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Bourgain’s slicing problem

Question [Bourgain early 80s]
Let K be a convex body in Rn of volume 1. Is it true that there
exists an affine hyperplane H such that

voln−1(K ∩H) ≥ c,

where c > 0 is a universal constant?



Bourgain’s estimate

Let Ln be the slicing constant:

1

Ln
= inf

K
sup
H
{voln−1(K ∩H)}

where the infimum is taken on all convex bodies of volume 1 in Rn
and the supremum on all affine hyperplanes.

Theorem [Bourgain ’89]

Ln ≤ Cn1/4 · log n

This essentially remained the best known estimate up until very
recently (Klartag removed the log in 2006).



High dimension and universality

The philosophy of asymptotic convex geometry is that as the
dimension tends to infinity some universality phenomena tend to
appear.

Dvoretzky’s theorem (Milman version 1971)
When n is large, most log n-dimensional sections of an
n-dimensional convex body are approximately Euclidean.

Central limit problem for convex sets
Is it true that most marginal of a high dimensional convex body are
approximately Gaussian?

The Euclidean ball and the hypercube are interesting exemples. For
the unit ball all marginals are nearly Gaussian, for X uniformly
distributed on [−1, 1]n the variable

∑
θiXi is approximately

Gaussian if the mass of θ is sufficiently spread out over the
coordinates.



Log-concave measures

Log-concave measures
A measure µ on Rn of the form

µ(dx) = e−V (x) dx

with V : Rn → R ∪ {+∞} convex is called log-concave.

This class contains the class of uniform measures on convex sets
and is more convenient to work with, as it is stable under various
operations such as taking products and marginals. In particular the
convolution of two log-concave measures is log-concave.



Thin-shell constant

A probability measure µ on Rn is called isotropic if∫
Rn

x dµ = 0 and
∫
Rn

x⊗ x dµ = Id.

Given an isotropic log-concave µ let

σ2µ =
1

n
varµ|x|2

be the thin-shell constant of µ.
Most of the mass of an isotropic log-concave vector is located at
O(
√
n)-distance from the origin. The question here is whether or

not σµ = o(
√
n) in which case the mass would be located in a shell

whose width is of a smaller order than
√
n.



Slicing conjecture

The slicing constant constant put forward by
Antilla-Ball-Perissinaki and Bobkov-Koldobsky around 2003 is

σn = sup
µ
σµ

where the supremum is taken on every isotropic log-concave
measure µ.
They proved that the central limit theorem for convex sets would
follow from the estimate

σn = o(
√
n).

They also made the following conjecture:

Thin-shell conjecture

σn = O(1).



Classical results on thin-shell

Central limit problem

σn = o(
√
n)

was solved by Klartag in 2007
Other proof shortly afterwards by Fleury, Guédon, Paouris
. . .
Guédon, E. Milman ’11: σn = O(n1/3).



Kannan-Lovasz-Simonovits conjecture

Given a probability measure µ on Rn let CP (µ) be the best
constant in the Poincaré inequality:

varµ(f) ≤ CP (µ)

∫
Rn

|∇f |2 dx, ∀f

Again set
ψ2
n = sup

µ
{CP (µ)}

where the supremum is taken over all isotropic log-concave
probability measure on Rn.
In 1995, Kannan, Lovasz and Simonovits proved ψn = O(n1/2) and
made the following conjecture:

KLS conjecture

ψn = O(1)



Connection between the conjectures

The motivation of KLS was of algorithmic nature (speed of
convergence of certain random walks on high dimensional convex
sets) but the popularity of this conjecture rather comes from it
implications in asymptotic convex geometry.

Obviously σ2µ ≤ 4 · CP (µ) (just take f(x) = |x|2 in Poincaré)
In 2011 Eldan and Klartag proved

Ln ≤ Cσn.

Thus
Ln ≤ Cσn ≤ C ′ψn

In terms of the conjectures

KLS ⇒ thin-shell ⇒ slicing



Eldan’s Theorem

Theorem [Eldan 2013]

ψn ≤ Cσn · log n

Thus, up to a logarithmic factor the trivial implication between
KLS and thin-shell can be reversed.
More importantly Eldan introduces a new approach for KLS:
stochastic localization. It later turned out that this approach
yielded much more than that.



Stochastic localization results

Theorem [Lee-Vempala 2017]

ψn ≤ Cn1/4

This improves upon Guédon-Milman σn ≤ C n1/3;
And recovers Bourgain-Klartag Ln ≤ Cn1/4.

Theorem [Chen 2021]

ψn ≤ exp
(
C
√

log n ·
√

log logn
)

This is of a smaller order than any polynomial in n.



