Principal symbol mapping on Heisenberg groups and contact manifolds

Dmitriy Zanin (in collaboration with Y. Kordyukov and F. Sukochev)

University of New South Wales

April 28, 2023

Dmitriy Zanin

Principal symbol mapping on Heisenberg grou

April 28, 2023 1 / 33

Pseudo-differential operators

For a smooth bounded (together with all its derivatives) function p on $\mathbb{R}^d \times \mathbb{R}^d$, define an operator $\operatorname{Op}(p) : \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$ by setting

$$(\operatorname{Op}(p)f)(t) = (2\pi)^{-\frac{d}{2}} \int_{\mathbb{R}^d} e^{i\langle t,s \rangle} p(t,s) \widehat{f}(s) ds.$$

If $m \leq 0$ and if

$$|\partial_t^{\alpha}\partial_s^{\beta}p(t,s)| = O(\langle s \rangle^{m-|\beta|}),$$

then Op(p) is called pseudo-differential (of order *m*). It extends to a bounded operator on $L_2(\mathbb{R}^d)$.

Classical pseudo-differential operators

Suppose there exists a sequence $\{p_n\}_{n \leq 0}$ of smooth such that

- p_n is approximately homogeneous of degree n.
- If or every n ≤ 0, the operator Op(p − p₀ − · · · − p_n) is pseudo-differential of order n − 1.

In this case, Op(p) is called classical and p_0 is called its principal symbol.

Nice properties of the principal symbol

Let P and Q be classical pseudo-differential operators. Let p_0 and q_0 be their principal symbols.

- principal symbol of P + Q is $p_0 + q_0$ (obvious)
- **2** principal symbol of PQ is p_0q_0 (an outcome of some computation)
- **③** principal symbol of P^* is $\overline{p_0}$ (another computation)

イロッ イボッ イヨッ イヨッ 三日

Is principal symbol a *-homomorphism?

In the previous slide, we saw that principal symbol mapping preserves *-algebraic operations. So, it should be a *-homomorphism. This raises natural questions.

Question

What are the domain and the co-domain of this *-homomorphism? Is this *-homomorphism continuous in some reasonable topology?

The answer to this question appears to be positive. As we will see, the principal symbol mapping is a *-homomorphism of C^* -algebras. As such, it is a *topological* notion, not a smooth one!

Abstract principal symbol mapping

Theorem

Let A_1 and A_2 be C^* -algebras and let π_1 and π_2 be their *-representations on the same Hilbert space H. Suppose that

- **1** \mathcal{A}_1 or \mathcal{A}_2 is commutative.
- **②** $[\pi_1(x), \pi_2(y)]$ is compact for every *x* ∈ A_1 , *y* ∈ A_2 .
- if $\sum_{k=1}^n \pi_1(x_k)\pi_2(y_k)$ is compact, then $\sum_{k=1}^n x_k \otimes y_k = 0$.

Let Π be the C^* -algebra generated by $\pi_1(\mathcal{A}_1)$ and $\pi_2(\mathcal{A}_2)$. There exists a *-homomorphism sym : $\Pi \to \mathcal{A}_1 \otimes_{\min} \mathcal{A}_2$ such that

$$\operatorname{sym}(\pi_1(x)) = x \otimes 1, \quad \operatorname{sym}(\pi_2(y)) = 1 \otimes y.$$

イロト イポト イヨト イヨト

Key lemma

Lemma

Let A_1 and A_2 be C^* -algebras and let ρ_1 and ρ_2 be their *-representations on the same Hilbert space H. Suppose that

•
$$\mathcal{A}_1$$
 or \mathcal{A}_2 is commutative.

2
$$\rho_1(x)$$
 commutes with $\rho_2(y)$ for every $x \in \mathcal{A}_1, y \in \mathcal{A}_2$.

3 if
$$\sum_{k=1}^{n} \rho_1(x_k) \rho_2(y_k) = 0$$
, then $\sum_{k=1}^{n} x_k \otimes y_k = 0$.

