The Brown measure of the sum of a free random variable and an elliptic deformation of Voiculescu's circular element

Ping Zhong

University of Wyoming

Functional Analysis Seminar Institute for Advanced Study in Mathematics of HIT 2022.June.22

Based on arXiv:2108.09844

周レイラレイラ

Some relevant work

Free probability method: additive model

- Haagerup-Larsen 2000, R-diagonal operators
- Biane-Lehner 2001, examples of Brown measures
- Hermitian reduction: Aagaard-Haagerup 2004, Belinschi-Speicher-Śniady 2018
- Z. 2021, Hermitian reduction, subordination functions

PDE method: additive model or multiplicative model

- Driver-Kemp-Hall 2019
- Ho-Z. 2019, PDE method and subordination functions
- Hall-Ho, 2020 and 2021

Random matrix method: additive model

Bordenave-Caputo-Chafai 2014, random matrix approach

Main questions Random matrix models The Brown measure

Typical behavior of random matrices

• Let X_N be some random matrix model and set

$$\mu_{X_N} = \frac{1}{N} \left(\delta_{\lambda_1} + \cdots + \delta_{\lambda_N} \right).$$

• The measure μ_{X_N} is a random probability measure.

Quite often, there exists some deterministic probability measure $\boldsymbol{\mu}$ such that

$$\mu_{X_N} \to \mu$$

as $N \to \infty$.

Main questions Random matrix models The Brown measure

Main questions and our goal

- Hermitian random matrices are relatively well understood.
- Non-Hermitian random matrices and non-selfadjoint operators have wild properties.

Problem

Find the eigenvalue distribution of non-Hermitian random matrices.

- Find their limit distributions (our main goal of this talk).
- Prove convergence of empirical spectral distribution (ESD) of random matrices.

We study explicit formula of the limit ESD of summation of two non-Hermitian random matrices, one of which has certain symmetry.

Formulation of the main questions

- Random matrix $X_N \longrightarrow$ operator $x \in \mathcal{A} \subset \mathcal{B}(H)$.
- Noncommutative probability space: (\mathcal{A}, ϕ) .
- Brown measure of a random variable in free probability can often be regarded as limit of eigenvalue distribution of suitable random matrix models.
- limit operators can help us understand random matrices;
- random matrices can help us understand operators.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Questions on non-Hermitian random matrices The Brown measure of addition with an elliptic operator Main questions Random matrix models The Brown measure

Ginibre Ensemble

$$Z_{N} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1N} \\ x_{21} & x_{22} & \cdots & x_{2N} \\ \vdots & \vdots & & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{NN} \end{pmatrix}$$

The Ginibre Ensemble Z_N has i.i.d. complex Gaussian entries with variance 1/N.

Definition

The Empirical Spectral Distribution (ESD) of Z_N is

$$\mu_N = \frac{1}{N} \left(\delta_{\lambda_1} + \dots + \delta_{\lambda_N} \right).$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Questions on non-Hermitian random matrices The Brown measure of addition with an elliptic operator

The circular law

Main questions Random matrix models The Brown measure

The following result is due to Ginibre, Girko, Bai, Tao, Vu and many others.

Theorem (circular law) Given any random variable X with mean zero and variance one. Let Z_N be the $n \times n$ square random matrices with i.i.d. entries that have the same distribution as X/\sqrt{n} . The ESD of Z_N convergences to the uniform measure on the unit disk as $n \to \infty$.

Main questions Random matrix models The Brown measure

Wigner's Semicircle law

Definition

A matrix $W = rac{1}{\sqrt{N}} (x_{kl})_{k,l=1}^N$ is a complex Wigner random matrix if:

- it is Hermitian: $W = W^*$, and
- { $x_{kl}|1 \le k \le l \le N$ } are independent, $x_{k,k} \sim \mathcal{N}(0, 1)$ and $x_{k,l} \sim \mathcal{N}(0, 1/2) + i \mathcal{N}(0, 1/2)$.

Large N limit of eigenvalue distribution μ_W is the semicircle law.

Questions on non-Hermitian random matrices

The Brown measure of addition with an elliptic operator

Main questions Random matrix models The Brown measure

Distribution of real part in circular law "=" semicircular law

Main questions Random matrix models The Brown measure

Elliptic deformation

- An elliptic random matrix X_N is a square matrix whose (i, j)-entry $X_N(i, j)$ is independent of every other entry except possibly $X_N(j, i)$.
- Elliptic random matrices generalize Wigner matrices and non-Hermitian random matrices with i.i.d. entries.