Main result of this talk

Theorem [Klartag, Lehec 2022]

ψn ≤ C(log n)5

We actually prove σn ≤ C(log n)4,
Hence ψn ≤ C ′(log n)5 by Eldan,
And Ln ≤ C ′′(log n)4 by Eldan-Klartag.



Sketch of proof

Our proof also uses stochastic localization, although in a slightly
different way than in Eldan, Lee-Vempala and Chen’s works.
Stochastic localization is arguably less central in our proof.
The main steps are as follows:

1 The H−1-inequality
2 Spectral measure and the heat flow
3 Stochastic localization tools



The Laplace operator

Laplace (or Langevin) operator associated to µ(dx) = ρ(x) dx:

Lf = ∆f + 〈∇ log ρ,∇f〉

−L is self-adjoint positive semi-definite in L2(µ)

−
∫

(Lf)g dµ =

∫
〈∇f,∇g〉 dµ.

0 is a simple eigenvalue and the corresponding eigenspace is
the space of constant functions.



The H−1-inequality

For f ∈ L2(µ) satisfying
∫
Rn f dµ = 0 set

‖f‖H−1(µ) = sup

{∫
Rn

fu dµ,

∫
Rn

|∇u|2 dµ ≤ 1

}
.

H−1-inequality [Klartag ’09]

If µ is log-concave then for every f such that
∫
Rn ∇f dµ = 0

varµ(f) ≤
n∑
i=1

‖∂if‖2H−1(µ).

Proof: Bochner + Cauchy-Schwarz.



Spectral mass and the H−1-norm

Let’s assume for simplicity that the spectrum of L is discrete:
Let 0 = λ0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues of −L and (ei) be
the corresponding eigenfunctions. The spectral gap of L is

λ1 =
1

CP (µ)
.

The H−1-norm of a centred function f can then be rewritten

‖f‖2H−1(µ) =
∑
i≥1

λ−1i 〈f, ei〉
2

=

∫ ∞
λ1

1

λ
νf (dλ) =

∫ ∞
λ1

νf ([0, λ])
dλ

λ2
,

where νf =
∑

i≥1〈f, ei〉2δλi is the spectral measure of f .



The heat flow

Let X have law µ and let (Bs) be a standard Brownian motion
on Rn, independent of X.
Let µs be the law of X +Bs.
Then µs has density Psρ where ρ is the density of µ, and Ps is
the heat semi-group:

Psρ(x) = Eρ(x+Bs) .

Ps is a contraction from L2(µs) to L2(µ). It is easily seen
that its adjoint is given by

Qsf := (Ps)
∗f =

Ps(fρ)

Psρ
.



Spectral measure and heat flow

Proposition
If µ is log-concave then for every f such that ‖f‖L2(µ) = 1 and∫
Rn f dµ = 0 then

νf ([0, λ]) ≤ C(‖Qsf‖2L2(µs)
+ sλ),

for every s > 0 and λ > 0.

Note that this proposition gives an inequality between two
seemingly unrelated objects. The left hand-side is concerned with
the spectral distribution of f for the Laplace operator L. In the
right-hand side we are only looking at f and µ along the heat flow.



Stochastic localization enters the picture

Backward martingale formulation of Qs:

Qsf(X +Bs) = E[f(X) | (X +Br)r≥s]

If we change s to 1/s the right-hand-side becomes of forward
martingale, which is related to Eldan’s stochastic localization:

Qsf(X +Bs) =

∫
Rn

f(x)pt(x) dx, t =
1

s
,

where (pt) is the localization process initiated at µ.
[Klartag-Putterman ’21]
In particular

‖Qsf‖2L2(µs)
= E

(∫
Rn

f(x)pt(x) dx

)2

.



Eldan’s stochastic localization

(pt) is a martingale taking values in the space of log-concave
probability densities on Rn

The process (pt) solves the Eldan equation:{
p0(x) = ρ(x)

dpt(x) = pt(x)〈x− at, dBt〉

where at =
∫
Rn xpt(x) dx is the barycenter of pt.

Also pt has the form

pt(x) = Z−1t e〈θt,x〉−t|x|
2/2ρ(x).

In particular when ρ is log-concave, pt is t-uniformly
log-concave.



Estimate for the norm of the covariance for small time

Set
At =

∫
Rn

(x− at)⊗2pt(x) dx = cov(pt),

and ‖At‖p = Tr(Apt )
1/p.

Lemma (essentially due to Eldan)
Suppose we start from an isotropic log-concave µ on Rn. Then

E‖At‖pp ≤ Cpn

as long as t ≤ (Cσ2n · log2 n)−1.

From this estimate, it is pretty easy to get Eldan’s theorem
ψn ≤ Cσn log n.
Actually we will only use this for p = 2.



