a closed subalgebra of the Fréchet sum $\mathcal{O}^{\mathfrak{q}} \left(U_{x}\right) \oplus \mathcal{O}^{\mathfrak{q}} \left(U_{y}\right)$. Notice

$$
Spec\left(\mathcal{O}^{\mathfrak{q}}\left(\mathcal{U}\right)\right)=\mathcal{U}.
$$

The Fréchet algebra sheaf on the q-plane

The following diagrams

are linked in the following way.

There are canonical projections and the trivial character

$$
\mathcal{O}^{q}(U_{x})[[y]] \rightarrow \mathcal{O}^{q}(U_{x}), \sum f_{n}(x) y^{n} \mapsto f_{0}(z)
$$

[[x]] $\mathcal{O}^{q}(U_{y}) \rightarrow \mathcal{O}^{q}(U_{y}), \sum x^{n}g_{n}(y) \mapsto g_{0}(w),$

$$
(0,0) : \mathbb{C}[[x,y]] \rightarrow \mathbb{C}.
$$

Based on the universal-injective property of the fibered products given by these morphisms, we obtain a unique continuous algebra homomorphism

$$
\Lambda(U): \mathcal{F}_q(U) \to \mathcal{O}^q(U), \quad \Lambda(U)(f,g) = (f_0,g_0).
$$

The first challenging problem: is it true that ker $\Lambda(U) = \text{Rad } \mathcal{F}_\sigma(U)$? If yes, how can we describe it ?

The filtration given by the subsheaves of the z^d -principal ideals of \mathcal{O}^q on \mathbb{C}_x defines the family $\{ \mathcal{O}_x^{\mathfrak{q}}(d) : d \in \mathbb{Z}_+ \}$ of Fréchet space sheaves. In a similar way, $\{ \mathcal{O}_y^{\mathfrak{q}}(d) : d \in \mathbb{Z}_+ \}$ is given by the filtration of w^d -principal ideals of \mathcal{O}^q on \mathbb{C}_v . There are continuous (evaluation) linear maps

$$
s_{d}: f(z) \mapsto (d!)^{-1} f^{(d)}(0), \quad t_{d}: g(w) \mapsto (d!)^{-1} g^{(d)}(0)
$$

that define

$$
\mathcal{O}^{\mathfrak{q}}\left(d\right)=\mathcal{O}_{x}^{\mathfrak{q}}\left(d\right)\underset{\mathbb{C}}{\times}\mathcal{O}_{y}^{\mathfrak{q}}\left(d\right)
$$

to be a Fréchet space sheaf on \mathbb{C}_{xy} , and $\mathcal{O}^{\mathfrak{q}} \left(0\right) = \mathcal{O}_x^{\mathfrak{q}} \left(0\right) \underset{\mathbb{C}}{\times} \mathcal{O}_y^{\mathfrak{q}} \left(0\right) = \mathcal{O}^{\mathfrak{q}}.$

 200

For $d \in \mathbb{N}$, $f \in \mathcal{O}_X^{\mathfrak{q}}(d)$ (U_x) , $g \in \mathcal{O}_y^{\mathfrak{q}}(d)$ (U_y) we have

$$
s_{0} (U_{x}) \left(z^{-d} f(z)\right) = \left(z^{-d} f(z)\right)|_{z=0} = (d!)^{-1} f^{(d)} (0)
$$

$$
= s_{d} (U_{x}) (f(z)),
$$

$$
t_{0} (U_{y}) \left(w^{-d} g(w)\right) = t_{d} (U_{y}) (g(w)).
$$

Thus the isomorphisms

$$
\begin{array}{rcl}\n\mathcal{O}_{X}^{q} (d) (U_{X}) & \rightarrow & \mathcal{O}^{q} (U_{X}), \quad f (z) \mapsto z^{-d} f (z), \\
\mathcal{O}_{y}^{q} (d) (U_{y}) & \rightarrow & \mathcal{O}^{q} (U_{y}), \quad g (w) \mapsto w^{-d} g (w)\n\end{array}
$$

are compatible with the evaluations maps.