Let Π_0 be the C^* -algebra generated by $\rho_1(\mathcal{A}_1)$ and $\rho_2(\mathcal{A}_2)$. There exists a *-isomorphism $\rho : \mathcal{A}_1 \otimes_{\min} \mathcal{A}_2 \to \Pi_0$ such that

$$\rho(x\otimes 1) = \rho_1(x), \quad \rho(1\otimes y) = \rho_2(y).$$

Having this lemma at hands, we consider $\rho_k = q \circ \pi_k$, where q is the Calkin quotient mapping and set sym = $\rho^{-1} \circ q$.

Example: Euclidean space

Set
$$\mathcal{A}_1 = C_0(\mathbb{R}^d), \, \mathcal{A}_2 = C(\mathbb{S}^{d-1}).$$
 Set

$$\pi_1(f) = M_f, \quad \pi_2(g) = g(\frac{\nabla}{\sqrt{\Delta}}).$$

These C^* -algebras satisfy the assumptions of the Abstract Principal Symbol Theorem. Hence, there exists a *-homomorphism

$$\operatorname{sym}: \Pi \to \mathcal{A}_1 \otimes_{\min} \mathcal{A}_2 = \mathcal{C}_0(\mathbb{R}^d \times \mathbb{S}^{d-1})$$

such that

$$(\operatorname{sym}(M_f))(t,s) = f(t), \quad (\operatorname{sym}(g(\frac{\nabla}{\sqrt{\Delta}})))(t,s) = g(s).$$

- 4 @ > - 4 @ > - 4 @ >

Relation to classical PSDOs

Theorem

Let P be a classical PSDO with principal symbol p_0 . We have $P \in \Pi$ and $sym(P) = p_0$.

This follows from the next intermediate theorem.

Theorem

Let $h \in C_0(\mathbb{R}^d imes \mathbb{S}^{d-1})$ be a smooth mapping. Define \mathcal{T}_h by setting

$$(T_h f)(t) = (2\pi)^{-\frac{d}{2}} \int_{\mathbb{R}^d} e^{i\langle t,s\rangle} h(t,\frac{s}{|s|}) \hat{f}(s) ds.$$

We have $T_h \in \Pi$ and $sym(T_h) = h$.

< 回 ト < 三 ト < 三 ト

Sketch of the proof

Let $\{Y_{n,j}\}_{1 \le j \le N_n}$ be the eigenbasis of the spherical Laplacian (i.e., spherical harmonics). We write

$$h(t,s)=\sum_{n\geq 0}\sum_{j=1}^{N_n}a_{h,j}(t)Y_{n,j}(s).$$

Since h is smooth, it follows that the series converges absolutely in the uniform norm. We write

$$(T_h f)(t) = (2\pi)^{-\frac{d}{2}} \sum_{n\geq 0} \sum_{j=1}^{N_n} \int_{\mathbb{R}^d} e^{i\langle t,s\rangle} a_{h,j}(t) Y_{n,j}(\frac{s}{|s|}) \hat{f}(s) ds.$$

Thus,

$$T_h = \sum_{n\geq 0} \sum_{j=1}^{N_n} \pi_1(a_{n,j}) \pi_2(Y_{n,j}).$$

Principal symbol mapping on Heisenberg grou

イロト イポト イヨト イヨト 二日

Heisenberg group

The Heisenberg group \mathbb{H}^d is $\mathbb{C}^d \times \mathbb{R}$ equipped with the product

$$(z,t)\times(z',t')=(z+z',t+t'+\Im(\sum_{j=1}^d z_j\bar{z'_j})).$$

Clearly, \mathbb{H}^d is a stratified Lie group of degree 2. Its first stratum is $\mathbb{C}^d \times \{0\}$ and the second one is $\{0\} \times \mathbb{R}$. It is helpful to denote $\Re(z_l) = x_l$ and $\Im(z_l) = y_l$, $1 \le l \le d$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Differential calculus on Heisenberg group

