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Motivation

Pseudo-differential operators

For a smooth bounded (together with all its derivatives) function p on
Rd × Rd , define an operator Op(p) : S(Rd)→ S(Rd) by setting

(Op(p)f )(t) = (2π)−
d
2

ˆ
Rd

e i〈t,s〉p(t, s)f̂ (s)ds.

If m ≤ 0 and if
|∂αt ∂βs p(t, s)| = O(〈s〉m−|β|),

then Op(p) is called pseudo-differential (of order m). It extends to a
bounded operator on L2(Rd).
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Motivation

Classical pseudo-differential operators

Suppose there exists a sequence {pn}n≤0 of smooth such that

1 pn is approximately homogeneous of degree n.

2 for every n ≤ 0, the operator Op(p − p0 − · · · − pn) is
pseudo-differential of order n − 1.

In this case, Op(p) is called classical and p0 is called its principal symbol.
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Motivation

Nice properties of the principal symbol

Let P and Q be classical pseudo-differential operators. Let p0 and q0 be
their principal symbols.

1 principal symbol of P + Q is p0 + q0 (obvious)

2 principal symbol of PQ is p0q0 (an outcome of some computation)

3 principal symbol of P∗ is p0 (another computation)
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Motivation

Is principal symbol a ∗-homomorphism?

In the previous slide, we saw that principal symbol mapping preserves
∗-algebraic operations. So, it should be a ∗-homomorphism. This raises
natural questions.

Question

What are the domain and the co-domain of this ∗-homomorphism? Is this
∗-homomorphism continuous in some reasonable topology?

The answer to this question appears to be positive. As we will see, the
principal symbol mapping is a ∗-homomorphism of C ∗-algebras. As such,
it is a topological notion, not a smooth one!
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Abstract principal symbol mapping

Abstract principal symbol mapping

Theorem

Let A1 and A2 be C ∗-algebras and let π1 and π2 be their
∗-representations on the same Hilbert space H. Suppose that

1 A1 or A2 is commutative.

2 [π1(x), π2(y)] is compact for every x ∈ A1, y ∈ A2.

3 if
∑n

k=1 π1(xk)π2(yk) is compact, then
∑n

k=1 xk ⊗ yk = 0.

Let Π be the C ∗-algebra generated by π1(A1) and π2(A2). There exists a
∗-homomorphism sym : Π→ A1 ⊗min A2 such that

sym(π1(x)) = x ⊗ 1, sym(π2(y)) = 1⊗ y .

Dmitriy Zanin Principal symbol mapping on Heisenberg groups and contact manifoldsApril 28, 2023 6 / 33



Abstract principal symbol mapping

Key lemma

Lemma

Let A1 and A2 be C ∗-algebras and let ρ1 and ρ2 be their ∗-representations
on the same Hilbert space H. Suppose that

1 A1 or A2 is commutative.

2 ρ1(x) commutes with ρ2(y) for every x ∈ A1, y ∈ A2.

3 if
∑n

k=1 ρ1(xk)ρ2(yk) = 0, then
∑n

k=1 xk ⊗ yk = 0.

Let Π0 be the C ∗-algebra generated by ρ1(A1) and ρ2(A2). There exists a
∗-isomorphism ρ : A1 ⊗min A2 → Π0 such that

ρ(x ⊗ 1) = ρ1(x), ρ(1⊗ y) = ρ2(y).

Having this lemma at hands, we consider ρk = q ◦ πk , where q is the
Calkin quotient mapping and set sym = ρ−1 ◦ q.
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Abstract principal symbol mapping

Example: Euclidean space

Set A1 = C0(Rd), A2 = C (Sd−1). Set

π1(f ) = Mf , π2(g) = g(
∇√
∆

).

These C ∗-algebras satisfy the assumptions of the Abstract Principal
Symbol Theorem. Hence, there exists a ∗-homomorphism

sym : Π→ A1 ⊗min A2 = C0(Rd × Sd−1)

such that

(sym(Mf ))(t, s) = f (t), (sym(g(
∇√
∆

)))(t, s) = g(s).
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Abstract principal symbol mapping

Relation to classical PSDOs

Theorem

Let P be a classical PSDO with principal symbol p0. We have P ∈ Π and
sym(P) = p0.

This follows from the next intermediate theorem.

Theorem

Let h ∈ C0(Rd × Sd−1) be a smooth mapping. Define Th by setting

(Thf )(t) = (2π)−
d
2

ˆ
Rd

e i〈t,s〉h(t,
s

|s|
)f̂ (s)ds.

We have Th ∈ Π and sym(Th) = h.
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Abstract principal symbol mapping

Sketch of the proof

Let {Yn,j}1≤j≤Nn be the eigenbasis of the spherical Laplacian (i.e.,
spherical harmonics). We write

h(t, s) =
∑
n≥0

Nn∑
j=1

ah,j(t)Yn,j(s).

