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Definitions

Let 𝑃𝑋𝑌 be a joint probability measure on X ×Y
Let 𝑃⊗𝑛

𝑋𝑌
be the 𝑛-product of 𝑃𝑋𝑌 (which is a joint probability measure on

X𝑛 × Y𝑛)
In other words, (X,Y) ∼ 𝑃⊗𝑛

𝑋𝑌
consists of 𝑛 i.i.d. copies of (𝑋,𝑌 ) ∼ 𝑃𝑋𝑌

The noise stability of a pair of measurable sets (𝐴, 𝐵) with 𝐴 ⊆ X𝑛, 𝐵 ⊆ Y𝑛 is
defined as the joint probability 𝑃⊗𝑛

𝑋𝑌
(𝐴 × 𝐵).

Noise stability of a pair of sets is a measure of the resistance of this pair of sets
to noise corruption

The noise stability problem: Estimate 𝑃⊗𝑛
𝑋𝑌
(𝐴 × 𝐵) given 𝑃⊗𝑛

𝑋
(𝐴) and 𝑃⊗𝑛

𝑌
(𝐵)

Geometrically, estimate the “area” given the “length” and “width”

Lei Yu (Nankai University) Noise Stability: Old and New HIT 4 / 51



Definitions

Let 𝑃𝑋𝑌 be a joint probability measure on X ×Y
Let 𝑃⊗𝑛

𝑋𝑌
be the 𝑛-product of 𝑃𝑋𝑌 (which is a joint probability measure on

X𝑛 × Y𝑛)
In other words, (X,Y) ∼ 𝑃⊗𝑛

𝑋𝑌
consists of 𝑛 i.i.d. copies of (𝑋,𝑌 ) ∼ 𝑃𝑋𝑌

The noise stability of a pair of measurable sets (𝐴, 𝐵) with 𝐴 ⊆ X𝑛, 𝐵 ⊆ Y𝑛 is
defined as the joint probability 𝑃⊗𝑛

𝑋𝑌
(𝐴 × 𝐵).

Noise stability of a pair of sets is a measure of the resistance of this pair of sets
to noise corruption

The noise stability problem: Estimate 𝑃⊗𝑛
𝑋𝑌
(𝐴 × 𝐵) given 𝑃⊗𝑛

𝑋
(𝐴) and 𝑃⊗𝑛

𝑌
(𝐵)

Geometrically, estimate the “area” given the “length” and “width”

Lei Yu (Nankai University) Noise Stability: Old and New HIT 4 / 51



Definitions

Let 𝑃𝑋𝑌 be a joint probability measure on X ×Y
Let 𝑃⊗𝑛

𝑋𝑌
be the 𝑛-product of 𝑃𝑋𝑌 (which is a joint probability measure on

X𝑛 × Y𝑛)
In other words, (X,Y) ∼ 𝑃⊗𝑛

𝑋𝑌
consists of 𝑛 i.i.d. copies of (𝑋,𝑌 ) ∼ 𝑃𝑋𝑌

The noise stability of a pair of measurable sets (𝐴, 𝐵) with 𝐴 ⊆ X𝑛, 𝐵 ⊆ Y𝑛 is
defined as the joint probability 𝑃⊗𝑛

𝑋𝑌
(𝐴 × 𝐵).

Noise stability of a pair of sets is a measure of the resistance of this pair of sets
to noise corruption

The noise stability problem: Estimate 𝑃⊗𝑛
𝑋𝑌
(𝐴 × 𝐵) given 𝑃⊗𝑛

𝑋
(𝐴) and 𝑃⊗𝑛

𝑌
(𝐵)

Geometrically, estimate the “area” given the “length” and “width”

Lei Yu (Nankai University) Noise Stability: Old and New HIT 4 / 51



Doubly Symmetric Binary Distribution

Throughout this talk, we mainly consider the doubly symmetric binary distribution
(unless otherwise specified)

𝑃𝑋𝑌 =

𝑋\𝑌 0 1

0 1+𝜌
4

1−𝜌
4

1 1−𝜌
4

1+𝜌
4

with correlation 𝜌 ∈ (0, 1)
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Maximal/minimal noise stability

Formally, for 𝑎, 𝑏 ∈ [0, 1], define the maximal noise stability as

Γ
(𝑛) (𝑎, 𝑏) := max

𝐴,𝐵⊆{0,1}𝑛:𝑃⊗𝑛
𝑋
(𝐴) ≤𝑎,

𝑃⊗𝑛
𝑌
(𝐵) ≤𝑏

𝑃⊗𝑛
𝑋𝑌
(𝐴 × 𝐵)

Define the minimal noise stability as

Γ(𝑛) (𝑎, 𝑏) := min
𝐴,𝐵⊆{0,1}𝑛:𝑃⊗𝑛

𝑋
(𝐴) ≥𝑎,

𝑃⊗𝑛
𝑌
(𝐵) ≥𝑏

𝑃⊗𝑛
𝑋𝑌
(𝐴 × 𝐵)