The 2d + 1 vector fields

$$X_{l} = \frac{\partial}{\partial x_{l}} - y_{l} \frac{\partial}{\partial t}, \quad Y_{l} := \frac{\partial}{\partial y_{l}} + x_{l} \frac{\partial}{\partial t}, \quad 1 \leq l \leq d, \quad T = \frac{\partial}{\partial t},$$

form a natural basic for the Lie algebra of left-invariant vector fields on \mathbb{H}^d . For convenience, we set $X_{d+l} = Y_l$, $1 \le l \le d$, and $X_{2d+1} = T$. The standard sub-Laplacian Δ on \mathbb{H}^d is defined by

$$\Delta = -\sum_{l=1}^{2d} X_l^2.$$

A B F A B F

Principal symbol on Heisenberg group

Set $\mathcal{A}_1 = C_0(\mathbb{H}^d)$ and $\mathcal{A}_2 = C^*(\{R_k\}_{k=1}^{2d})$, where Heisenberg Riesz transforms R_k are defined as $R_k = X_k \Delta^{-\frac{1}{2}}$. Set $\pi_1(f) = M_f$ and $\pi_2(g) = g$. These C^* -algebras satisfy the assumptions of the Abstract Principal Symbol Theorem. Hence, there exists a *-homomorphism

$$\operatorname{sym}:\Pi\to \mathcal{A}_1\otimes_{\min}\mathcal{A}_2=\mathit{C}_0(\mathbb{H}^d,\mathcal{A}_2)$$

such that

$$(sym(\pi_1(f)))(p) = f(p), \quad (sym(\pi_2(g)))(p) = g.$$

Let *H* be a Hilbert space and B(H) be the *-algebra of all bounded operators on *H*. For every compact $A \in B(H)$, let $\mu(A)$ be the sequence of its singular values (taken with multiplicities).

We identify I_{∞} with diagonal subalgebra in B(H). Let $\mathcal{L}_{1,\infty}$ be the principal ideal generated by the sequence $\{\frac{1}{k+1}\}_{k\geq 0}$. Equivalently,

$$\mathcal{L}_{1,\infty} = \{A: \ \mu(k,A) = O(rac{1}{k+1})\}.$$

We equip $\mathcal{L}_{1,\infty}$ with the natural quasi-norm

$$||A||_{1,\infty} = \sup_{k\geq 0} (k+1)\mu(k,A).$$

Clearly, $\mathcal{L}_{1,\infty}$ is a quasi-Banach space.

Traces on $\mathcal{L}_{1,\infty}$

Let \mathcal{I} be an ideal in B(H). Linear functional $\varphi : \mathcal{I} \to \mathbb{C}$ is called a trace if it is unitarily invariant. In other words,

$$\varphi(AB) = \varphi(BA), \quad A \in \mathcal{I}, \quad B \in B(H).$$

For example, let $\mathcal{I} = \mathcal{L}_{1,\infty}$. For a given ultrafilter ω , let

$$\operatorname{Tr}_{\omega}(A) = \lim_{n \to \omega} \frac{1}{\log(n+2)} \sum_{k=0}^{n} \mu(k, A), \quad 0 \leq A \in \mathcal{L}_{1,\infty}.$$

The functional $\operatorname{Tr}_{\omega}$ happens to be additive on $\mathcal{L}_{1,\infty}^+$. Hence, it extends to a linear functional on $\mathcal{L}_{1,\infty}$. This linear functional is unitarily invariant and is, therefore, a (Dixmier) trace on $\mathcal{L}_{1,\infty}$.

・ロン ・聞と ・ヨン ・ヨン … ヨ

- Every Dixmier trace is positive
- Every positive trace is continuous
- There exist discontinuous traces
- There exist positive traces which are not Dixmier traces
- **③** Every trace on $\mathcal{L}_{1,\infty}$ vanishes on \mathcal{L}_1 (and, hence, on finite rank operators)
- There are $2^{2^{\mathbb{N}}}$ (Dixmier) traces on $\mathcal{L}_{1,\infty}$

Connes Trace Theorem on \mathbb{R}^d

Let Π be as on p.8. Operator $A \in \Pi$ is called compactly supported if there exists $\phi \in C_c^{\infty}(\mathbb{R}^d)$ such that $A = M_{\phi}A = AM_{\phi}$.

