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Background

Quantum many-body system is an important part of condensed matter
physics.

Tensor networks can be used to describe quantum many-body systems
and solve some problems.

Tensor networks have many types, such as Matrix Product
States(MPS), Projected Entangled Pair States (PEPS) and so on.

MPS can be associated with quantum channels .
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Tensor network
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MPS representation
Set a map

d D
A =57 Nal 1) (af]

i=1 a,B=1
to each of the N sites, where A,[k] € Mp,xn,,,- Then the state |¢) relative to
the map is given by

d
o) = Z Tr [A,-[TI]A,-[ZM "'A,[,kVN]} |ivia - i)
iy,0p, e iy=1
and |¢) is called a MPS with periodic boundary conditions (PBC). If A" = 4,
is indenpendent of k, then |¢) is said to be translational invariant (TI).
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Proposition (Pérez-Garcia 2007°)

(Site-independent matrices) Every Tl pure state with PBC on a finite chain
has a MPS representation with site-independent matrices Al['"] = A, ie.,

)= 3 tr (A - An) lin i)

Bl gooosthy
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Proposition (Pérez-Garcia 2007’)

(Tl canonical form). Given a Tl state on a finite ring, we can always
decompose the matrices A; of any of its TI MPS representations as

xAl0 0
Ai = 0 A2 o |,
0 0

where 1 > )\; > 0 for every j and the matrices A} in each block verify the
conditions:

1.3 AA = 1.

2.3, A" NA, = N, for some diagonal positive and full-rank matrices A .
3. 1 is the only fixed point of the operator &(X) = 3, AIXAl*.
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It is known that the MPS relative to the Kraus operators is injective iff the map
Ty : Mpxp — (C%)®" defined as

D= 30 A oAl i)

iy in=1

is injective. And Ty is injective iff
span{A; ---Ai, : 1 <ii, - ,iv <d} = Mpxp.

Moreover, if >~ A7 A; = 1, then evidently injectivity of 'y, implies injectivity of
'y forall N > No.

The question is what is the upper bound of N s.t. 'y, (X) is injective.
Conjecture: (D. Prez-Garca 2007°) Ny ~ O(D?) .
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Quantum Channel (CPTP Map)
® : B(Hy) — B(Hp)
Example: Let X € B(H,) and o5 € D(H3) ,
®(X) = Tr(X)os.

Kraus Representation:
Let {A;}%, and {B:}{_, be two subsets of B(H,, Hz), define
® : B(Hy) — B(Hp) as

d
O(X) = AXB
i=1

It is known as the Kraus repesentation of ®.



Primitivity for random quantum channels

LPrimitivity for Quantum Channels

The Choi Representation:
Assume dim(H,) = D and let (e;)2, be a set of standard orthogonal bases in

Hy, set
D

Ep = Z(e,- ®e)(e®e)T,

ij=1

then the map w : B(Hs ® Ha) — B(Hagg) is defined as

w(®) := (14 © ®)(Ep)

and it is called the Choi representation of .
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Proposition (John Watrous 2018’)
Let ® : B(Hx) — B(Hg) be a nonzero map, TFAE:
m O js a channel.
m w(P) is positive and Trg(w(P)) = 14.
m There exists a collection {A;}_, C B(Ha, Hp), where d = rank(w(®)),
satisfying

d d
O(X) = AXA and D> AA; =1,
i=1 i=1

for all X € B(Hy).
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Set ® be a quantum channels from B(H,) to B(H,) and {A:}¢_, C B(H,) be
Kraus operators, i.e.

d
O(X) = AXAT
i=1

Define S.,(A) C B(Ha) as the linear space spanned by all possible products of
exactly n Kraus operators, Ay, Ay, - - - Ax,, and by A,f"’ the elements of S,(A).
For & € Ha, we define H,(A, &) == S,(A)¢ C Ha.

Definition (Mikel Sanz; David Prez-Garca; Michael M. Wolf 2010°)

m A quantum channel ® : B(Hs) — B(H,) is called primitive if there exists
n € N such that for all £ € Hy, H,(A,£) = Hx. The minimum n is called
the index of primitivity, denoted by ¢(®).
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Definition (Mikel Sanz; David Prez-Garca; Michael M. Wolf 2010’)

m The channel @ is said to have eventually full Kraus rank if there exists
n € N such that w(®™) is full rank, i.e.,

rank w(®™) = D*.

The minimum » is denoted by i(®).

m We say @ is strongly irreducible if the following conditions are fulfilled:
(1) @ has a unique eigenvalue A with |A| = 1; (2) the corresponding
eigenvector, p, is a positive definite operator.

Proposition (Mikel Sanz; David Prez-Garca; Michael M. Wolf 2010’)

Given a quantum channel ® : B(H,) — B(Ha), the following statements are
equivalent: (a) ® is primitive; (b) ® has eventually full Kraus rank; (c) ® is
strongly irreducible.
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Definition (Helmut Wielandt 1950’)

A Matrix A = (ay)ij € Mbpxp is called a transition probability matrix if and only
if it satisfies (1) a; > 0, for all i, j; (2) >, a; = 1.

