Around Cowling's conjecture

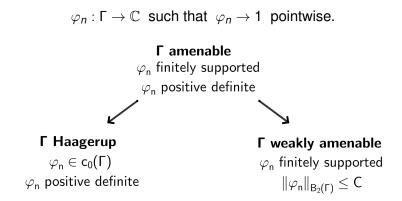
Ignacio Vergara EIMI

Functional Analysis Seminar IASM, Harbin 18 May 2022

Weak amenability and the Haagerup property

2 Cowling's conjecture

Let Γ be a countable group. We look at approximations of the identity:



Question: How are these two properties related?

A function $\varphi : \Gamma \to \mathbb{C}$ is *positive definite* if

$$\sum_{i,j=1}^n \varphi(s_j^{-1}s_i) z_i \overline{z_j} \ge 0,$$

for all $s_1, \ldots s_n \in \Gamma$, $z_1, \ldots z_n \in \mathbb{C}$, $n \ge 1$.

Equivalently, φ is positive definite iff there exists a unitary representation $\pi : \Gamma \to \mathcal{B}(H)$ and $\xi \in H$ s.t.

$$\varphi(\boldsymbol{s}) = \langle \pi(\boldsymbol{s})\xi, \xi \rangle, \quad \forall \boldsymbol{s} \in \mathsf{\Gamma}.$$

Remark: $\|\varphi\|_{\infty} = \varphi(e) = \|\xi\|^2$.

A function $\varphi : \Gamma \to \mathbb{C}$ is a *Herz–Schur multiplier* if there exist bounded maps $\xi, \eta : \Gamma \to H$ such that

$$\varphi(\mathbf{s}^{-1}t) = \langle \xi(t), \eta(\mathbf{s}) \rangle, \quad \forall \mathbf{s}, t \in \Gamma.$$
 (*)

We endow the space of Herz–Schur multipliers $B_2(\Gamma)$ with the norm

$$\|\varphi\|_{B_2(\Gamma)} = \inf \left\{ \sup_{t\in\Gamma} \|\xi(t)\| \sup_{s\in\Gamma} \|\eta(s)\|
ight\},$$

where the infimum is taken over all possible decompositions as in (*).

Remarks:

1) The space $B_2(\Gamma)$ coincides with the algebra of completely bounded multipliers of the Fourier algebra $M_0A(\Gamma)$ (Bożejko–Fendler). 2) φ is positive definite iff $\|\varphi\|_{B_2(\Gamma)} = \varphi(e)$. Let Γ be a countable group. We say that

Γ is amenable if there exist $\varphi_n : \Gamma \to \mathbb{C}$ s.t.

- $\varphi_n \rightarrow 1$ pointwise
- φ_n finitely supported
- φ_n positive definite

Γ has the Haagerup property if there exist $\varphi_n : \Gamma \to \mathbb{C}$ s.t.

- $\varphi_n \rightarrow 1$ pointwise
- φ_n vanishes at infinity
- φ_n positive definite

Γ is weakly amenable: if there exist $\varphi_n : \Gamma \to \mathbb{C}$ s.t.

- $\varphi_n \rightarrow 1$ pointwise
- φ_n finitely supported
- $\exists C \geq 1$, $\sup_n \|\varphi_n\|_{B_2(\Gamma)} \leq C$

Cowling–Haagerup constant: $\Lambda(\Gamma)$ is the infimum of all *C* such that the condition above holds.

Cowling's conjecture (v1)

A group Γ is weakly amenable with $\Lambda(\Gamma)=1$ iff it has the Haagerup property.

Evidence:

- Examples: Free groups, Coxeter groups, Baumslag–Solitar groups,...
- Non-examples: $SL(2, \mathbb{Z}) \ltimes \mathbb{Z}^2$, lattices in higher rank Lie groups $(\Lambda(\Gamma) = \infty)$, lattices in Sp(n, 1) $(\Lambda(\Gamma) > 1),...$
- If Λ(Γ) = 1, we can find a finitely supported approximation of 1 (φ_n) such that

$$\|\varphi_n\|_{B_2(\Gamma)}\to \mathbf{1}.$$

In particular, it is "asymptotically positive definite":

$$\|\varphi_n\|_{B_2(\Gamma)} - \varphi_n(e) \to 0.$$

Wreath products: Let Γ , Λ be two groups. Γ acts on $\bigoplus_{\Gamma} \Lambda$ by shifts.

$$\Lambda \wr \Gamma = \Gamma \ltimes \bigoplus_{\Gamma} \Lambda.$$

Theorem (Ozawa–Popa 2007, Ozawa 2011)

If Λ is not trivial and Γ is not amenable, then $\Lambda \wr \Gamma$ is not weakly amenable.