(x_{11})	<i>x</i> ₁₂	• • •	x1N)
x ₂₁	<i>x</i> ₂₂	•••	х _{2N}
:	:	·	÷
(x _{N1}	x _{N2}	•••	x _{NN} /

< ロ > < 同 > < 回 > < 回 > < 回 > <

Circular and elliptic random matrices

- Given two independent i.i.d. Wigner random matrices W_n, W'_n .
- Circular random matrix = $W_n + iW'_n$
- Elliptic random matrix = $e^{i\theta}(\alpha W_n + i\beta W'_n)$, where $\alpha, \beta \ge 0$.

Main questions Random matrix models **The Brown measure**

The Brown measure of a square matrix

The characteristic polynomial of a matrix $T \in M_n(\mathbb{C})$ is

$$P(\lambda) = det(\lambda I - T) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_n).$$

The eigenvalue distribution is

$$\mu_{\mathrm{T}}=\frac{1}{n}\big(\delta_{\lambda_1}+\cdots+\delta_{\lambda_n}\big).$$

Consider $\log |P(\lambda)| = \log |\det(\lambda I - T)| = \sum_{i=1}^{n} \log |\lambda - \lambda_i|$. Note

$$\Delta \log |\lambda| = 2\pi \delta_0.$$

Then

$$\mu_{T} = \frac{1}{2\pi n} \Delta \log |\det(\lambda I - T)|.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Noncommutative probability space and Brown measure

• Noncommutative probability space: (\mathcal{A}, ϕ) :

 $\mathcal{A} \subset \textit{B}(\mathrm{H})$ operator algebra (finite von Neumann algebra),

and $\phi:\mathcal{A}
ightarrow\mathbb{C}$ is a replacement of trace.

ullet The Fuglede-Kadison determinnat of $x\in (\mathcal{A},\phi)$ is defined as

$$\mathcal{D}(\mathbf{x}) = \exp[\phi(\log(|\mathbf{x}|))] \in [\mathbf{0}, \infty).$$

Definition (Brown, 1983)

The Brown measure of x is the distributional Laplacian,

$$\mu_{\mathbf{x}} = \frac{1}{2\pi} \Delta \log \mathcal{D}(\mathbf{x} - \lambda).$$

• When $A \in M_n(\mathbb{C})$, then μ_A is the eigenvalue distribution of A.

Operator models

Main questions Random matrix models The Brown measure

- semicircular element g_t : selfadjoint, μ_{g_t} is semicircular law
- Voiculescu's circular element:

$$c_t = \frac{1}{\sqrt{2}}(g_t + ig_t').$$

• elliptic deformations y = $g_{t,\gamma}$ ($|\gamma| \leq t$):

$$g_{t,\gamma} = e^{i\theta} (\alpha g_t + \beta g'_t),$$

such that all non-zero free cumulants of y are given by

$$\kappa(\mathbf{y},\mathbf{y}^*) = \kappa(\mathbf{y}^*,\mathbf{y}) = \mathbf{t}, \kappa(\mathbf{y},\mathbf{y}) = \gamma, \kappa(\mathbf{y}^*,\mathbf{y}^*) = \overline{\gamma}.$$

Convergence of empirical spectral distributions

Let X_N be a sequence of $N \times N$ Hermitian matrices (either random but independent with Z_N , or deterministic) that *converges* to some limit.

Question (deformed random matrix model)

- What is the limit ESD of $X_N + W_N$ (sum of two Hermitian matrices)?
- What is the limit ESD of $X_N + Z_N$ (Hermitian + non-normal matrix)?

Theorem (Corollary of (Voiculescu, 90s))

The limit distribution of $X_N + W_N$ is the distribution of two selfadjoint random variables that are independent in the sense of Voiculescu's free independence. That is,

$$\mu_{X_N+W_N}\to \mu_{x+g}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Asymptotic freeness and convergence in *-moments

Theorem (Voiculescu 1991)

For a suitable family of independent random matrices $(X_i^{(N)})_{i \in \mathcal{I}}$, all mixed moments

$$tr(X_{i_1}^{(N)}\cdots X_{i_k}^{(N)}) \to \phi(x_{i_1}\cdots x_{i_k})$$

almost surely as $N \to \infty$, where $i_1, \dots, i_k \in I$ and $\{x_i\}_{i \in \mathcal{I}}$ is a family of freely independent random variables in certain non-commutative probability space (\mathcal{A}, ϕ) .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The convergence of random matrices in the sense of Brown measure does not follow from convergence in *-moments.