Since h is smooth, it follows that the series converges absolutely in the
uniform norm. We write

(Thf )(t) = (2π)−
d
2

∑
n≥0

Nn∑
j=1

ˆ
Rd

e i〈t,s〉ah,j(t)Yn,j(
s

|s|
)f̂ (s)ds.

Thus,

Th =
∑
n≥0

Nn∑
j=1

π1(an,j)π2(Yn,j).
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Principal symbol on the Heisenberg group

Heisenberg group

The Heisenberg group Hd is Cd × R equipped with the product

(z , t)× (z ′, t ′) =
(
z + z ′, t + t ′ + =(

d∑
j=1

zj z̄ ′j )
)
.

Clearly, Hd is a stratified Lie group of degree 2. Its first stratum is
Cd × {0} and the second one is {0} × R.
It is helpful to denote <(zl) = xl and =(zl) = yl , 1 ≤ l ≤ d .
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Principal symbol on the Heisenberg group

Differential calculus on Heisenberg group

The 2d + 1 vector fields

Xl =
∂

∂xl
− yl

∂

∂t
, Yl :=

∂

∂yl
+ xl

∂

∂t
, 1 ≤ l ≤ d , T =

∂

∂t
,

form a natural basic for the Lie algebra of left-invariant vector fields on
Hd . For convenience, we set Xd+l = Yl , 1 ≤ l ≤ d , and X2d+1 = T .
The standard sub-Laplacian ∆ on Hd is defined by

∆ = −
2d∑
l=1

X 2
l .
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Principal symbol on the Heisenberg group

Principal symbol on Heisenberg group

Set A1 = C0(Hd) and A2 = C ∗({Rk}2d
k=1), where Heisenberg Riesz

transforms Rk are defined as Rk = Xk∆−
1
2 . Set π1(f ) = Mf and

π2(g) = g . These C ∗-algebras satisfy the assumptions of the Abstract
Principal Symbol Theorem. Hence, there exists a ∗-homomorphism

sym : Π→ A1 ⊗min A2 = C0(Hd ,A2)

such that

(sym(π1(f )))(p) = f (p), (sym(π2(g)))(p) = g .
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Connes Trace Theorem

Let H be a Hilbert space and B(H) be the ∗-algebra of all bounded
operators on H. For every compact A ∈ B(H), let µ(A) be the sequence of
its singular values (taken with multiplicities).
We identify l∞ with diagonal subalgebra in B(H). Let L1,∞ be the
principal ideal generated by the sequence { 1

k+1}k≥0. Equivalently,

L1,∞ = {A : µ(k ,A) = O(
1

k + 1
)}.

We equip L1,∞ with the natural quasi-norm

‖A‖1,∞ = sup
k≥0

(k + 1)µ(k ,A).

Clearly, L1,∞ is a quasi-Banach space.
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Connes Trace Theorem

Traces on L1,∞

Let I be an ideal in B(H). Linear functional ϕ : I → C is called a trace if
it is unitarily invariant. In other words,

ϕ(AB) = ϕ(BA), A ∈ I, B ∈ B(H).

For example, let I = L1,∞. For a given ultrafilter ω, let

Trω(A) = lim
n→ω

1

log(n + 2)

n∑
k=0

µ(k ,A), 0 ≤ A ∈ L1,∞.

The functional Trω happens to be additive on L+
1,∞. Hence, it extends to

a linear functional on L1,∞. This linear functional is unitarily invariant and
is, therefore, a (Dixmier) trace on L1,∞.
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Connes Trace Theorem

1 Every Dixmier trace is positive

2 Every positive trace is continuous

3 There exist discontinuous traces

4 There exist positive traces which are not Dixmier traces

5 Every trace on L1,∞ vanishes on L1 (and, hence, on finite rank
operators)

6 There are 22N (Dixmier) traces on L1,∞
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Connes Trace Theorem

Connes Trace Theorem on Rd

Let Π be as on p.8. Operator A ∈ Π is called compactly supported if there
exists φ ∈ C∞c (Rd) such that A = MφA = AMφ.

Theorem

For every (compactly supported) A ∈ Π, we have

ϕ(A(1 + ∆)−
d
2 ) = cd

ˆ
Rd×Sd−1

sym(A).
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Connes Trace Theorem

Connes Trace Theorem on Hd

Let Π be as on p.13. Operator A ∈ Π is called compactly supported if
there exists φ ∈ C∞c (Hd) such that A = MφA = AMφ.
While the algebra L∞(Sd−1) is finite, the algebra VNhom(Hd) is not. In
fact, it is B(H)⊗ C2. The algebra VN(Hd) is B(H)⊗̄L∞(R). It is
equipped with the natural trace τ = Tr⊗ rddr .