Theorem (Cornulier–Stalder–Valette 2009)

If both Λ and Γ have the Haagerup property, then so does $\Lambda \wr \Gamma$.

Conclusion: Many examples of non-weakly amenable groups satisfying the Haagerup property, e.g. $(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{F}_2$. **Remark:** Even more is true. There are non-exact groups with the Haagerup property (Osajda 2014).

Cowling's conjecture (v2)

Every weakly amenable group Γ with $\Lambda(\Gamma)=1$ has the Haagerup property.

Status: OPEN.

New approach: actions on $E \subset L^1$.

Theorem (Bekka–Cherix–Valette 1993)

A countable group Γ has the Haagerup property iff it has a proper isometric action $\Gamma \curvearrowright^{\sigma} H$ on a Hilbert space.

(Here proper means that, for all $v \in H$, $||\sigma(s)v|| \to \infty$ as $s \to \infty$.) Sketch of proof.

 \Leftarrow If Γ \frown^{σ} *H*, we define

$$arphi_n(s) = e^{-rac{1}{n} \|\sigma(s)0\|^2}, \quad \forall s \in \Gamma.$$

 \Rightarrow Choosing (φ_n) and $\alpha_n > 0$ carefully,

$$\psi(\boldsymbol{s}) = \sum_{\boldsymbol{n}} \alpha_{\boldsymbol{n}} (1 - \varphi_{\boldsymbol{n}}(\boldsymbol{s}))$$

is a proper conditionally negative definite function. GNS \rightsquigarrow There is an isometric action $\Gamma \curvearrowright^{\sigma} H$ such that

$$\psi(\boldsymbol{s}) = \|\sigma(\boldsymbol{s})\mathbf{0}\|^2, \quad \forall \boldsymbol{s} \in \Gamma.$$

Theorem (Chatterji–Druţu–Haglund 2009)

Let Γ be a countable group.

- If Γ has the Haagerup property, then it has a proper isometric action on an L^p-space for every p > 0.
- If Γ has a proper isometric action on a subset of an L^p-space (for 0

Corollary

 Γ has the Haagerup property if and only if it has a proper isometric action on a subspace of an L^1 -space.

Goal (imprecise): Given Γ with $\Lambda(\Gamma) = 1$, construct a proper action on $E \subset L^1$, which is "close" to being isometric.

Theorem (Mazur–Ulam 1932)

Let $f : E \to F$ be a surjective isometry between normed spaces. Then *f* is affine:

$$f(\mathbf{v}) = \mathbf{U}\mathbf{v} + \mathbf{w}, \quad \forall \mathbf{v} \in \mathbf{E},$$

where $U: E \rightarrow F$ is a linear isometry and $w \in F$.

As a consequence, every isometric action $\Gamma \curvearrowright^{\sigma} E$ is given by

$$\sigma(s)v = \pi(s)v + b(s), \quad \forall s \in \Gamma, \ \forall v \in E,$$

where π is an isometric representation, and $b : \Gamma \to E$ is a cocycle:

$$b(st) = \pi(s)b(t) + b(s), \quad \forall s, t \in \Gamma.$$

Goal (updated): Given Γ with $\Lambda(\Gamma) = 1$, construct a proper affine action on $E \subset L^1$, given by $\sigma(s)v = \pi(s)v + b(s)$, where π is uniformly bounded:

$$\sup_{\boldsymbol{s}\in \mathsf{\Gamma}} \|\pi(\boldsymbol{s})\| < \infty.$$

Theorem (Knudby 2013)