Theorem (Śniady 2001 and Tao-Vu 2010)

The empirical spectral distribution of $X_N + Z_N(t)$ converges to the Brown measure of $x_0 + c_t$, where

- $X_N \rightarrow x_0$ in *-moments,
- ct is Voiculescu's circular element,
- and $\{x_0, c_t\}$ are freely independent.

• Biane-Lehner (2001) calculated $Brown(x_0 + c_t)$ for some special x_0 . • Bordenave-Caputo-Chafai (2014) obtained Brown measure formula for normal operator ($x_0^* x_0 = x_0 x_0^*$) with Gaussian distribution (related to

Main results

Let x_0 be an arbitrary operator that is *-free from $\{x_0, g_{t,\gamma}\}$.

Theorem (Z. 2021)

The Brown measure of $x_0 + c_t$ is absolutely continuous in some open set Ξ_t and is supported in its closure $\overline{\Xi_t}$. The density of the Brown measure can be expressed explicitly by certain subordination functions.

Theorem (Z. 2021)

The Brown measure of $x_0 + g_{t,\gamma}$ is the push-forward measure of the Brown measure of $x_0 + c_t$ by certain explicitly constructed map $\lambda \mapsto \Phi_{t,\gamma}(\lambda)$. That is,

$$\mu_{x_0+c_t}((\Phi_{t,\gamma}^{-1}(\cdot)) = \mu_{x_0+g_{t,\gamma}}(\cdot).$$
 (1)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Questions on non-Hermitian random matrices The Brown measure of addition with an elliptic operator The limit of certain non-Hermitian random matrices Main Results and Examples Some ideas of the proof

The pushforward map from $x_0 + c_t$ to $x_0 + ig_t$ and $x_0 + g_t$

Questions on non-Hermitian random matrices The Brown measure of addition with an elliptic operator The limit of certain non-Hermitian random matrices Main Results and Examples Some ideas of the proof

From circular to elliptic: selfadjoint case

Figure: The Brown measures of $x_0 + c_t$ and $x_0 + g_{t,\gamma}$ for t = 0.5, $\gamma = -0.25 - 0.25i$, and x_0 distributed as $0.25\delta_{-1} + 0.5\delta_0 + 0.25\delta_1$.

Brown measure support of addition with a circular element

Theorem (Z., 2021)

The Brown measure of $x_0 + c_t$ is supported in the closure of the open set

$$\Xi_t = \left\{ \lambda \in \mathbb{C} : \phi \left[\left((x_0 - \lambda)^* (x_0 - \lambda) \right)^{-1} \right] > \frac{1}{t} \right\}$$

The density formula can be expressed in terms of subordination functions.

• We believe that $\mu_{x_0+c_t}(\Xi_t)=1$ (all our examples support this).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Questions on non-Hermitian random matrices The Brown measure of addition with an elliptic operator The limit of certain non-Hermitian random matrices Main Results and Examples Some ideas of the proof

Fundamental domain (circular): selfadjoint case

Figure: The domain Ξ_t for t = 1 and x_0 distributed as $0.4\delta_{-2} + 0.1\delta_{-0.8} + 0.5\delta_1$. The graph of v_t is the solid read curve above the x-axis.

$$\Xi_t = \left\{ \lambda = a + bi : \int_{\mathbb{R}} \frac{1}{(a-u)^2 + b^2} d\mu_{x_0}(u) > \frac{1}{t} \right\}$$

Main results: formulas

Theorem

The density of the Brown measure at $\lambda\in \Xi_t$ is given by

$$\frac{1}{\pi} \left(\frac{|\phi((\lambda - x_0)(h^{-1})^2)|^2}{\phi((h^{-1})^2)} + w_t(\lambda)^2 \phi(h^{-1}k^{-1}) \right)$$

where $w_t(\lambda)$ is determined by

$$\phi((x_0 - \lambda)^* (x_0 - \lambda) + w_t(\lambda)^2)^{-1}) = \frac{1}{t},$$