Theorem

For every (compactly supported) A ∈ Π, we have

ϕ(A(1 + ∆)−
d
2 ) = cdτ(sym(A)e−∆).
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Principal symbol on compact manifolds

Is principal symbol equivariant under diffeomorphisms?

Let Φ : Rd → Rd be a diffeomorphism. Define a unitary mapping
UΦ : L2(Rd)→ L2(Rd) by setting

UΦξ = det(JΦ)
1
2 · (ξ ◦ Φ).

Higson asked whether (a) U−1
Φ AUΦ for every A ∈ Π and (b) what is the

principal symbol of U−1
Φ AUΦ?

The answer to both questions appears to be positive and plays the crucial
role in defining the principal symbol on manifolds.
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Principal symbol on compact manifolds

Principal symbol is equivariant under diffeomorphisms.

Let ΞΦ : Rd × Rd → Rd × Rd be defined by setting

ΞΦ(t, s) = (Φ−1(t), J∗Φ(Φ−1(t))s), t, s ∈ Rd .

Let us view the functions on Rd × Sd−1 as homogeneous functions on
Rd × Rd .

Theorem

Let Φ : Rd → Rd be a diffeomorphism. Suppose Φ is affine outside some
ball. For every compactly supported A ∈ Π, we have U−1

Φ AUΦ ∈ Π and

sym(U−1
Φ AUΦ) = sym(A) ◦ ΞΦ.
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Principal symbol on compact manifolds

Globalization theorem I

Definition

Let X be a manifold with an atlas {(Ui , hi )}i∈I. Let B be the Borel
σ-algebra on X and let ν be a countably additive measure on B. We say
that {Ai}i∈I are local algebras in B(L2(X , ν)) if

1 elements of Ai are compactly supported in Ui ;
2 if T ∈ Ai is compactly supported in Ui ∩ Uj , then T ∈ Aj ;

(plus some more assumptions).

Definition

Let B be a ∗-algebra. We say that {homi : Ai → B}i∈I are local
∗-homomorphisms if homi = homj on Ai ∩ Aj (plus some more
assumptions).
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Principal symbol on compact manifolds

Globalization theorem II

Definition

We say that T ∈ A if

1 for every i ∈ I and for every φ ∈ Cc(Ui ), we have MφTMφ ∈ Ai ;

2 for every ψ ∈ C (X ), the commutator [T ,Mψ] is compact;

Theorem

Let X be a compact manifold. A is a C ∗-subalgebra in B(L2(X , ν)). There
exists a unique ∗-homomorphism hom : A → B such that hom|Ai

= homi .
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Principal symbol on compact manifolds

Principal symbol on compact manifolds

Borel measure ν on X is said to be a continuous density if ν ◦ h−1
i is

absolutely continuous with respect to the Lebesgue measure for every
i ∈ I, its Radon-Nikodym derivative is continuous and does not vanish at
any point.
Set Wi f = f ◦ h−1

i . Let Πi consist of all A compactly supported in Ui such
that WiTW

−1
i ∈ Π.

Let Hi be the coordinate mappings of the cotangent bundle. We have
Hi ◦ H−1

j = Ξhi◦h−1
j
. Set symi (A) = sym(WiAW

−1
i ) ◦ Hi .

Definition

Algebras {Πi}i∈I and mappings {symi}i∈I satisfy the assumptions of
Globalization Theorem. Denote the corresponding A by ΠX and the
corresponding hom by symX . This is the principal symbol mapping on X .
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Principal symbol on contact manifolds

Heisenberg diffeomorphisms

Let N ⊂ Hd be the hyper-plane orthogonal to (0, · · · , 0, 1). Consider the
surface pN for every p ∈ Hd . This surface happens to be a plane passing
through p (otherwise we would consider its tangent plane at p). Consider
the Euclidean shift Np of the latter plane by p.

Definition

Diffeomorphism is called a Heisenberg one if JΦ(p) : Np → NΦ(p) for every

p ∈ Hd .
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Principal symbol on contact manifolds

Is principal symbol equivariant under Heisenberg
diffeomorphism?

Let Π be the C ∗-algebra on p.13. Let Φ : Hd → Hd be the Heisenberg
diffeomorphism. Define a unitary mapping UΦ : L2(Hd)→ L2(Hd) by
setting

UΦξ = det(JΦ)
1
2 · (ξ ◦ Φ).

Higson asked whether (a) U−1
Φ AUΦ for every A ∈ Π and (b) what is the

principal symbol of U−1
Φ AUΦ?