For dyadic rationals 𝑎 = 𝑀
2𝑛 , 𝑏 = 𝑁

2𝑛 (with integers 𝑀, 𝑁), the “inequalities” in
the constraints can be replaced by “equalities”

Moreover, for this case, Γ
(𝑛) (1 − 𝑎, 𝑏) = 𝑏 − Γ(𝑛) (𝑎, 𝑏)
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Interpretation: Noninteractive Correlation Distillation

X Y

𝑓 (X) ∼ Bern(𝑎) 𝑔(Y) ∼ Bern(𝑏)

max P( 𝑓 (X) = 𝑔(Y)) max P( 𝑓 (X) = 𝑔(Y) = 1)or equivalently,

𝑓 𝑔
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Background

The notion of “noise stability” was first introduced explicitly by Benjamini,
Kalai, and Schramm in 1999

However, such a quantity was in fact first studied by Witsenhausen in his
classic work in 1975, which played a key role in proving a converse result for
Gács–Körner common information problem.

Noise stability was also used by Kahn, Kalai, and Linial in 1988 to prove the
famous KKL theorem

Now, noise stability is one of central topics in analysis of Boolean functions
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Existing Results

Trivial cases: 𝑎 or 𝑏 is 0 or 1

Known nontrivial cases: Γ
(𝑛) ( 1

2 ,
1
2

)
, Γ
(𝑛) ( 1

4 ,
1
4

)
and Γ(𝑛)

(
1
2 ,

1
2

)
, Γ(𝑛)

(
1
4 ,

3
4

)
Γ
(𝑛) (𝑎, 𝑏) and Γ(𝑛) (𝑎, 𝑏) for other (𝑎, 𝑏)?—unknown and difficult!
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Limiting Cases

Central Limit (CL) regime: 𝑎, 𝑏 are fixed

Γ
(∞) (𝑎, 𝑏), Γ(∞) (𝑎, 𝑏) denote the limits of Γ

(𝑛) (𝑎, 𝑏), Γ(𝑛) (𝑎, 𝑏) as 𝑛→∞.

Large Deviations (LD) regime: For 𝑎 = 2−𝑛𝛼, 𝑏 = 2−𝑛𝛽 (with fixed 𝛼, 𝛽 > 0),
denote

Θ
(𝑛)
LD
(𝛼, 𝛽) := −1

𝑛
log Γ

(𝑛) (
𝑒−𝑛𝛼, 𝑒−𝑛𝛽

)
,

Θ
(𝑛)
LD (𝛼, 𝛽) := −

1

𝑛
log Γ(𝑛)

(
𝑒−𝑛𝛼, 𝑒−𝑛𝛽

)
,

and their limits as Θ
(∞)
LD
(𝛼, 𝛽) ,Θ(∞)LD (𝛼, 𝛽)
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Hamming Subcubes

000

100

011010

001

111110

101

An (𝑛 − 𝑘)-subcube C𝑛−𝑘 is a set of x with 𝑘 components fixed (e.g.,
{1𝑘 } × {0, 1}𝑛−𝑘 )

Special case C𝑛−1: e.g., {1} × {0, 1}𝑛−1 (Indicator x ↦→ 𝑥1 called a dictator
function)

Case of 𝑎 = 𝑏 = 2−𝑘 :

𝐴 = 𝐵 = C𝑛−𝑘 (identical) =⇒ 𝑃⊗𝑛
𝑋𝑌
(𝐴 × 𝐵) = 𝑃𝑋𝑌 (1, 1)𝑘 =

(
1+𝜌
4

)𝑘
𝐴 = 1 − 𝐵 = C𝑛−𝑘 (anti-symmetric) =⇒ 𝑃⊗𝑛

𝑋𝑌
(𝐴 × 𝐵) = 𝑃𝑋𝑌 (1, 0)𝑘 =

(
1−𝜌
4

)𝑘
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Hamming Balls

000
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011010

001

111110

101

Hamming Ball: For 𝑟 ∈ [0, 𝑛], B𝑟 (0) := {x : 𝑑H (x, 0) ≤ 𝑟} =
{
x :

∑𝑛
𝑖=1 𝑥𝑖 ≤ 𝑟

}

CL regime: Choose 𝐴 = B𝑟𝑛 (0) , 𝐵 = B𝑠𝑛 (0) with 𝑟𝑛 = 𝑛
2 +

_
√
𝑛

2 , 𝑠𝑛 = 𝑛
2 +

`
√
𝑛

2
where _, ` ∈ R
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Hamming Balls

By the univariate and multivariate CL theorems,

𝑃⊗𝑛
𝑋
(𝐴) → Φ (_) , 𝑃⊗𝑛

𝑌
(𝐵) → Φ (`) , 𝑃⊗𝑛

𝑋𝑌
(𝐴 × 𝐵) → Φ𝜌 (_, `)

where Φ is the CDF of the standard Gaussian, and Φ𝜌 (·, ·) is the CDF of the

zero-mean bivariate Gaussian with covariance matrix
[
1 𝜌

𝜌 1

]
.