and $h = h(\lambda, w_t(\lambda))$ and $k = k(\lambda, w_t(\lambda))$ for

$$h(\lambda, w_t) = (\lambda - x_0)^* (\lambda - x_0) + w_t(\lambda)^2$$

and

$$k(\lambda, w_t) = (\lambda - x_0)(\lambda - x_0)^* + w_t(\lambda)^2.$$

イロト 不得 トイヨト イヨト

э

Brown measure of the addition with an elliptic deformation

We denote

$$\Phi_{t,\gamma}(\lambda) = \lambda + \gamma \cdot p_{\lambda}^{(0)}(w_t), \qquad \lambda \in \Xi_t,$$

where

$$p_{\lambda}^{(0)}(w_{t}) = -\phi \bigg[(x_{0} - \lambda)^{*} \big((x_{0} - \lambda)(x_{0} - \lambda)^{*} + w_{t}(\lambda)^{2} \big)^{-1} \bigg].$$

Let $g_{t,\gamma}$ be an elliptic operator $e^{i\theta}(s_1 + is_2)$, where s_1 , s_2 are semicircular family.

Theorem (Z. 2021)

The Brown measure of $x_0 + g_{t,\gamma}$ is the push-forward measure of the Brown measure of $x_0 + c_t$ by the map $\lambda \mapsto \Phi_{t,\gamma}(\lambda)$. That is,

$$\mu_{x_0+c_t}((\Phi_{t,\gamma}^{-1}(\cdot)) = \mu_{x_0+g_{t,\gamma}}(\cdot).$$
(2)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Another formula for the pushforwrd map

ullet The pushforward map between $\mu_{x_0+c_t}$ and $\mu_{x_0+g_{t,\gamma}}(|\gamma|\leq t)$ is

$$\Phi_{t,\gamma}(\lambda) = \lambda + 2\gamma \cdot \frac{\partial}{\partial \lambda} \log \Delta(x_0 + c_t - \lambda), \qquad \lambda \in \mathbb{C}.$$

Problem

Is $\Phi_{t,\gamma}$ some optimal transport map?

• For some special cases, we can show $\Phi_{t,\gamma}(\lambda)$ is the gradient of some convex function.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Questions on non-Hermitian random matrices The Brown measure of addition with an elliptic operator The limit of certain non-Hermitian random matrices Main Results and Examples Some ideas of the proof

Examples

We can calculate explicit formulas when

- x₀ is selfadjoint;
- x_0 is Haar unitary/*R*-diagonal operator;
- x_0 is quasi-nilpotent DT operator.

The Brown measure of free circular Brownian motion with selfadjoint initial condition x_0

Theorem (Ho-Z., 2019 (based on PDE method of Driver-Kemp-Hall))

- Brown($x_0 + c_t$) is symmetric with respect to the x-axis.
- The boundary of the support is the graph of a function, related to the subordination function of $x_0 + s_t$ with respect to x_0 .
- The density is constant along vertical lines, and can be expressed explicitly by the boundary set.

The density formula: selfadjoint+circular

Theorem (Ho-Z., 2019)

The Brown measure $\mu_{x_0+c_t}$ is absolutely continuous and its density formula (within the support) is

$$d
ho_t(a+ib)=rac{1}{\pi t}\left(1-rac{t}{2}rac{d}{da}\int_{\mathbb{R}}rac{x}{(a-x)^2+f_
u(a)^2}\,d
u(x)
ight)\,db\,da,$$

where $v = v_{x_0}$ the spectral distribution of x_0 .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Questions on non-Hermitian random matrices The Brown measure of addition with an elliptic operator The limit of certain non-Hermitian random matrices Main Results and Examples Some ideas of the proof

Brown(x_0 + circular) and distribution of x_0 + semicircular

The distribution of " x_0 + semicircular" is the pushforward measure of "Brown(x_0 + circular)" under some natural map (related to subordination functions).

Connection with range of subordination function

Subordination function

- Cauchy transform: $G_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{z-u} d\mu(u).$
- Subordination function $G_{\mu_{x_0}+g_t}(z) = G_{\mu_{x_0}}(\omega(z)).$
- Then $\omega: \mathbb{C}^+ o \mathbb{C}^+$, and

$$\omega(\mathbb{C}^+) = \mathbb{C}^+ \setminus \text{supp}(Brown(x_0 + c_t)).$$

• Inverse ω^{-1} coincides with the pushforward map on the boundary.

The pushforward property

- Let x_0 be a selfadjoint operator, free from $\{c_t, g_t\}$.
- Hall-Ho (2020) calculated Brown($x_0 + ig_t$) for x_0 selfadjoint.