Using the universal-injective property, we deduce that

$$
\mathcal{O}^{q}\left(d\right)\left(\mathcal{U}\right)\to\mathcal{O}^{q}\left(\mathcal{U}\right),\quad\left(f\left(z\right),g\left(w\right)\right)\mapsto\left(z^{-d}f\left(z\right),w^{-d}g\left(w\right)\right)
$$

is a topological isomorphism of the Fréchet spaces. Thus

$$
\{\mathcal{O}^{\mathfrak{q}}\left(d\right):d\in\mathbb{Z}_{+}\}
$$

are isomorphic copies of the Fréchet sheaf \mathcal{O}^q on \mathbb{C}_{xv} .

The decomposition theorem

If $U \subseteq \mathbb{C}_{xy}$ is q-open, then $\Lambda(U) : \mathcal{F}_q(U) \to \mathcal{O}^q(U)$ is a retraction in \mathfrak{F} s, which allows us to identify $\mathcal{O}^{\mathfrak{q}}\left(U\right)$ with a complemented subspace of $\mathcal{F}_{q}\left(\mathbf{U}\right)$.

Theorem 1. The following decomposition holds

$$
\mathcal{F}_{q}\left(U\right)=\mathcal{O}^{\mathfrak{q}}\left(U\right)\oplus\mathrm{Rad}\,\mathcal{F}_{q}\left(U\right)
$$

into a topological direct sum of the closed subspaces. Moreover,

$$
\operatorname{Rad} \mathcal{F}_q(U) = \prod_{d \in \mathbb{N}} \mathcal{O}^q(d) (U)
$$

up to a topological isomorphism of the Fréchet spaces, and

$$
Spec\left(\mathcal{F}_{q}\left(U\right)\right)=U.
$$

Thus one needs to take the structure sheaf \mathcal{O}^q of the commutative space $(\mathbb{C}_{xy}, \mathcal{O}^{\mathfrak{q}})$ and use its deformation quantization

$$
\mathcal{F}_{q}=\prod_{d\in\mathbb{Z}_{+}}\mathcal{O}^{q}\left(d\right)
$$

which results in the noncommutative analytic q-space (C_{xy}, \mathcal{F}_q) of \mathcal{O}_{q} (\mathbb{C}_{xv})-algebras such that

$$
C_{xy} = \operatorname{Spec} \Gamma (C_{xy}, \mathcal{F}_q).
$$

In this case,

$$
\mathcal{F}_q = \mathcal{O}^{\mathfrak{q}} \oplus \text{Rad}\,\mathcal{F}_q.
$$

But Γ (\mathbb{C}_{xv} , \mathcal{F}_q) is larger than \mathcal{O}_q (\mathbb{C}_{xv}) (a bit).

It turns out that

$$
\mathcal{O}_q(C_{xy}) = \left\{ f = \sum_{i,k} a_{ik} x^i y^k : ||f||_{\rho} = \sum_{i,k} |a_{ik}| \rho^{i+k} < \infty, \rho > 0 \right\}
$$

$$
\subseteq \left\{ \begin{array}{l} f = \sum_{i,k} a_{ik} x^i y^k : \sum_{i} |a_{ik}| \rho^i < \infty, \sum_{k} |a_{ik}| \rho^k < \infty, \\ \rho > 0, i, k \in \mathbb{Z}_+ \end{array} \right\}
$$

$$
= \Gamma(C_{xy}, \mathcal{F}_q).
$$

K ロ ト K 伊 ト K

э × \rightarrow э 299

The global sections

For example, the formal series

$$
f = \sum_{i,k} \frac{i^k k^i}{i!k!} x^i y^k \in \Gamma\left(\mathcal{F}_q, \mathbb{C}_{xy}\right) \setminus \mathcal{O}_q\left(\mathbb{C}_{xy}\right).
$$

Indeed, for $\rho = 1$ we have

$$
||f||_1 = \sum_{i,k} \frac{i^k k^i}{i!k!} \ge \sum_n \left(\frac{n^n}{n!}\right)^2 = \infty,
$$

whereas

$$
\sum_{i} \frac{i^k k^i}{i!k!} \rho^i < \infty \quad \text{and} \quad \sum_{k} \frac{i^k k^i}{i!k!} \rho^k < \infty
$$

4 0 8

for all $\rho > 0$.