If $\Lambda(\Gamma) = 1$, then there exists $\psi: \Gamma \to [0,\infty)$ proper such that

$$\left\| e^{-r\psi} \right\|_{B_2(\Gamma)} \leq 1, \quad \forall r > 0.$$

Sketch of proof. Carefully choosing an approximation of 1 with $\|\varphi_n\|_{B_2(\Gamma)} = 1$, and $\alpha_n \nearrow \infty$,

$$\psi = \sum_{n} \alpha_n (1 - \varphi_n)$$

is well defined and proper.

$$\begin{split} \left\| e^{-r\psi} \right\|_{B_{2}(\Gamma)} &\leq \prod_{n} \left\| e^{-r\alpha_{n}(1-\varphi_{n})} \right\|_{B_{2}(\Gamma)} \\ &\leq \prod_{n} e^{-r\alpha_{n}} e^{r\alpha_{n} \|\varphi_{n}\|_{B_{2}(\Gamma)}} \leq 1 \end{split}$$

Theorem (Knudby 2013)

Let $\psi : \Gamma \to \mathbb{R}$ be a symmetric function. TFAE:

a) For all r > 0, $\|e^{-r\psi}\|_{B_2(\Gamma)} \le 1$.

b) There is a Hilbert space *H* and maps $R, S : \Gamma \rightarrow H$ such that

$$\psi(y^{-1}x) = \|R(x) - R(y)\|^2 + \|S(x) + S(y)\|^2, \quad \forall x, y \in \Gamma.$$

Idea of the proof of (a) \implies (b).

- Construct a sequence $A_n = \left(\begin{array}{c|c} b_n & e^{-\psi/n} \\ \hline e^{-\psi/n} & c_n \end{array} \right) \ge 0.$
- This defines a sequence of pos. def. kernels κ_n on $\Gamma \sqcup \overline{\Gamma}$.
- $\forall x \in \Gamma, \forall y \in \overline{\Gamma}, n(1 \kappa_n(x, \overline{y})) \rightarrow \psi(y^{-1}x).$
- Ultraproduct $\rightsquigarrow \psi(y^{-1}x) = ||T(x) T(\overline{y})||^2, \quad \forall x \in \Gamma, \forall y \in \overline{\Gamma}.$

Define

$$egin{aligned} R(x) &= rac{1}{2}(T(x)+T(\overline{x}))\ S(x) &= rac{1}{2}(T(x)-T(\overline{x})), \quad orall x,y\in\Gamma. \end{aligned}$$

Corollary

If $\Lambda(\Gamma) = 1$, then there exist a proper function $\psi : \Gamma \to [0, \infty)$, and maps $R, S : \Gamma \to H$ such that

$$\psi(y^{-1}x) = \|R(x) - R(y)\|^2 + \|S(x) + S(y)\|^2, \quad \forall x, y \in \Gamma.$$

Remark: $\forall x \in \Gamma$, $4 \| S(x) \|^2 = \psi(e)$.

Theorem (V. 2021)

Let Γ be a countable group with $\Lambda(\Gamma) = 1$. Then there exist a measure space (Ω, μ) , a closed subspace $E \subset L^1(\Omega, \mu)$, and a representation π of Γ on E such that

$$\sup_{\boldsymbol{s}\in \mathsf{F}} \|\pi(\boldsymbol{s})\| \leq 1 + \sqrt{\psi(\boldsymbol{e})},$$

and π admits a proper cocycle.

Assuming $\Lambda(\Gamma) = 1$, let $\psi : \Gamma \to [0, \infty)$ and $R, S : \Gamma \to H$ given by Knudby's theorem:

$$\psi(y^{-1}x) = \|R(x) - R(y)\|^2 + \|S(x) + S(y)\|^2, \quad \forall x, y \in \Gamma.$$

Let V be the space of finitely supported functions $v : \Gamma \to \mathbb{R}$ such that $\sum v(x) = 0$. For $v, w \in V$, we define

$$\langle v, w \rangle_R = -\sum_{x,y \in \Gamma} v(x)w(y) \|R(x) - R(y)\|^2 + \sum_{x \in \Gamma} v(x)w(x).$$

Let \mathcal{H}_R be the completion of V for $\langle \cdot, \cdot \rangle_R$. We define $E = \mathcal{H}_R \cap \ell^1(\Gamma)$ and

$$\|v\|_E = \|v\|_R + \|v\|_1.$$

Lemma

There exists a measure space (Ω, μ) such that *E* can be linearly and isometrically embedded into $L^1(\Omega, \mu)$.