Remark

The pushforward map Φ_3 is nonsingular; Φ_1, Φ_2 are singular.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sum of a Haar unitary and an elliptic operator

Let u be a Haar unitary. Let c_t be a circular operator with variance t and g_t be a semicircular operator with variance t.

Figure: The random matrix simulation for $u + c_t$ and $u + g_t$ with t = 0.5.

• Similar phenomena holds for *R*-diagonal operator + $c_t/g_{t,\gamma}$.

Deformed random matrix model

- Our results potentially unify various deformed random matrix models:
 - (finite rank/full rank) deformed Wigner random matrix (well-studied)

$A_N + W_N;$

- (finite rank/full rank) deformed i.i.d. random matrix (Bai, Tao-Vu, Tao, Bordenave-Caputo-Chafai, Capitaine-Bordenave, etc.)
- finite rank deformed elliptic random matrix (only finite rank perturbation was studied so far)
- work in preparation (with Yin): convergence of *full rank* deformed elliptic random matrix
- work in progress: outliers in *full rank* deformed elliptic random matrix

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

free probability = non-commutative probability + freeness

Definition (Voiculescu 1985)

Let (\mathcal{A}, ϕ) be a non-commutative probability space. Unital subalgebras $\{\mathcal{A}_i\}_{i\in\mathcal{I}}$ are free or freely independent, if

$$\begin{array}{l} a_i \in \mathcal{A}_{j(i)}, \quad j(i) \in \mathcal{I} \\ j(1) \neq j(2), j(2) \neq j(3), \cdots, j(n-1) \neq j(n) \\ \phi(a_i) = 0, \quad \forall i \end{array} \right\} \Rightarrow \phi(a_1 \cdots a_n) = 0.$$

Random variable $\{x_i\}_{i \in \mathcal{I}} \subset \mathcal{A}$ are free if subalgebras $\mathcal{A}_i := alg\{x_i, 1_{\mathcal{A}}\}$ are free.

Review on free additive convolution

ullet Given a probability measure μ on ${\mathbb R}$, define its Cauchy transform

$$G_{\mu}(z) = \int_{\mathbb{R}} rac{1}{z-u} d\mu(u), \qquad z \in \mathbb{C}^+;$$

and Voiculescu's *R*-transform $R_{\mu}(z) = G_{\mu}^{\langle -1 \rangle}(z) - 1/z$.

• Let x, y be operators in \mathcal{A} that are free to each other, then

$$R_{\mu_{x+y}}(z) = R_{\mu_x}(z) + R_{\mu_y}(z).$$

Hence, the *R*-transform linearizes free additive convolution.

Subordination functions

• Let x, y be selfadjoint operators in \mathcal{A} that are free to each other.

Theorem (Voiculescu 1991, Biane 1997)

There exists analytic functions $\omega_1, \omega_2: \mathbb{C}^+ \to \mathbb{C}^+$ such that

$$\mathbf{G}_{\mu_{x+y}}(\mathsf{z}) = \mathbf{G}_{\mu_x}(\omega_1(\mathsf{z})) = \mathbf{G}_{\mu_y}(\omega_2(\mathsf{z})), \quad \mathsf{z} \in \mathbb{C}^+,$$

Theorem (Belinschi-Bercovici 2007)

The functions ω_1, ω_2 can be obtained from the following fixed point equations

$$\omega_1(z) = z + H_{\mu_y}(z + H_{\mu_x}(\omega_1(z))), \qquad \omega_2(z) = z + H_{\mu_x}(z + H_{\mu_y}(\omega_2(z))),$$

where $H_{\mu}(z) = 1/G_{\mu}(z) - z$

Operator-valued free probability

• An operator-valued W^* -probability space $(\mathcal{A}, \mathbb{E}, \mathcal{B})$ consists of a von Neumann algebra \mathcal{A} , a unital *-subalgebra $\mathcal{B} \subset \mathcal{A}$, and a conditional expectation $\mathbb{E} : \mathcal{A} \to \mathcal{B}$, which satisfies

$${f 0}~{\Bbb E}({f b})={f b}$$
 for all ${f b}\in{\cal B}$, and

$$@ \mathbb{E}(b_1 x b_2) = b_1 \mathbb{E}(x) b_2 \text{ for all } x \in \mathcal{A}, b_1, b_2 \in \mathcal{B}.$$