 \rightarrow

 299

The topological homology

The canonical embedding $\mathfrak{A}_q \to \mathcal{O}_q(\mathbb{C}_{xy})$ is a localization in the sense of Taylor (by A. Yu. Prikovskii (2008)). Using the Takhtajan resolution, we obtain its resolution $\mathcal{R}\left(\mathcal{O}_q\left(\mathbb{C}_{\mathsf{x}\mathsf{y}}\right)^{\widehat{\otimes}2}\right)$:

$$
0\to {\mathcal O}_{q}\left(\mathbb{C}_{xy}\right)^{\widehat\otimes 2}\stackrel{d^0}{\longrightarrow} {\mathcal O}_{q}\left(\mathbb{C}_{xy}\right)^{\widehat\otimes 2}\oplus {\mathcal O}_{q}\left(\mathbb{C}_{xy}\right)^{\widehat\otimes 2}\stackrel{d^1}{\longrightarrow} {\mathcal O}_{q}\left(\mathbb{C}_{xy}\right)^{\widehat\otimes 2}\to 0,
$$

whose differentials can be written as

$$
d^0 = \left[\begin{array}{l} R_{\mathsf y} \otimes 1 - q 1 \otimes L_{\mathsf y} \\ 1 \otimes L_{\mathsf x} - q R_{\mathsf x} \otimes 1 \end{array}\right], \,\, d^1 = \left[\begin{array}{l} 1 \otimes L_{\mathsf x} - R_{\mathsf x} \otimes 1 & 1 \otimes L_{\mathsf y} - R_{\mathsf y} \otimes 1 \end{array}\right],
$$

where L and R indicate to the left and right regular (anti) representations of the algebra $\mathcal{O}_{q}(\mathbb{C}_{xy})$.

つひい

The topological homology

It follows that every Fréchet $\mathcal{O}_{q}(\mathbb{C}_{xv})$ -algebra A possesses a similar resolution. By applying the functor $\mathcal{A} \underset{\mathcal{O}_q(\mathbb{C}_{xy})}{\otimes} \circ \underset{\mathcal{O}_q(\mathbb{C}_{xy})}{\otimes} \mathcal{A}$ to the resolution

 $\overline{\mathcal{K}}$ $\left(\mathcal{O}_q\left(\mathbb{C}_{xy}\right)^{\widehat{\otimes}2}\right)$, we obtain that

$$
\mathcal{A}\underset{\mathcal{O}_{q}\left(\mathbb{C}_{xy}\right)}{\widehat{\otimes}}\mathcal{R}\left(\mathcal{O}_{q}\left(\mathbb{C}_{xy}\right)^{\widehat{\otimes}2}\right)\underset{\mathcal{O}_{q}\left(\mathbb{C}_{xy}\right)}{\widehat{\otimes}}\mathcal{A}=\mathcal{R}\left(\mathcal{A}^{\widehat{\otimes}2}\right).
$$

Therefore $\mathcal{R}\left(\mathcal{A}^{\widehat{\otimes}2}\right)$ is a free \mathcal{A} -bimodule resolution of \mathcal{A} with the same differentials, that is, the complex

$$
\mathcal{R}\left(\mathcal{A}^{\widehat{\otimes}2}\right) \stackrel{\pi}{\longrightarrow} \mathcal{A} \to 0
$$

is admissible. The potential candidates for A are the following algebras $\mathcal{O}(U_x)$ [[y]], [[x]] $\mathcal{O}(U_y)$, $\mathcal{F}_q(U)$ and \mathbb{C} [[x, y]].