Achievable CL probabilities:

Γ
(∞) (𝑎, 𝑏) ≥ Λ𝜌 (𝑎, 𝑏) (by concentric balls B𝑟𝑛 (0),B𝑠𝑛 (0))

Γ(∞) (𝑎, 𝑏) ≤ Λ−𝜌 (𝑎, 𝑏) (by anti-concentric balls B𝑟𝑛 (0),B𝑠𝑛 (1))

where bivariate normal copula (or Gaussian quadrant probability function):

Λ𝜌 (𝑎, 𝑏) := Φ𝜌

(
Φ−1 (𝑎),Φ−1 (𝑏)

)
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Hamming Spheres

000
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Hamming Sphere: For 𝑟 ∈ [0 : 𝑛], S𝑟 (0) := {x : 𝑑H (x, 0) = 𝑟} ={
x :

∑𝑛
𝑖=1 𝑥𝑖 = 𝑟

}

a type class with type
(
_̄, _

)
in Hamming space, where _ := 𝑟

𝑛 and _̄ := 1 − _
LD regime: Choose 𝐴 = S𝑟𝑛 (0) , 𝐵 = S𝑠𝑛 (0) with 𝑟𝑛 = _𝑛, 𝑠𝑛 = `𝑛 where
_, ` ∈ [0, 1]
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Hamming Spheres

By LD theory (or Sanov’s theorem),

−1
𝑛
log 𝑃⊗𝑛

𝑋
(𝐴) → 𝐷

( (
_̄, _

)
‖𝑃𝑋

)
= 1 − 𝐻2 (_)

−1
𝑛
log 𝑃⊗𝑛

𝑌
(𝐵) → 𝐷 (( ¯̀, `) ‖𝑃𝑌 ) = 1 − 𝐻2 (`)

−1
𝑛
log 𝑃⊗𝑛

𝑋𝑌
(𝐴 × 𝐵) → D

( (
_̄, _

)
, ( ¯̀, `) ‖𝑃𝑋𝑌

)

relative entropy: 𝐷 (𝑄‖𝑃) := ∑
𝑥 𝑄(𝑥) log

𝑄 (𝑥)
𝑃 (𝑥)

binary entropy function: 𝐻2 : 𝑡 ∈ [0, 1] ↦→ −𝑡 log2 𝑡 − (1 − 𝑡) log2 (1 − 𝑡)
minimum-relative-entropy over couplings of (𝑄𝑋 , 𝑄𝑌 ):

D (𝑄𝑋 , 𝑄𝑌 ‖𝑃𝑋𝑌 ) := min
𝑄𝑋𝑌 ∈C(𝑄𝑋 ,𝑄𝑌 )

𝐷 (𝑄𝑋𝑌 ‖𝑃𝑋𝑌 )
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Hamming Spheres
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−1
𝑛
log 𝑃⊗𝑛

𝑋
(𝐴) → 𝐷

( (
_̄, _

)
‖𝑃𝑋

)
= 1 − 𝐻2 (_)

−1
𝑛
log 𝑃⊗𝑛

𝑌
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−1
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log 𝑃⊗𝑛
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Hamming Spheres

Optimizing D (𝑄𝑋 , 𝑄𝑌 ‖𝑃𝑋𝑌 ) over feasible 𝑄𝑋 :=
(
_, _̄

)
, 𝑄𝑌 := (`, ¯̀) =⇒

Θ
(∞)
LD
(𝛼, 𝛽) ≤ ΘLD (𝛼, 𝛽) := min

𝑄𝑋 ,𝑄𝑌 :𝐷 (𝑄𝑋 ‖𝑃𝑋 ) ≥𝛼,
𝐷 (𝑄𝑌 ‖𝑃𝑌 ) ≥𝛽

D (𝑄𝑋 , 𝑄𝑌 ‖𝑃𝑋𝑌 ),

Θ
(∞)
LD (𝛼, 𝛽) ≥ ΘLD (𝛼, 𝛽) := max

𝑄𝑋 ,𝑄𝑌 :𝐷 (𝑄𝑋 ‖𝑃𝑋 ) ≤𝛼,
𝐷 (𝑄𝑌 ‖𝑃𝑌 ) ≤𝛽

D (𝑄𝑋 , 𝑄𝑌 ‖𝑃𝑋𝑌 ).

attained by concentric and anti-concentric spheres
or respectively attained by concentric and anti-concentric balls.