• A family of subalgebras $(\mathcal{A}_i)_{i \in I}$ ($\mathcal{B} \subset \mathcal{A}_i \subset \mathcal{A}$) is *free with amalgamation* over \mathcal{B} with respect to the conditional expectation \mathbb{E} if

$$\mathbb{E}(x_1x_2\cdots x_n)=0$$

for every $n \ge 1$, there are indices $i_1, i_2, \cdots, i_n \in I$ such that $i_1 \ne i_2, i_2 \ne i_3, \cdots, i_{n-1} \ne i_n$, and for $j = 1, 2, \cdots, n$, we have $x_j \in \mathcal{A}_{i_j}$ such that $\mathbb{E}(x_1) = \mathbb{E}(x_2) = \cdots = \mathbb{E}(x_n) = 0$.

イロト イポト イラト イラ

Operator-valued subordination functions

- Let X be a selfadjoint operator in W^* -probability space $(\mathcal{A}, \mathbb{E}, \mathcal{B})$.
- ullet The Cauchy transform is defined in $\mathbb{H}^+(\mathcal{B})=\{m{b}\in\mathcal{B}:\Imm{b}>0\}$

$$G_X(b) = \mathbb{E}(b - X)^{-1}, \qquad \Im b > 0.$$

• Let X, Y be free with amalgamation in $(\mathcal{A}, \mathbb{E}, \mathcal{B})$.

Theorem (Voiculescu, Biane)

There exists two analytic self-maps Ω_1, Ω_2 of $\mathbb{H}^+(\mathcal{B})$, such that

$$G_{X+Y}(b) = G_X(\Omega_1(b)) = G_Y(\Omega_2(b)).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some ingredients of the proof: Hermitian reduction

• Operator-valued W^* -probability space $(M_2(\mathcal{A}), \mathbb{E}, M_2(\mathbb{C}))$, where the conditional expectation $\mathbb{E} : M_2(\mathcal{A}) \to M_2(\mathbb{C})$ is

$$\mathbb{E} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \phi(a_{11}) & \phi(a_{12}) \\ \phi(a_{21}) & \phi(a_{22}) \end{bmatrix}.$$

• Hermitian reducation: for $x \in \mathcal{A}$,

$$x \longrightarrow X = \begin{bmatrix} 0 & x \\ x^* & 0 \end{bmatrix} \in M_2(\mathcal{A}).$$

Voiculescu's R-transform linearizes the addition

$$R_{X+Y}(b) = R_X(b) + R_Y(b),$$

where $R_X(b) := G_X^{\langle -1 \rangle}(b) - b$.

The operator-valued Cauchy transform

Cauchy transform

$$G_X(b) = \mathbb{E}(b - X)^{-1}.$$

We have

$$G_{X}\left(\begin{bmatrix}i\epsilon & \lambda\\\overline{\lambda} & i\epsilon\end{bmatrix}\right) = \mathbb{E}\begin{bmatrix}i\epsilon & \lambda - x\\\overline{\lambda} - x^{*} & i\epsilon\end{bmatrix}^{-1} = \begin{bmatrix}g_{X,11}(\lambda,\epsilon) & g_{X,12}(\lambda,\epsilon)\\g_{X,21}(\lambda,\epsilon) & g_{X,22}(\lambda,\epsilon)\end{bmatrix}$$

where

$$\begin{split} g_{X,11}(\lambda,\varepsilon) &= -i\varepsilon\phi\left(\left((\lambda-x)(\lambda-x)^*+\varepsilon^2\right)^{-1}\right)\\ g_{X,12}(\lambda,\varepsilon) &= \phi\left((\lambda-x)\left((\lambda-x)^*(\lambda-x)+\varepsilon^2\right)^{-1}\right)\\ g_{X,21}(\lambda,\varepsilon) &= \phi\left((\lambda-x)^*\left((\lambda-x)(\lambda-x)^*+\varepsilon^2\right)^{-1}\right)\\ g_{X,22}(\lambda,\varepsilon) &= -i\varepsilon\phi\left(\left((\lambda-x)^*(\lambda-x)+\varepsilon^2\right)^{-1}\right). \end{split}$$

(日) (同) (日) (日) (日)

3

The regularized Brown measures

ullet The regularized Fuglede-Kadison determinnat of $x\in (\mathcal{A},\phi)$ is defined as

$$\mathcal{D}_{\varepsilon}(x) = \exp\left[rac{1}{2}\phi(\log(|x|^2 + \varepsilon^2))
ight] \in (0, \infty).$$

Definition

The regularized Brown measure of x is the distributional Laplacian,

$$\mu_{\mathbf{x},\varepsilon} = rac{1}{2\pi} \Delta \log \mathcal{D}_{\varepsilon}(\mathbf{x} - \lambda).$$

Proposition (Haagerup-Larsen-Schultz)

The measure $\mu_{x,\varepsilon}$ is a probability measure and $\mu_{x,\varepsilon} \to \mu_x$ weakly as $\varepsilon \to 0$.