The answer to both questions appears to be positive and plays the crucial
role in defining the principal symbol on contact manifolds.
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Principal symbol on contact manifolds

Horizontal Jacobian of a Heisenberg diffeomorphism

Set
HJΦ = (XlΦk)2d

k,l=1.

Just like the Jacobian, the horizontal Jacobian satisfies the composition
rule

HJΦ1◦Φ2 = (HJΦ1 ◦ Φ2) · HJΦ2 .

We have

V−1
Φ XjVΦ =

2d∑
l=1

MXjΦl◦Φ−1Xl , 1 ≤ j ≤ 2d ,

where VΦξ = ξ ◦ Φ.
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Principal symbol on contact manifolds

Symplectic group appears

Matrix S is called symplectic if S∗ΩS = Ω. Here,
Ω =

∑d
k=1 Ek,k+d − Ek+d ,k . Symplectic matrices form a group denoted by

Sp(2d ,R).

Theorem

Horizontal Jacobian at every point is a scalar multiple of symplectic matrix.

In what follows, we may assume (for simplicity of notations) that
horizontal Jacobian is everywhere symplectic.
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Principal symbol on contact manifolds

Principal symbol is equivariant under Heisenberg
diffeomorphisms

If S is symplectic matrix, then we set WSξ = ξ ◦ S∗. Define the
automorphism πS of VN(Hd) by setting πS(A) = W−1

S AWS .
If S : Hd → Sp(2d ,R), then we define the automorphism πS of
L∞(Hd)⊗̄VN(Hd) by setting

(πSA)(p) = πS(p)(A(p)), p ∈ Hd .

Theorem

Let Φ : Hd → Hd be a Heisenberg diffeomorphism affine outside some
ball. Let A ∈ Π be compactly supported. We have U−1

Φ AUΦ ∈ Π and

sym(U−1
Φ AUΦ) = πHJΦ

(sym(x)) ◦ Φ−1.
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Principal symbol on contact manifolds

Principal symbol on contact manifolds

Let X be a manifold with an atlas {(Ui , hi )}i∈I. We say that the atlas is a
Heisenberg one if hj ◦ h−1

i is a Heisenberg diffeomorphism. Manifold is
called contact if there is a Heisenberg atlas.
Let X be a compact contact manifold. Equivariance Theorem from p.28
and Globalization Theorem from p.22 deliver the principal symbol mapping
for the contact manifolds.
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Connes Trace Theorem on contact manifolds

Where does principal symbol belong?

The co-domain of the principal symbol is the C ∗-algebra of the continuous
sections of a certain bundle Ehom of C ∗-algebras. Each level of the bundle
is the same — C ∗({Rk}2d

k=1).
This is a sub-algebra of the algebra of measurable sections of a certain
bundle E of von Neumann algebras. Each level of the bundle is the same
— VN(Hd).
The latter is isomorphic, as a von Neumann algebra, to
L∞(Hd)⊗̄VN(Hd). It carries a natural trace Λ =

´
Hd ⊗τ.

The latter algebra is infinite and we need some integrable weight to make
the Connes Trace Formula true. This weight is delivered by the
sub-Riemannian structure on X .
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Connes Trace Theorem on contact manifolds

Sub-Riemannian structure on contact manifolds

Sub-Riemannian structure on X is a collection of smooth mapping
Gi : Ui → GL+(2d ,R). For any i , j ∈ I such that Ui ∩ Uj 6= ∅, we have

Gj(t) = HJ∗
hi◦h−1

j
(hj(t)) · Gi (t) · HJhi◦h−1

j
(hj(t)), t ∈ Ui ∩ Uj .

There exists an unbounded self-adjoint positive operator qX affiliated to
L∞(E ), such that

(qX )i ◦ h−1
i = −

2d∑
k1,k2=1

(g−1
i )k1,k2 ⊗ Xk1Xk2 , i ∈ I.
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Connes Trace Theorem on contact manifolds

Connes Trace Theorem for contact sub-Riemannian
manifolds

Theorem

Let (X ,G ) be a compact contact sub-Riemannian manifold. For every
A ∈ ΠX , we have

ϕ(A(1 + ∆G ,ν)−d−1) = cdΛ(sym(A) · e−qX ).

Here, ∆G ,ν is the sub-Laplace-Beltrami operator.
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Connes Trace Theorem on contact manifolds

Thank you for your attention

Dmitriy Zanin Principal symbol mapping on Heisenberg groups and contact manifoldsApril 28, 2023 33 / 33


	Motivation
	Abstract principal symbol mapping
	Principal symbol on the Heisenberg group
	Connes Trace Theorem
	Principal symbol on compact manifolds
	Principal symbol on contact manifolds
	Connes Trace Theorem on contact manifolds