Let X be a left Fréchet $\mathcal{O}_q(C_{xy})$ -module, which means that there is a pair $T, S \in \mathcal{L}(X)$ with $TS = q^{-1}ST$. A right Fréchet $\mathcal{O}_q(\mathbb{C}_{xy})$ -module Y is in the transversality relation with respect to X if

$$
\operatorname{Tor}_k^{\mathcal{O}_q(\mathbb{C}_{xy})}(Y,X)=\{0\},\quad k\geq 0.
$$

In this case we write $Y \perp X$ (see A. Ya. Helemskii, Homology Banach. Top. Alg.). Every $\gamma \in \mathbb{C}_{xv}$ being a continuous character of $\mathcal{O}_a(\mathbb{C}_{xv})$ defines the trivial $\mathcal{O}_q(\mathbb{C}_{XV})$ -module $\mathbb{C}(\gamma)$. The resolvent set res (T, S) is defined to be a set of those $\gamma \in \mathbb{C}_{xy}$ such that $\mathbb{C}(\gamma) \perp_{\mathcal{O}_a(\mathbb{C}_{xy})} X$. The set

$$
\sigma(T, S) = \text{Spec}(\mathcal{O}_q(C_{xy})) \setminus \text{res}(T, S)
$$

is called the joint (Taylor) spectrum of the operator pair (T, S) .

つひひ

The homology groups $\mathrm{Tor}_k^{\mathcal{O}_q({\mathbb{C}}_{\chi_y})}\left(\mathbb{C}\left(\gamma\right),X\right)$ can be calculated by means of the obtained resolution. We come up with the following parametrized over \mathbb{C}_{xv} Fréchet space complex

$$
0 \to X \xrightarrow{d_{\gamma}^0} X \oplus X \xrightarrow{d_{\gamma}^1} X \to 0
$$

with the differentials

$$
d_{\gamma}^{0} = \left[\begin{array}{c} \gamma(y) - qS \\ T - q\gamma(x) \end{array} \right], d_{\gamma}^{1} = \left[T - \gamma(x) \quad S - \gamma(y) \right].
$$

Thus $\sigma(T, S) = \sigma_x(T, S) \cup \sigma_y(T, S)$, where $\sigma_x(T, S) = \sigma(T, S) \cap \mathbb{C}_x$ and σ_v $(T, S) = \sigma(T, S) \cap \mathbb{C}_v$.

 2040

Theorem 2. Let X be a left Banach \mathfrak{A}_{q} -module given by an operator pair $T, S \in \mathcal{B}(\mathcal{X})$ with $TS = q^{-1}ST$, and let $U \subseteq \mathbb{C}_{\mathsf{x}\mathsf{y}}$ be a q -open subset. Then

$$
\mathcal{O}(U_x)[[y]] \perp X \Leftrightarrow U_x \cap \sigma_x (T, S) = \varnothing,
$$

\n
$$
[[x]] \mathcal{O}(U_y) \perp X \Leftrightarrow U_y \cap \sigma_y (T, S) = \varnothing.
$$

\n
$$
\mathbb{C}[[x, y]] \perp X \Leftrightarrow (0, 0) \notin \sigma (T, S).
$$

Is it possible to get the same result for $\mathcal{F}_q(U)$ by passing to the fibered product of the exact complexes? The answer is NO (in the general case).

つへへ

French général

If

are morphisms in $\mathfrak{F}a$, then by a morphism $\tau : (s_1, t_1) \rightarrow (s_2, t_2)$ of these couples we mean a triple $\tau = (f, g, l)$ of morphisms

$$
f: X_1 \to X_2, \qquad g: Y_1 \to Y_2,
$$

$$
I: Z_1 \to Z_2
$$

from $\mathfrak{F}a$ such that $s_2f = l s_1$ and $t_2g = l t_1$. It is a new category of the couples over $\mathfrak{F}a$. The morphism τ in turn defines the morphism

$$
u = f \times_1 g : X_1 \times Y_1 \longrightarrow X_2 \times Y_2,
$$

\n
$$
p_2 u = fp_1, \quad q_2 u = gq_2
$$

in $\mathfrak F$ a of the fibered products by the universal-injective property of $X_2 \underset{\mathcal Z_2}{\times} Y_2.$ $\overline{2}$ $\overline{$