Conjecture (Ordentlich–Polyanskiy–Shayevitz (OPS, 2019))
For 𝛼, 𝛽 ∈ (0, 1),

Θ
(∞)
LD
(𝛼, 𝛽) = ΘLD (𝛼, 𝛽) , Θ

(∞)
LD (𝛼, 𝛽) = ΘLD (𝛼, 𝛽) .
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Exponents induced by balls/spheres for 𝜌 = 0.9

ΘCL (𝛼, 𝛽) := − logΛ𝜌

(
𝑒−𝛼 , 𝑒−𝛽

)
ΘLD (𝛼, 𝛽)
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Comparison: Subcubes vs. Balls/Spheres

Regime Central Limit Large Deviations
𝑎, 𝑏 fixed and large 𝑎, 𝑏 fixed but small 𝑎, 𝑏 exp. vanishing 𝑎, 𝑏

Subcubes Better
Balls Better Better

For large 𝑎, 𝑏, subcubes are better; for small 𝑎, 𝑏, balls are better.

10
-6

10
-4

10
-2

10
0

10
-5

10
0

Hamming Balls

Hamming Subcubes
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Natural Questions on Optimality

Questions: Hamming subcubes optimal for large 𝑎, 𝑏? Hamming balls optimal for
small 𝑎, 𝑏?

CL regime: 𝑎, 𝑏 are fixed
Are subcubes optimal for 𝑎 = 𝑏 ∈

{
1
2 ,

1
4

}
? —– including Mossel’s mean-1/4

stability problem

LD regime: 𝑎, 𝑏 are exponentially small
Are balls/spheres optimal? —— Ordentlich–Polyanskiy–Shayevitz’s conjecture

We answer these questions in the following.
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Outline

1 Definitions and Background

2 Several Good Sets

3 Optimality

4 Extension to Other Distributions

5 Connection to Hypercontractivity

6 Extension to 𝑞-Stability
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Optimality for 𝑎 = 𝑏 = 1
2 : subcubes (dictators) optimal?

Confirmed positively by Witsenhausen (1975) using maximal correlation

The (Hirschfeld–Gebelein–Rényi) maximal correlation

𝜌m (𝑋;𝑌 ) := sup
𝑓 ,𝑔

𝜌( 𝑓 (𝑋); 𝑔(𝑌 )),

𝜌(𝑈;𝑉) := cov(𝑈,𝑉 )√
var(𝑈 )var(𝑉 )

is the Pearson correlation coefficient

the supremum is taken over all real-valued functions with finite variances

Tensorization:
𝜌m (X;Y) = 𝜌m (𝑋;𝑌 ).

Data Processing Inequality (DPI): For a Markov chain 𝑈 − 𝑋 − 𝑌 −𝑉 ,

𝜌m (𝑈;𝑉) ≤ 𝜌m (𝑋;𝑌 ).

For binary 𝑋,𝑌 , 𝜌m (𝑋;𝑌 ) = |𝜌(𝑋;𝑌 ) |.
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Optimality for 𝑎 = 𝑏 = 1
2 : subcubes (dictators) optimal?

Theorem ( [Witsenhausen, 1975])
For any 𝐴, 𝐵 with 𝑃⊗𝑛

𝑋
(𝐴) = 𝑎, 𝑃⊗𝑛

𝑌
(𝐵) = 𝑏,

𝑎𝑏−𝜌
√︁
𝑎𝑎𝑏𝑏 ≤ 𝑃⊗𝑛

𝑋𝑌
(𝐴 × 𝐵) ≤ 𝑎𝑏+𝜌

√︁
𝑎𝑎𝑏𝑏, where 𝑥 = 1 − 𝑥.

Proof: Setting 𝑈 = 1𝐴 (X) , 𝑉 = 1𝐵 (Y) =⇒ 𝑈 −X −Y −𝑉 =⇒��𝑃⊗𝑛
𝑋𝑌
(𝐴 × 𝐵) − 𝑎𝑏

��
√
𝑎𝑎
√
𝑏𝑏

= |𝜌(𝑈;𝑉) | = 𝜌m (𝑈;𝑉)
DPI
≤ 𝜌m (X;Y) Tensorization

= 𝜌m (𝑋;𝑌 ) = 𝜌.

Important Consequence:
For 𝑎 = 𝑏 = 1/2, 1−𝜌

4 ≤ 𝑃⊗𝑛
𝑋𝑌
(𝐴 × 𝐵) ≤ 1+𝜌

4 .

Dictators (subcubes) are optimal for 𝑎 = 𝑏 = 1/2, i.e., Γ
(𝑛) ( 1

2 ,
1
2

)
=

1+𝜌
4 and

Γ(𝑛)
(
1
2 ,

1
2

)
=

1−𝜌
4

Note: This point also can be proven by hypercontractivity and Fourier analysis
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1
2

)
=

1−𝜌
4

Note: This point also can be proven by hypercontractivity and Fourier analysis

Lei Yu (Nankai University) Noise Stability: Old and New HIT 24 / 51



Optimality for 𝑎 = 𝑏 = 1
2 : subcubes (dictators) optimal?