Controlling the variation of At

We also need to control the evolution of E‖At‖22 beyond time
t0 := (Cσ2n · log2 n)−1.

Lemma
For every t1 ≤ t2

E‖At2‖22 ≤
(
t2
t1

)3

E‖At1‖22.

Chen proves the analogue for ‖At‖p for p ≥ 3.
This is the key to his no(1) bound for ψn.
His method seems to break down for p < 3, our proof of this
lemma is quite different from his.



Estimate for the norm of the barycenter

From Eldan’s equation we have dat = At(dBt), hence:

E|at|2 =

∫ t

0
E‖Ar‖22 dr.

Putting the two lemmas together we thus get the following:

Corollary
For every t > 0

E|at|2 ≤ Cn · t ·max(1, (t/t0)
3)

where t0 = (Cσ2n · log2 n)−1.



Proof of the main result

Let µ be log-concave and isotropic.
Applying the H−1 inequality to f(x) = |x|2 we get

σ2µ =
1

n
· varµ|x|2 ≤

4

n

n∑
i=1

‖xi‖2H−1(µ)

= 4

∫ ∞
λ1

F (λ)
dλ

λ2
,

where

F (λ) =
1

n

n∑
i=1

νxi([0;λ])

is the average spectral distribution of the coordinate functions.



Proof of the main result (continued)

By the proposition and the corollary:

F (λ) ≤ C
(

1

n
‖Qsx‖2L2(µs)

+ λs

)
= C

(
1

n
E|at|2 +

λ

t

)
, t = 1/s

≤ C ′
(
t4

t30
+
λ

t

)
= C ′′λ4/5 · t−3/50 , choosing t = λ1/5 · t3/50 .



Proof of the main result (end)

Combining
F (λ) ≤ Cλ4/5 · t−3/50 .

with the H−1-inequality we thus get

σ2µ ≤ C
∫ ∞
λ1

F (λ)
dλ

λ2

≤ C ′ · λ−1/51 · t−3/50

= C ′′ · CP (µ)1/5(σ2n · log2 n)3/5

≤ C1(σ
2
n · log2 n)4/5 (by Eldan’s theorem).

Choosing µ extremal in thin-shell then gives

σ2n ≤ C(σ2n · log2 n)4/5,

hence σn ≤ C ′(log n)4.



Proof of the Proposition
Claim (Klartag-Putterman)

When µ is log-concave, for every g such that
∫
Rn g dµ = 0:

‖Qsg‖2L2(µs)
≥ ‖g‖2L2(µ) exp

(
−s
‖g‖2H1(µ)

‖g‖2
L2(µ)

)
.

We apply this to g which is a spectral truncation of f :

g =
∑

i : λi≤λ
〈ei, f〉ei

We get

‖Qsg‖2L2(µs)
≥ νf ([0, λ]) · e−λs ≥ νf ([0, λ]) · (1− λs).

After some manipulations we can upgrade this to

‖Qsf‖2L2(µs)
≥ c · νf ([0, λ])− λs.



Proof of the Chen type lemma
Eldan’s equation and Itô’s formula show that

d

dt
E‖At‖22 ≤ E some order 3 tensor of pt

which, conditioned on (Bt), looks like E〈X,Y 〉3 with X,Y two
independent random vectors with density pt(·+ at).

Lemma 2
If X,Y are i.i.d. t-uniformly log-concave centred random vectors
then

E〈X,Y 〉3 ≤ 3

t
· E〈X,Y 〉2 =

3

t
· ‖cov(X)‖22

Taking this for granted we get

d

dt
E‖At‖22 ≤

3

t
· E‖At‖22

and the result follows by integrating this differential inequality.



Proof of Lemma 2

By homogeneity we can assume t = 1. The proof is based on the
following.

Claim
A 1-uniformly log concave centred random vector can be
represented

X =

∫ 1

0
QsdBs

with Qs an adpapted process of matrices such that

0 ≤ Qs ≤ Id, ∀s ∈ [0, 1]

almost surely (in the p.s.d. sense).



Proof of Lemma 2 (continued)

Use the claim and set Xt =
∫ t
0 QsdBs. By Itô’s formula

E〈X,Y 〉3 ≤ 3

∫ 1

0
E[〈Xt, Y 〉 · |QtY |2] dt

Then write

E[〈x, Y 〉 · |QY |2] ≤ E〈x, Y 〉2]1/2 · var(|QY |2)1/2

and apply Poincaré for Y : since Y is 1-uniformly log-concave it
satisfies Poincaré with constant 1. Then it is straightforward to get
the desired inequality with some constant.
Getting constant 3 requires a couple of additional tricks
(the value of that constant matters if we care about the power of
the log in the main result)