Proposition 3. Let

$$
0\longrightarrow\left(s_{0},\,t_{0}\right)\xrightarrow{\tau_{0}}\left(s_{1},\,t_{1}\right)\xrightarrow{\tau_{1}}\left(s_{2},\,t_{2}\right)\longrightarrow0
$$

be an exact sequence of the morphism couples over $\mathfrak{F}a$. Then the related sequence

$$
0 \to X_0 \underset{Z_0}{\times} Y_0 \xrightarrow{u_0} X_1 \underset{Z_1}{\times} Y_1 \xrightarrow{u_1} X_2 \underset{Z_2}{\times} Y_2
$$

of the fibered products is exact, im (u_1) is closed, and

$$
H^{2} = X_{2} \underset{Z_{2}}{\times} Y_{2} / \text{ im} (u_{1}) = I_{0}^{-1} (\text{ im } [\begin{array}{cc} s_{1} & t_{1} \end{array}]) / (\text{ im } [\begin{array}{cc} s_{0} & t_{0} \end{array}]) ,
$$

where $\mathrm{im} \, \big[\begin{array}{cc} \mathsf{s}_i & t_i \end{array} \big] = \mathrm{im} \, (\mathsf{s}_i) + \mathrm{im} \, (t_i), \, i = 0, 1.$ Thus the identification is a topological isomorphism iff $\mathrm{im} \, \lbrack \, s_0 \quad t_0 \, \, \rbrack$ is closed.

 200

Nonetheless using our decomposition theorem one can prove the following transversality assertion for the sheaf \mathcal{F}_q too.

Theorem 4. Let X be a left Banach \mathfrak{A}_q -module given by an operator pair $T, S \in \mathcal{B}(X)$ with $TS = q^{-1}ST$, and let $U \subseteq \mathbb{C}_{xy}$ be a nonempty q-open subset. Then

$$
\mathcal{F}_q(U) \perp X \quad \Leftrightarrow \quad U \cap \sigma(T, S) = \varnothing.
$$

つへへ

Theorem 5. Let $U \subseteq \mathbb{C}_{\mathsf{x}\mathsf{v}}$ be q-open. If the left $\mathcal{O}_{q}(\mathbb{C}_{\mathsf{x}\mathsf{v}})$ -module action on a Banach space X is extended up to a left Banach $\mathcal{F}_{q}(U)$ -module structure on X , then

$$
\exists n \in \mathbb{N}, \quad (TS)^n = 0, \text{ and } \sigma(T) \subseteq U_x, \quad \sigma(S) \subseteq U_y.
$$

Moreover, the left Banach \mathcal{O}_q (\mathbb{C}_{xy})-module X is lifted to a left Banach \mathcal{F}_q (\mathbb{C}_{xv})-module structure on X if and only if TS is a nilpotent operator.

つひひ

Theorem 6. Let X be a left Banach \mathfrak{A}_q -module given by an operator pair $T, S \in \mathcal{B}(X)$ with $TS = q^{-1}ST$, and $U \subseteq \mathbb{C}_{xy}$ a q-open subset. Then

$$
\sigma(T, S)^{-q} \subseteq U \Longrightarrow \exists \mathcal{F}_q(U) \to \mathcal{B}(X), \quad x \mapsto T, y \mapsto S,
$$

(noncommutative holomorphic functional calculus on U)

a continuous algebra homomorphism. Thus the left \mathfrak{A}_q -module module structure of X can be lifted up to a left Banach $\mathcal{F}_q(U)$ -module one on X whenever $\sigma(T,S)^{-q} \subseteq U$.