Proof.

- Since \mathcal{H}_R is an L^2 -space, it can be linearly and isometrically embedded into $L^1(\Omega', \mu')$ for some (Ω', μ') .
- Let $J' : \mathcal{H}_R \to L^1(\Omega', \mu')$ be such an embedding and define $J : E \to L^1(\Omega', \mu') \oplus_1 \ell^1(\Gamma)$ by

$$Jv = J'v + v.$$

Then

$$||Jv|| = ||J'v||_{L^1(\Omega')} + ||v||_1 = ||v||_R + ||v||_1 = ||v||_E.$$

• Define $\Omega = \Omega' \sqcup \Gamma$ and $\mu = \mu' + \text{counting meas. Then}$

$$L^1(\Omega',\mu')\oplus_1 \ell^1(\Gamma)\cong L^1(\Omega,\mu).$$

Construction of $\pi : \Gamma \to \mathcal{B}(E)$

 Γ acts on V by shifts: $\pi(s)v(x) = v(s^{-1}x), \quad \forall s, x \in \Gamma, \ \forall v \in V.$

Lemma

 π extends to a representation on E with

$$\sup_{\boldsymbol{s}\in\Gamma}\|\pi(\boldsymbol{s})\|\leq 1+\sqrt{\psi(\boldsymbol{e})}.$$

Idea of the proof. For all $s \in \Gamma$, $v \in V$,

$$\begin{split} \|\pi(s)v\|_{R}^{2} - \|v\|_{R}^{2} &= \sum_{x,y\in\Gamma} v(x)v(y) \left(\|R(sx) - R(sy)\|^{2} - \|R(x) - R(y)\|^{2} \right) \\ &= \sum_{x,y\in\Gamma} v(x)v(y) \left(\|S(x) + S(y)\|^{2} - \|S(sx) + S(sy)\|^{2} \right) \\ &\leq \psi(e) \sum_{x,y\in\Gamma} |v(x)||v(y)| = \psi(e) \|v\|_{1}^{2}. \end{split}$$

For all $s \in \Gamma$, define

$$b(s) = \delta_s - \delta_e \in V.$$

Lemma

 $b: \Gamma \to E$ is a proper cocycle for π .

Proof. • b is a cocycle:

$$b(st) = \delta_{st} - \delta_s + \delta_s - \delta_e = \pi(s)b(t) + b(s).$$

• *b* is proper:

$$\begin{split} \|b(s)\|_{E} &= \left(2\|R(s) - R(e)\|^{2} + 2\right)^{\frac{1}{2}} + 2\\ &= \sqrt{2}\left(\psi(s) - \|S(s) + S(e)\|^{2} + 1\right)^{\frac{1}{2}} + 2\\ &\geq \sqrt{2}\left(\psi(s) - \psi(e) + 1\right)^{\frac{1}{2}} + 2. \end{split}$$

Recall that

$$\psi = \sum_{n} \alpha_n (1 - \varphi_n).$$

One can choose (α_n) and (φ_n) so that $\psi(e)$ is as small as we want. Hence we can rewrite the main theorem as follows.

Theorem

Let Γ be a countable group with $\Lambda(\Gamma) = 1$ and let $\varepsilon > 0$. Then there exist a measure space (Ω, μ) , a closed subspace $E \subset L^1(\Omega, \mu)$, and a representation π of Γ on E such that

$$\sup_{\boldsymbol{s}\in\boldsymbol{\Gamma}}\|\pi(\boldsymbol{s})\|\leq 1+\varepsilon,$$

and π admits a proper cocycle.

Thank you.

References:

- P.A. Cherix, M. Cowling, P. Jolissaint, P. Julg, A. Valette. *Groups with the Haagerup property. Gromov's a-T-menability.* Progress in Mathematics, 197. Birkhäuser Verlag, Basel, 2001.
- S. Knudby. *Semigroups of Herz-Schur multipliers.* J. Funct. Anal., 266(3):1565-1610, 2014.

 I. Vergara. Proper cocycles for uniformly bounded representations on subspaces of L¹.
 Preprint, 2021.