Theorem ( [Witsenhausen, 1975])
For any 𝐴, 𝐵 with 𝑃⊗𝑛

𝑋
(𝐴) = 𝑎, 𝑃⊗𝑛

𝑌
(𝐵) = 𝑏,

𝑎𝑏−𝜌
√︁
𝑎𝑎𝑏𝑏 ≤ 𝑃⊗𝑛

𝑋𝑌
(𝐴 × 𝐵) ≤ 𝑎𝑏+𝜌

√︁
𝑎𝑎𝑏𝑏, where 𝑥 = 1 − 𝑥.

Proof: Setting 𝑈 = 1𝐴 (X) , 𝑉 = 1𝐵 (Y) =⇒ 𝑈 −X −Y −𝑉 =⇒��𝑃⊗𝑛
𝑋𝑌
(𝐴 × 𝐵) − 𝑎𝑏

��
√
𝑎𝑎
√
𝑏𝑏

= |𝜌(𝑈;𝑉) | = 𝜌m (𝑈;𝑉)
DPI
≤ 𝜌m (X;Y) Tensorization

= 𝜌m (𝑋;𝑌 ) = 𝜌.

Important Consequence:
For 𝑎 = 𝑏 = 1/2, 1−𝜌

4 ≤ 𝑃⊗𝑛
𝑋𝑌
(𝐴 × 𝐵) ≤ 1+𝜌

4 .

Dictators (subcubes) are optimal for 𝑎 = 𝑏 = 1/2, i.e., Γ
(𝑛) ( 1

2 ,
1
2

)
=

1+𝜌
4 and

Γ(𝑛)
(
1
2 ,

1
2

)
=

1−𝜌
4

Note: This point also can be proven by hypercontractivity and Fourier analysis

Lei Yu (Nankai University) Noise Stability: Old and New HIT 24 / 51



Optimality for 𝑎 = 𝑏 = 1
4—–Mossel’s mean-1/4 stability

problem

Confirmed positively by Yu and Tan (2021) using Fourier analysis

Fourier coefficients of 𝑓 : {0, 1}𝑛 → {0, 1} are

𝑓 (y) := 1

2𝑛

∑︁
x

𝑓 (x) (−1) 〈x,y〉

Fourier expansion of 𝑓 is

𝑓 (x) =
∑︁
y

𝑓 (y) (−1) 〈x,y〉

Define the 𝑘-degree Fourier weight as

W𝑘 ( 𝑓 ) :=
∑︁
|y |=𝑘

𝑓 (y)2

where |y| denotes the Hamming weight of y.
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Optimality for 𝑎 = 𝑏 = 1
4 : subcubes optimal?

Properties: For a Boolean 𝑓 with mean 𝑎,

W0 ( 𝑓 ) = 𝑎2,

𝑛∑︁
𝑘=0

W𝑘 ( 𝑓 ) = 𝑎, P ( 𝑓 (X) = 𝑓 (Y) = 1) =
𝑛∑︁

𝑘=0

W𝑘 ( 𝑓 ) 𝜌𝑘 .

LP bound on W1 [Fu et al., 2001,Yu and Tan, 2019]:

W1 ( 𝑓 ) ≤ 𝜑 (𝑎) :=
{
2𝑎

(√
𝑎 − 𝑎

)
0 ≤ 𝑎 ≤ 1

4
𝑎
2

1
4 < 𝑎 ≤ 1

2

Fact:
P ( 𝑓 (X) = 𝑔(Y) = 1) ≤ max {P ( 𝑓 (X) = 𝑓 (Y) = 1) , P (𝑔(X) = 𝑔(Y) = 1)}

Theorem ( [Yu and Tan, 2019,Yu and Tan, 2021])

Γ
(𝑛) (𝑎, 𝑎) ≤ 𝑎2 + 𝜌𝜑 (𝑎) + 𝜌2

(
𝑎 − 𝑎2 − 𝜑 (𝑎)

)
.

Consequence: For 𝑎 = 1/4, the upper bound reduces to
(
1+𝜌
4

)2
=⇒

Γ
(𝑛) ( 1

4 ,
1
4

)
=

(
1+𝜌
4

)2
for 𝑛 ≥ 2, attained by subcubes

However, Γ(𝑛)
(
1
4 ,

1
4

)
is still open!
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Another bound better for small 𝑎, 𝑏

Theorem (Small-Set Expansion [Ahlswede and Gács, 1976,Kahn
et al., 1988,Mossel et al., 2006,O’Donnell, 2014])

For any 𝑛 ≥ 1 and 𝛼, 𝛽 > 0,

Θ
(𝑛)
LD
(𝛼, 𝛽)≥ \ (𝛼, 𝛽),

Θ
(𝑛)
LD (𝛼, 𝛽)≤ \ (𝛼, 𝛽),

where

\ (𝛼, 𝛽) =


𝛼+𝛽−2𝜌

√
𝛼𝛽

1−𝜌2 , 𝜌2𝛼 ≤ 𝛽 ≤ 𝛼
𝜌2 ,

𝛼, 𝛽 < 𝜌2𝛼,

𝛽, 𝛼 < 𝜌2𝛽

,

\ (𝛼, 𝛽) = 𝛼 + 𝛽 + 2𝜌
√
𝛼𝛽

1 − 𝜌2
.
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Proof

Proof of SSE Theorem: Based on the classic hypercontractivity
inequalities [Bonami, 1968,Gross, 1975,Borell, 1982]:

Forward part: For 𝑝, 𝑞 ≥ 1, s.t. (𝑝 − 1) (𝑞 − 1) ≥ 𝜌2,

〈 𝑓 , 𝑔〉 ≤ ‖ 𝑓 ‖𝑝 ‖𝑔‖𝑞 , ∀ 𝑓 : X → R≥0, 𝑔 : Y → R≥0

where 〈 𝑓 , 𝑔〉 := E [ 𝑓 (X) 𝑔 (Y)], ‖ 𝑓 ‖𝑝 := (E [ 𝑓 𝑝 (X)])1/𝑝 , and

‖𝑔‖𝑞 := (E [𝑔𝑞 (Y)])1/𝑞 .

Substituting 𝑓 ← 1𝐴, 𝑔 ← 1𝐵 and optimizing 𝑝, 𝑞, SSE theorem follows.
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An even better one

Theorem (Strong SSE [Yu et al., 2021,Yu, 2021c,Yu, 2021a])

For any 𝑛 ≥ 1 and 𝛼, 𝛽 ∈ (0, 1],

Θ
(𝑛)
LD
(𝛼, 𝛽) ≥ ΘLD (𝛼, 𝛽) ,

Θ
(𝑛)
LD (𝛼, 𝛽) ≤ ΘLD (𝛼, 𝛽) .

stronger than SSE theorem (can recover the latter by letting 𝛼, 𝛽→ 0)

The bounds in the strong SSE theorem are asymptotically tight as 𝑛→∞.

OPS’s conjecture is true: Balls/spheres are optimal in LD regime!

Notice: OPS’s conjecture was proven previously for
limiting cases as 𝜌 → 0 or 1 in [Ordentlich et al., 2020]
the case 𝛼 = 𝛽 in [Kirshner and Samorodnitsky, 2021]
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Θ
(𝑛)
LD (𝛼, 𝛽) ≤ ΘLD (𝛼, 𝛽) .

stronger than SSE theorem (can recover the latter by letting 𝛼, 𝛽→ 0)

The bounds in the strong SSE theorem are asymptotically tight as 𝑛→∞.

OPS’s conjecture is true: Balls/spheres are optimal in LD regime!

Notice: OPS’s conjecture was proven previously for
limiting cases as 𝜌 → 0 or 1 in [Ordentlich et al., 2020]
the case 𝛼 = 𝛽 in [Kirshner and Samorodnitsky, 2021]
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Summary of bounds

Bounds
Central Limit Large Deviations

fixed and
large 𝑎, 𝑏

fixed but
small 𝑎, 𝑏

exp. vanishing
𝑎, 𝑏

Maximal
Correlation

Sharp for
𝑎 = 𝑏 = 1/2
(Subcubes)

Fourier
Analysis

Sharp for
𝑎 = 𝑏 = 1/2

and
𝑎 = 𝑏 = 1/4
(Subcubes)

SSE Almost sharp
(Balls)

Strong SSE
Sharp

(Balls/Spheres)
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Extension to Gaussian Distributions

The noise stability problem for Gaussian distributions? —completely solved

Theorem (Borell’s Isoperimetric Theorem [Borell, 1985,Mossel and
Neeman, 2015])
Let (X,Y) be a sequence of Gaussian pairs with corr. 𝜌 ∈ (0, 1). Then, for any
𝑎, 𝑏 ∈ [0, 1],

Γ
(𝑛) (𝑎, 𝑏) = Λ𝜌 (𝑎, 𝑏)

Γ(𝑛) (𝑎, 𝑏) = Λ−𝜌 (𝑎, 𝑏) .

Recall: Bivariate normal copula:

Λ𝜌 (𝑎, 𝑏) := Φ𝜌

(
Φ−1 (𝑎),Φ−1 (𝑏)

)
Parallel half-spaces are optimal (e.g., 𝐴 = {𝑥1 ≤ 𝑟}, 𝐵 = {𝑦1 ≤ 𝑠})
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Extension to General Distributions

Strong SSE is still true for distributions defined on Polish spaces.