Let X be a Fréchet space with an operator tuple $T = (T_1, \ldots, T_n)$ and S on X with $T_iS = q^{-1}ST_{i+1}$, $1 \leq i \leq n-1$. Then $X^{\oplus n}$ is a left Fréchet \mathcal{O}_q (\mathbb{C}^2) -module given by

$$
\mathcal{T} = \left[\begin{array}{ccc} \mathcal{T}_1 & & & 0 \\ & \mathcal{T}_2 & & \\ & & \ddots & \\ 0 & & & \mathcal{T}_n \end{array} \right], \quad \mathcal{S}_n = \left[\begin{array}{ccc} 0 & S & & 0 \\ & 0 & \ddots & \\ & & & \ddots & S \\ 0 & & & 0 \end{array} \right]
$$

One can easily verify that $\mathit{TS}_n = q^{-1}S_nT$. A particular case of this construction is the case of $\, T_{i} = \, T_{j} = \, T \,$ and its diagonal inflation $\, T^{\oplus n}.$

 200

.

Examples

For example, T_i , $S \in \mathcal{B}(\mathcal{C}(K,X))$ with

$$
T_i
$$
 (**f** (*z*)) = q^{i-1} **f** (*z*), S (**f** (*z*)) = **f** (qz), $1 \le i \le n$

where, $K \subseteq \mathbb{C}$ is a q-compact set. Then $C(K, X)^{\oplus n} = C(K, X^{\oplus n})$ and

$$
T = 1 \oplus q \oplus \cdots \oplus q^{n-1} \in \mathcal{B} (C (K, X^{\oplus n}))
$$

\n
$$
S_n = r_n S_0, r_n \in \mathcal{B} (X^{\oplus n}), r_n (\zeta_1, \ldots, \zeta_n) = (\zeta_2, \ldots, \zeta_n, 0)
$$

with $S_0 \in \mathcal{B}\left(\mathcal{C}\left(K, X^{\oplus n}\right)\right)$, $S_0\left(\mathbf{f}\left(z\right)\right) = \mathbf{f}\left(qz\right)$. If $K = \{0\}$ and $X = \mathbb{C}$, then we come up with the matrices

$$
\mathcal{T} = \left[\begin{array}{cccc} 1 & & & & 0 \\ & q & & & \\ & & \ddots & & \\ 0 & & & q^{n-1} \end{array} \right], \quad S_n = \left[\begin{array}{cccc} 0 & 1 & & 0 \\ & 0 & \ddots & \\ & & \ddots & 1 \\ 0 & & & 0 \end{array} \right]
$$

in the matrix algebra M_n (see O. Aristov 2024).

Dosi (Harbin Engineering University, China) [Noncommutative formal geometry](#page-0-0) 13/11 13/11 57 / 59

 -209

Examples

If (T, S_n) is the operator pair of $T = (T_1, \ldots, T_n)$ and S on X with $T_i S = q^{-1} S T_{i+1}, 1 \le i \le n-1$, then

 $\left(\sigma\left(q^{-1}T_1\right)\cup\sigma\left(T_n\right)\right)\times\{0\}\subseteq\sigma\left(T,S_n\right)\subseteq\left(\cup_{i=1}^n\sigma\left(q^{-1}T_i\right)\cup\sigma\left(T_i\right)\right)\times\{0\}$

In particular, if $T_i = T_i = T$ for all *i*, *j*, then

$$
\sigma\left(\mathcal{T}^{\oplus n}, S_n\right)=\left(\sigma\left(q^{-1}\mathcal{T}\right)\cup\sigma\left(\mathcal{T}\right)\right)\times\{0\}\,.
$$

In the case of the matrices, we have

$$
\{(q^{-1},0),(q^{n-1},0)\}\subseteq \sigma(T,S_n)\subseteq \{(q^i,0):-1\leq i\leq n-1\}.
$$

In particular, for the q-closures in (C_{xy}, q) we obtain that

$$
\sigma(T, S_n)^{-} = \{ (q^{n-1}, 0) \}^{-} = \{ (q^i, 0) : i \leq n-1 \}
$$

 200

Thanks !

重

メロトメ 伊 トメ 君 トメ 君 ト

 2990