Cauchy transform and Brown measures

Cauchy transform carries important information

• Let
$$L_{\mathbf{x},\varepsilon}(\lambda) = 2\log \mathcal{D}_{\varepsilon}(\mathbf{x} - \lambda) = \phi[\log((\mathbf{x} - \lambda)^*(\mathbf{x} - \lambda) + \varepsilon^2)]$$

$$\frac{1}{2}\frac{\partial}{\partial\varepsilon}L_{x,\varepsilon}(\lambda) = i\varepsilon\phi\left(\left((\lambda - x)(\lambda - x)^* + \varepsilon^2\right)^{-1}\right) = ig_{X,11}(\lambda,\varepsilon)$$
$$\frac{\partial}{\partial\lambda}L_{x,\varepsilon}(\lambda) = \phi\left((\lambda - x)^*((\lambda - x)(\lambda - x)^* + \varepsilon^2)^{-1}\right) = g_{X,21}(\lambda,\varepsilon)$$

Free probability approach to Brown measures

How to calculate the Brown measure of x + y?

Dreaming some algorithm of calculation

• Find a nice formula of the matrix-valued Cauchy transform of X + Y,

or find a nice formula of the FK-determinant $\mathcal{D}_{\varepsilon}(x+y-\lambda).$

- Study the limit $\lim_{\epsilon \to 0} g_{x+y,21}(\lambda, \epsilon)$, or $\lim_{\epsilon \to 0} \mathcal{D}_{\epsilon}(x+y-\lambda)$.
- Calculate the derivative $\frac{\partial}{\partial \overline{\lambda}}$ of the limit, or the Laplacian.

Belinschi-Speicher-Śniady: for any polynomial of x, y, it is possible to calculate its Brown measure by some numerical algorithm.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hermitian reduction of $x_0 + g_{t,\gamma}$

$$\begin{aligned} x_0 \longrightarrow X &= \begin{bmatrix} 0 & x_0 \\ x_0^* & 0 \end{bmatrix} \in M_2(\mathcal{A}). \\ g_{t,\gamma} \longrightarrow Y &= \begin{bmatrix} 0 & g_{t,\gamma} \\ g_{t,\gamma}^* & 0 \end{bmatrix} \in M_2(\mathcal{A}). \end{aligned}$$

Proposition

The operator Y is an operator-valued semicircular element. The *R*-transform of Y is given by

$$R_{Y}(b) = \mathbb{E}(YbY) = \begin{bmatrix} a_{22}\phi(yy^{*}) & a_{21}\phi(yy) \\ a_{12}\phi(y^{*}y^{*}) & a_{11}\phi(y^{*}y) \end{bmatrix}$$

where $y = g_{t,\gamma}$ and $b = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$.

Questions on non-Hermitian random matrices The Brown measure of addition with an elliptic operator The limit of certain non-Hermitian random matrices Main Results and Examples Some ideas of the proof

Why Hermitian reduction method works?

$$\begin{aligned} G_{X+Y}(b) &= G_X(\Omega_1(b)) = G_Y(\Omega_2(b)) \\ R_X(b) &= G_X^{\langle -1 \rangle}(b) - b \\ R_X(b) + R_Y(b) &= R_{X+Y}(b) \\ G_X^{\langle -1 \rangle}(b) + R_Y(b) &= G_{X+Y}^{\langle -1 \rangle}(b) \\ G_X^{\langle -1 \rangle}(G_{X+Y}(b)) + R_Y(G_{X+Y}(b)) &= G_{X+Y}^{\langle -1 \rangle}(G_{X+Y}(b)) \end{aligned}$$

 \bullet We can express the subordination function Ω_1 as

$$\Omega_1(b) = b - R_Y(G_{X+Y}(b)),$$

which is defined for all *b* satisfying $\Im b > \varepsilon l$ for $\varepsilon >_{\Box} 0$.