Theorem (Strong SSE [Yu, 2021c])

Let 𝑃𝑋𝑌 be a joint distribution defined on a Polish space. For any 𝑛 ≥ 1 and
𝛼, 𝛽 > 0,

Θ
(𝑛)
LD
(𝛼, 𝛽) ≥ 𝔎

[
ΘLD

]
(𝛼, 𝛽) ,

Θ
(𝑛)
LD (𝛼, 𝛽) ≤ ℭ [𝜑LD] (𝛼, 𝛽) ,

where 𝔎 [ 𝑓 ] ,ℭ [ 𝑓 ] respectively denote the lower convex and upper concave
envelopes of a function 𝑓 , and

𝜑(𝑠, 𝑡) := sup
𝑄𝑋 ,𝑄𝑌 :𝐷 (𝑄𝑋 ‖𝑃𝑋 )=𝑠,𝐷 (𝑄𝑌 ‖𝑃𝑌 )=𝑡

D(𝑄𝑋 , 𝑄𝑌 ‖𝑃𝑋𝑌 ).

Tightness: The bounds above are asymptotically sharp as 𝑛→∞.

For the doubly symmetric binary distribution, ΘLD = 𝜑LD.
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Hypercontractivity (HC) Inequalities

Forward HC: For any nonnegative 𝑓 , 𝑔,

〈 𝑓 , 𝑔〉 ≤ ‖ 𝑓 ‖ 𝑝 ‖𝑔‖𝑞

where 𝑝, 𝑞 ≥ 1 s.t. (𝑝 − 1) (𝑞 − 1) ≥ 𝜌2

strengthening the Hölder inequality for which 𝑝, 𝑞 ≥ 1 s.t. (𝑝 − 1) (𝑞 − 1) ≥ 1

Reverse HC: For any nonnegative 𝑓 , 𝑔,

〈 𝑓 , 𝑔〉 ≥ ‖ 𝑓 ‖ 𝑝 ‖𝑔‖𝑞

where 𝑝, 𝑞 ≤ 1 s.t. (𝑝 − 1) (𝑞 − 1) ≥ 𝜌2

strengthening the reverse Hölder inequality for which 𝑝, 𝑞 ≤ 1 s.t.
(𝑝 − 1) (𝑞 − 1) ≥ 1
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HC =⇒ SSE

HC =⇒ SSE: By setting 𝑓 ← 1𝐴, 𝑔 ← 1𝐵,

𝑃⊗𝑛
𝑋𝑌
(𝐴 × 𝐵) ≤ 𝑃⊗𝑛

𝑋
(𝐴)1/𝑝𝑃⊗𝑛

𝑌
(𝐵)1/𝑞 ,

𝑃⊗𝑛
𝑋𝑌
(𝐴 × 𝐵) ≥ 𝑃⊗𝑛

𝑋
(𝐴)1/𝑝𝑃⊗𝑛

𝑌
(𝐵)1/𝑞 .
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SSE =⇒ HC? —Yes!

The “level-partition” technique [Kirshner and Samorodnitsky, 2021]:

𝑓 ≈
𝑀∑︁
𝑖=1

𝑐𝑖1𝐴𝑖
, 𝑔 ≈

𝑁∑︁
𝑗=1

𝑑 𝑗1𝐵 𝑗

Roughly speaking, applying SSE to each pair of
(
𝐴𝑖 , 𝐵 𝑗

)
=⇒ HC

Strong SSE + “level-partition” technique =⇒ Strong HC [Kirshner and
Samorodnitsky, 2021,Yu et al., 2021]

Strong HC: An improved version of HC inequalities with the support sizes of 𝑓 , 𝑔

known

(Strong) SSE⇐⇒ (Strong) HC (in some sense)!
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NICD with 𝑘 Users

Y ∼ Bern⊗𝑛 (1/2)

Independently generate
binary sequences X𝑖

X1 X2 X𝑘

𝑈1 𝑈2 𝑈𝑘

......

......

max P(𝑈1 = 𝑈2 = ... = 𝑈𝑘 = 1)

∼ Bern(𝑎) ∼ Bern(𝑎) ∼ Bern(𝑎)

Asymmetric Version:

max P(𝑈1 = 𝑈2 = ... = 𝑈𝑘 )Symmetric Version:

𝑓 𝑓 𝑓

Lei Yu (Nankai University) Noise Stability: Old and New HIT 39 / 51



𝑞-Stability

(Asymmetric) max 𝑞-stability [Li and Médard, 2021]: For 𝑞 ∈ [1,∞),

Γ𝑞 (𝑎) := max
𝐴:𝑃⊗𝑛

𝑋
(𝐴)=𝑎

EY

[
𝑃⊗𝑛
𝑋 |𝑌 (𝐴|Y)

𝑞
]

Symmetric max 𝑞-stability: For 𝑞 ∈ [1,∞),

Γ
sym

𝑞 (𝑎) := max
𝐴:𝑃⊗𝑛

𝑋
(𝐴)=𝑎

EY

[
𝑃⊗𝑛
𝑋 |𝑌 (𝐴|Y)

𝑞 + 𝑃⊗𝑛
𝑋 |𝑌 (𝐴

𝑐 |Y)𝑞
]

We only consider 𝑎 = 1/2.
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]

We only consider 𝑎 = 1/2.
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Dictator functions optimal?