Theorem

For every (compactly supported) $A \in \Pi$, we have

$$\varphi(A(1+\Delta)^{-\frac{d}{2}}) = c_d \int_{\mathbb{R}^d \times \mathbb{S}^{d-1}} \operatorname{sym}(A).$$

Connes Trace Theorem on \mathbb{H}^d

Let Π be as on p.13. Operator $A \in \Pi$ is called compactly supported if there exists $\phi \in C_c^{\infty}(\mathbb{H}^d)$ such that $A = M_{\phi}A = AM_{\phi}$. While the algebra $L_{\infty}(\mathbb{S}^{d-1})$ is finite, the algebra $\mathrm{VN}_{\mathrm{hom}}(\mathbb{H}^d)$ is not. In fact, it is $B(H) \otimes \mathbb{C}^2$. The algebra $\mathrm{VN}(\mathbb{H}^d)$ is $B(H) \bar{\otimes} L_{\infty}(\mathbb{R})$. It is equipped with the natural trace $\tau = \mathrm{Tr} \otimes r^d dr$.

Theorem

For every (compactly supported) $A \in \Pi$, we have

$$\varphi(A(1+\Delta)^{-\frac{d}{2}}) = c_d \tau(\operatorname{sym}(A)e^{-\Delta}).$$

Is principal symbol equivariant under diffeomorphisms?

Let $\Phi : \mathbb{R}^d \to \mathbb{R}^d$ be a diffeomorphism. Define a unitary mapping $U_{\Phi} : L_2(\mathbb{R}^d) \to L_2(\mathbb{R}^d)$ by setting

$$U_{\Phi}\xi = \det(J_{\Phi})^{\frac{1}{2}} \cdot (\xi \circ \Phi).$$

Higson asked whether (a) $U_{\Phi}^{-1}AU_{\Phi}$ for every $A \in \Pi$ and (b) what is the principal symbol of $U_{\Phi}^{-1}AU_{\Phi}$?

The answer to both questions appears to be positive and plays the crucial role in defining the principal symbol on manifolds.

- 本語 医 本 医 医 一 医

Principal symbol is equivariant under diffeomorphisms.

Let $\Xi_{\Phi}: \mathbb{R}^d imes \mathbb{R}^d o \mathbb{R}^d imes \mathbb{R}^d$ be defined by setting

$$\Xi_\Phi(t,s)=(\Phi^{-1}(t),J^*_\Phi(\Phi^{-1}(t))s),\quad t,s\in\mathbb{R}^d.$$

Let us view the functions on $\mathbb{R}^d \times \mathbb{S}^{d-1}$ as homogeneous functions on $\mathbb{R}^d \times \mathbb{R}^d$.

Theorem

Let $\Phi : \mathbb{R}^d \to \mathbb{R}^d$ be a diffeomorphism. Suppose Φ is affine outside some ball. For every compactly supported $A \in \Pi$, we have $U_{\Phi}^{-1}AU_{\Phi} \in \Pi$ and

$$\operatorname{sym}(U_{\Phi}^{-1}AU_{\Phi}) = \operatorname{sym}(A) \circ \Xi_{\Phi}.$$

Globalization theorem I

Definition

Let X be a manifold with an atlas $\{(\mathcal{U}_i, h_i)\}_{i \in \mathbb{I}}$. Let \mathfrak{B} be the Borel σ -algebra on X and let ν be a countably additive measure on \mathfrak{B} . We say that $\{\mathcal{A}_i\}_{i \in \mathbb{I}}$ are local algebras in $B(L_2(X, \nu))$ if

• elements of A_i are compactly supported in U_i ;

② if $T \in A_i$ is compactly supported in $U_i \cap U_j$, then $T \in A_j$; (plus some more assumptions).

Definition

Let \mathcal{B} be a *-algebra. We say that $\{\hom_i : \mathcal{A}_i \to \mathcal{B}\}_{i \in \mathbb{I}}$ are local *-homomorphisms if $\hom_i = \hom_j$ on $\mathcal{A}_i \cap \mathcal{A}_j$ (plus some more assumptions).

イロト イヨト イヨト イヨト

Globalization theorem II

Definition

We say that $T \in \mathcal{A}$ if

() for every $i \in \mathbb{I}$ and for every $\phi \in C_c(\mathcal{U}_i)$, we have $M_{\phi}TM_{\phi} \in \mathcal{A}_i$;

2 for every $\psi \in C(X)$, the commutator $[T, M_{\psi}]$ is compact;

Theorem

Let X be a compact manifold. \mathcal{A} is a C*-subalgebra in $B(L_2(X, \nu))$. There exists a unique *-homomorphism hom : $\mathcal{A} \to \mathcal{B}$ such that hom $|_{\mathcal{A}_i} = \text{hom}_i$.