The Fuglede-Kadison determinant formula: circular case

Theorem

• If
$$\phi \left[\left((x_0 - \lambda)^* (x_0 - \lambda) \right)^{-1} \right] > \frac{1}{t}$$
, then

$$\Delta (x_0 + c_t - \lambda)^2 = \Delta \left((x_0 - \lambda)^* (x_0 - \lambda) + w(0; \lambda, t)^2 \right) \times \exp \left(- \frac{(w_t(\lambda))^2}{t} \right),$$
(3)

where $w_t(\lambda)$ is determined by

$$\phi\left[\left((x_0-\lambda)^*(x_0-\lambda)+w_t(\lambda)^2\right)^{-1}\right]=\frac{1}{t}.$$
(4)

3 If
$$\phi\left[\left((x_0 - \lambda)^*(x_0 - \lambda)\right)^{-1}\right] \le \frac{1}{t}$$
, then

$$\Delta(x_0 + c_t - \lambda) = \Delta(x_0 - \lambda).$$

(日) (同) (日) (日) (日)

The Fuglede-Kadison determinant and subordination functions

Example (Ho-Z.)

) Given
$$\lambda=a+bi\in\Omega_t$$
, then $w_t(\lambda)^2={\sf f}_
u(a)^2-b^2$, then

$$\Delta(\mathbf{x}_0 + \mathbf{c}_t - \lambda) = \left(\Delta\left((\mathbf{x}_0 - \lambda)^*(\mathbf{x}_0 - \lambda) + \mathbf{w}_t(\lambda)^2\right)\right)^{\frac{1}{2}} \exp\left(-\frac{\mathbf{w}_t(\lambda)^2}{2t}\right).$$
(5)

2 If $\lambda \in \mathbb{C} \setminus \overline{\Omega_t}$, then

$$\Delta(\mathbf{x}_0 + \mathbf{c}_{\varepsilon} - \lambda) = \Delta(\mathbf{x}_0 - \lambda).$$
(6)

Ping Zhong Brown Measure of addition with an circular or elliptic element

Strong convergence of regularized Brown measures

$$\begin{split} \Phi_{t,\gamma}^{(\varepsilon)}(\lambda) &= \lambda + \gamma \cdot \phi \bigg((\lambda - \mathbf{x}_0)^* \big((\lambda - \mathbf{x}_0) (\lambda - \mathbf{x}_0)^* + \mathbf{w}(\varepsilon; \lambda, t)^2 \big)^{-1} \bigg) \\ &= \lambda + \gamma \cdot \phi \bigg((\lambda - \mathbf{x}_0 - \mathbf{c}_t)^* \big((\lambda - \mathbf{x}_0 - \mathbf{c}_t) (\lambda - \mathbf{x}_0 - \mathbf{c}_t)^* + \varepsilon^2 \big)^{-1} \bigg) \end{split}$$

Lemma

The function $\Phi_{t,\gamma}^{(\varepsilon)}(\lambda)$ converges to $\Phi_{t,\gamma}(\lambda)$ uniformly in \mathbb{C} as $\varepsilon \to 0$.

$$\begin{array}{c} \mu_{x_0+c_t,\varepsilon} & \longrightarrow & \mu_{x_0+g,\varepsilon} \\ \varepsilon \to 0 & & & \downarrow \\ \varepsilon \to 0 & & & \downarrow \\ \mu_{x_0+c_t} & \longrightarrow & \mu_{x_0+g} \end{array}$$

イロト イポト イヨト イヨト 一日

Triangular elliptic deformation

• A triangular elliptic random matrix X_N is a square matrix whose (i, j)-entry $X_N(i, j)$ is independent of every other entry except possibly $X_N(j, i)$. It generalizes elliptic model ($\alpha = \beta$).

1	(x_{11})	<i>x</i> ₁₂		x_{1N}
	<i>x</i> ₂₁	<i>x</i> ₂₂	•••	х _{2N}
	÷	÷	·	:
1	(<i>x</i> _{N1}	x _{N2}		x _{NN} /

- $\mathbb{E}(x_{ij}\overline{x_{ij}}) = \alpha, (\text{if } i < j); \qquad \mathbb{E}(x_{ij}\overline{x_{ij}}) = \beta, (\text{if } i > j).$
- (Belinschi-Yin-Z. 2022): Brown $(x_0 + \text{triangular elliptic operator})$ for unbounded x_0 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2