Lemma ( [Barnes and Özgür, 2020])
For 𝑎 = 1/2, there are two thresholds 1 ≤ 𝑞min < 2 < 𝑞max such that dictators
(i.e., (𝑛 − 1)-subcubes) are optimal if and only if 𝑞 ∈ [𝑞min, 𝑞max].

2
X

𝑞𝑞max𝑞min1
X XX

Dictators Optimal

Dictators Not Optimal

Lei Yu (Nankai University) Noise Stability: Old and New HIT 41 / 51



Dictator functions optimal?

Lemma ( [Barnes and Özgür, 2020])
For 𝑎 = 1/2, there are two thresholds 1 ≤ 𝑞min < 2 < 𝑞max such that dictators
(i.e., (𝑛 − 1)-subcubes) are optimal if and only if 𝑞 ∈ [𝑞min, 𝑞max].

2
X

𝑞𝑞max𝑞min1
X XX

Dictators Optimal

Dictators Not Optimal

Lei Yu (Nankai University) Noise Stability: Old and New HIT 41 / 51



Dictator functions optimal?

What are 𝑞min, 𝑞max?

Li–Médard conjecture (2019): 𝑞min = 1

Equivalent to Courtade–Kumar conjecture (2013): Dictator functions maximize
𝐼 ( 𝑓 (X) ;Y) over all balanced Boolean functions? (Derivative of 𝑞-stability at 𝑞 = 1
is conditional entropy)

Mossel-O’Donnell conjecture (2005): 𝑞max ≥ 9

It is known that 𝑞max < 10 [Mossel and O’Donnell, 2005]

2
X

𝑞𝑞max𝑞min = 1
X XX

9
X
10

Dictators Optimal Dictators Not Optimal
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Progress on Courtade–Kumar/Li–Médard Conjecture

Related Works Upper Bounds on

maxBoolean 𝑓 :E 𝑓 =1/2 𝐼 ( 𝑓 (X) ;Y)
Tools

CK/LM Conjecture 1 − 𝑯2

(
1−𝝆
2

)
[Witsenhausen and

Wyner, 1975]

𝜌2 Mrs. Gerber’s lemma

(or HC)

[Ordentlich et al., 2016] log2 𝑒

2 𝜌2 + 9
(
1 − log2 𝑒

2

)
𝜌4 for

0 ≤ 𝜌 ≤ 1√
3

(asymp. tight as

𝜌→ 0)

Fourier analysis

+ HC

[Samorodnitsky, 2016] tight bound for 𝜌 ∈ [0, 𝜌0 ] with

some 0 < 𝜌0 < 1

Fourier analysis

+ Random restrictions

+ ...

[Yu, 2021b] tight bound for 𝜌 ∈ [0, 𝜌1 ] with

𝜌1 ≈ 0.46 (explicitly given)

Fourier analysis

+ KKT conditions

[Pichler et al., 2018] A weaker version:

maxBoolean 𝑓 ,𝑔 𝐼 ( 𝑓 (X) ; 𝑔 (Y))=
1 − 𝐻2

(
1−𝜌
2

) Fourier analysis

+ Partition technique
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Progress on Mossel–O’Donnell Conjecture

Related Works Dictators are optimal for ... Tools

Mossel–O’Donnell
Conjecture

2 < 𝒒 ≤ 9
(both symmetric and

asymmetric max
𝑞-stability)

[Mossel and
O’Donnell, 2005]

2 < 𝑞 ≤ 3 (symmetric) Reducing 𝑞 = 3 to
𝑞 = 2

[Witsenhausen,
1975]

𝑞 = 2 (asymmetric) Maximal correlation

[Yu, 2021b] 2 < 𝑞 ≤ 5 (symmetric);
2 < 𝑞 ≤ 3 (asymmetric)

Fourier analysis
+ KKT conditions

[Mossel and
O’Donnell, 2005,Li
and Médard, 2021]

𝜌 → 0 or 1 (symmetric and
asymmetric)

Fourier analysis
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Summary of tools

Methods Central Limit
Moderate

Deviations

Large

Deviations

fixed and large

𝑎 (and 𝑏)

fixed but

small 𝑎

(and 𝑏)

subexp.

vanishing

𝑎 (and 𝑏)

exp.

vanishing

𝑎 (and 𝑏)

Information-

Theoretic

Methods

Maximal

Correlation
Sharp for noise

stability with

𝑎 = 𝑏 = 1/2
HC/SSE (stronger

than MC)
Almost

sharp
Sharp

Strong HC/SSE

(stronger than

HC/SSE)

Sharp

Fourier

Analysis

Combined with

Optimization

Theory (LP or

KKT)

Sharp for noise

stability with

𝑎 = 𝑏 = 1/2, 1/4;

Sharp for 𝑞-stability

with 𝑎 = 1/2 and

certain (𝑞, 𝜌)
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Thank you for your attention!
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