< 回 ト < 三 ト < 三 ト

Principal symbol on compact manifolds

Borel measure ν on X is said to be a continuous density if $\nu \circ h_i^{-1}$ is absolutely continuous with respect to the Lebesgue measure for every $i \in \mathbb{I}$, its Radon-Nikodym derivative is continuous and does not vanish at any point.

Set $W_i f = f \circ h_i^{-1}$. Let Π_i consist of all A compactly supported in U_i such that $W_i T W_i^{-1} \in \Pi$.

Let H_i be the coordinate mappings of the cotangent bundle. We have $H_i \circ H_j^{-1} = \Xi_{h_i \circ h_j^{-1}}$. Set $\operatorname{sym}_i(A) = \operatorname{sym}(W_i A W_i^{-1}) \circ H_i$.

Definition

Algebras $\{\Pi_i\}_{i\in\mathbb{I}}$ and mappings $\{\operatorname{sym}_i\}_{i\in\mathbb{I}}$ satisfy the assumptions of Globalization Theorem. Denote the corresponding \mathcal{A} by Π_X and the corresponding hom by sym_X . This is the principal symbol mapping on X.

イロト 不得下 イヨト イヨト 二日

Heisenberg diffeomorphisms

Let $N \subset \mathbb{H}^d$ be the hyper-plane orthogonal to $(0, \dots, 0, 1)$. Consider the surface pN for every $p \in \mathbb{H}^d$. This surface happens to be a plane passing through p (otherwise we would consider its tangent plane at p). Consider the Euclidean shift N_p of the latter plane by p.

Definition

Diffeomorphism is called a Heisenberg one if $J_{\Phi}(p): N_p \to N_{\Phi(p)}$ for every $p \in \mathbb{H}^d$.

Is principal symbol equivariant under Heisenberg diffeomorphism?

Let Π be the C^* -algebra on p.13. Let $\Phi : \mathbb{H}^d \to \mathbb{H}^d$ be the Heisenberg diffeomorphism. Define a unitary mapping $U_{\Phi} : L_2(\mathbb{H}^d) \to L_2(\mathbb{H}^d)$ by setting

$$U_{\Phi}\xi = \det(J_{\Phi})^{\frac{1}{2}} \cdot (\xi \circ \Phi).$$

Higson asked whether (a) $U_{\Phi}^{-1}AU_{\Phi}$ for every $A \in \Pi$ and (b) what is the principal symbol of $U_{\Phi}^{-1}AU_{\Phi}$?

The answer to both questions appears to be positive and plays the crucial role in defining the principal symbol on contact manifolds.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Horizontal Jacobian of a Heisenberg diffeomorphism

Set

$$HJ_{\Phi} = (X_I \Phi_k)_{k,l=1}^{2d}.$$

Just like the Jacobian, the horizontal Jacobian satisfies the composition rule

$$HJ_{\Phi_1\circ\Phi_2}=(HJ_{\Phi_1}\circ\Phi_2)\cdot HJ_{\Phi_2}.$$

We have

$$V_{\Phi}^{-1}X_jV_{\Phi}=\sum_{l=1}^{2d}M_{X_j\Phi_l\circ\Phi^{-1}}X_l,\quad 1\leq j\leq 2d,$$

where $V_{\Phi}\xi = \xi \circ \Phi$.

- 4 @ > - 4 @ > - 4 @ >

Symplectic group appears

Matrix S is called symplectic if $S^*\Omega S = \Omega$. Here, $\Omega = \sum_{k=1}^{d} E_{k,k+d} - E_{k+d,k}$. Symplectic matrices form a group denoted by $\operatorname{Sp}(2d, \mathbb{R})$.

Theorem

Horizontal Jacobian at every point is a scalar multiple of symplectic matrix.

In what follows, we may assume (for simplicity of notations) that horizontal Jacobian is everywhere symplectic.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Principal symbol is equivariant under Heisenberg diffeomorphisms

If S is symplectic matrix, then we set $W_S \xi = \xi \circ S^*$. Define the automorphism π_S of $VN(\mathbb{H}^d)$ by setting $\pi_S(A) = W_S^{-1}AW_S$. If $S : \mathbb{H}^d \to \operatorname{Sp}(2d, \mathbb{R})$, then we define the automorphism π_S of $L_{\infty}(\mathbb{H}^d) \bar{\otimes} VN(\mathbb{H}^d)$ by setting

$$(\pi_{\mathcal{S}} A)(p) = \pi_{\mathcal{S}(p)}(A(p)), \quad p \in \mathbb{H}^d.$$

Theorem

Let $\Phi : \mathbb{H}^d \to \mathbb{H}^d$ be a Heisenberg diffeomorphism affine outside some ball. Let $A \in \Pi$ be compactly supported. We have $U_{\Phi}^{-1}AU_{\Phi} \in \Pi$ and

$$\operatorname{sym}(U_{\Phi}^{-1}AU_{\Phi}) = \pi_{HJ_{\Phi}}(\operatorname{sym}(x)) \circ \Phi^{-1}.$$

A (10) A (10)

Principal symbol on contact manifolds

Let X be a manifold with an atlas $\{(\mathcal{U}_i, h_i)\}_{i \in \mathbb{I}}$. We say that the atlas is a Heisenberg one if $h_j \circ h_i^{-1}$ is a Heisenberg diffeomorphism. Manifold is called contact if there is a Heisenberg atlas. Let X be a compact contact manifold. Equivariance Theorem from p.28

Let X be a compact contact manifold. Equivariance Theorem from p.28 and Globalization Theorem from p.22 deliver the principal symbol mapping for the contact manifolds.

・ロト ・ 同ト ・ ヨト ・ ヨト

Where does principal symbol belong?

The co-domain of the principal symbol is the C^* -algebra of the continuous sections of a certain bundle E_{hom} of C^* -algebras. Each level of the bundle is the same — $C^*(\{R_k\}_{k=1}^{2d})$.

This is a sub-algebra of the algebra of measurable sections of a certain bundle E of von Neumann algebras. Each level of the bundle is the same $- \operatorname{VN}(\mathbb{H}^d)$.

The latter is isomorphic, as a von Neumann algebra, to $L_{\infty}(\mathbb{H}^d)\bar{\otimes}\mathrm{VN}(\mathbb{H}^d)$. It carries a natural trace $\Lambda = \int_{\mathbb{H}^d} \otimes \tau$. The latter algebra is infinite and we need some integrable weight to make the Connes Trace Formula true. This weight is delivered by the sub-Riemannian structure on X.

Sub-Riemannian structure on contact manifolds

Sub-Riemannian structure on X is a collection of smooth mapping $G_i : U_i \to \operatorname{GL}^+(2d, \mathbb{R})$. For any $i, j \in \mathbb{I}$ such that $U_i \cap U_j \neq \emptyset$, we have

$$G_j(t)=HJ^*_{h_i\circ h_j^{-1}}(h_j(t))\cdot G_i(t)\cdot HJ_{h_i\circ h_j^{-1}}(h_j(t)),\quad t\in\mathcal{U}_i\cap\mathcal{U}_j.$$

There exists an unbounded self-adjoint positive operator q_X affiliated to $L_{\infty}(E)$, such that

$$(q_X)_i \circ h_i^{-1} = -\sum_{k_1,k_2=1}^{2d} (g_i^{-1})_{k_1,k_2} \otimes X_{k_1} X_{k_2}, \quad i \in \mathbb{I}.$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Connes Trace Theorem for contact sub-Riemannian manifolds

Theorem

Let (X, G) be a compact contact sub-Riemannian manifold. For every $A \in \Pi_X$, we have

$$\varphi(A(1+\Delta_{G,\nu})^{-d-1})=c_d\Lambda(\operatorname{sym}(A)\cdot e^{-q_X}).$$

Here, $\Delta_{G,\nu}$ is the sub-Laplace-Beltrami operator.

Thank you for your attention

Dmitriy Zanin

Principal symbol mapping on Heisenberg grou

April 28, 2023 33 / 33