A classical channel relative to a transition probability matrix A is said to be
primitive (or transition probability matrix A is primitive) if there exists n € N,
(A")ij > 0, for all 4,;.

The minimum = is called the index of primitivity of the classical channel
(transition probability matrix A), denoted by p(A).

Proposition (Helmut Wielandt 1950°)

(Classical Wielandt inequality) If the transition probability matrix A is primitive,
then
p(A) < D* —2D +2.

Similarly, we call the inequality satisfied by index ¢(®) as quantum Wielandt
inequality.
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Theorem (Mikel Sanz; David Prez-Garca; Michael M. Wolf 2010°)

Let ® be a primitive quantum channel on Mpxp with d Kraus operators. Then
q(®) < i(®) and

1) in general, i(®) < (D* —d + 1) D*;

2) if the span of Kraus operators Si(A) contains an invertible element, then
i(®) < D*—d+1;

3 ) if the span of Kraus operators Si(A) contains a noninvertible element with
at least one nonzero eigenvalue, then i(®) < D”.

Theorem (Mateusz Michatek; Tim Seynnaeve; Frank Verstraete 2019’)

Let ® be a primitive quantum channel on Mpxp with d Kraus operators. Then
i(®) < 2D (6 + log 2(D)).
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Theorem (Mizanur Rahaman 2020’)

A positive linear map ® : Mpxp — Mpxp is said to be a Schwarz map if it
satisfies the Schwarz inequality ®(XX*) > ®(X)®(X™), for every element
X € Mpxp.

For a trace preserving primitive Schwarz map ® acting on Mpxp, then

q(®) <2(D—1)%
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Proposition (Stinespring Dilation, John Watrous 2018’)

A quantum channel ® : Mpxp — Mpxp can be written as
CI)(X) = TI‘)c[U(X® Y)U*}, VX € Mpxp, (1)

where K = C? is a finite dimensional Hilbert space, Y € M x. is a density
matrix and U € Uyp is a unitary matrix.

Theorem (Bai; Wang; Yin)

Let ® be a random quantum channel given by Equation (1), then almost

surely S
og -

] > = .
i(®) > Togd O(log D)
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Research Contents:

Let @;,--- ,®, be random quantum channels given by Equation (1), where
Ui,i =1,...,n are Haar-distributed random unitary matrices in U,p. Let us
consider the Choi matrix Z := w(®, o ®,_; o - - - o ®1) in the following two
cases:

m U, U,,...,U, are independent;
mU=U,=---= ,,::U.
Note that in the second case, we have the Choi matrix of n-fold composition

of ®.
Research Method:

1: Calculate E [Tr(Z")];
2: (Borel-Canteli Lemma) We need get Tr(Z") — E [Tr(Z")];

3: Analyze the eigenvalue of Z in the sense of limit.
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Definition (Don Weingarten 1978’)

The (unitary) Weingarten function Wg(D, o) is given by the inverse of the
function o — D#° with respect to the following convolution formula

—il
> Wg(D,or HD*) =6,
TES,

forallo,m € S,.

For the Weingarten function, it has the following estimate:
We(D,0) = ™17 (Mob(o) + 0(D™?)), )

where Mob(o) is the Mébius function on o.
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Proposition (The Weingarten formula, Don Weingarten 19
vin)y i = Gty sip), J = (it -+ ) be p-tuples

of positive integers from {1,2,--- ,D}. Then

Leti= (i1, -+ ,ip), i = (if, -

—_— DR P POy DR P -1
B Z 6’1’&0) 6’P’Ia<m5“123<1) 5’*”%@) (B i)
@,BES)

Ifp #p’, then
Uijy - UipfﬁU"f-/{ o ll,’lﬂdu( v)=0.
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The graphical Weingarten calculus

A

O
(a) Partial trace: Tr(A) (b) Maximum  mixed
state
o g A* _ — P
O A B O] T A 0
(c) Matrix multiplication: AB (d) Matrix transpose: (A*)T = A

Figure: some examples of the graphical formalism
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Recall: The quantum chennal ® : Mp — M) is defined as
X = Tre[UX @ Y)U*], VX € Mp

and w(®) := (14 ® ®)(Ep), where

D

Ep=) (ea®e)(e®¢)"

i,j=1

Figure: Diagram for Z = w(®, o ®,_; 0 -+ 0 ;).
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Figure: Diagram for Tr[Z?]
Proposition (Bai; Wang; Yin)
Letp > 1, and suppose thatU, = U, = --- = U, := U, we have

E(Tz]) = Y a*@p*e @8 D "2yweip o). (4)

a,BESp
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We will consider the following two asymptotic regimes: (a). D is fixed and
d — o005 (b). d is fixed and D — oo.

Proposition (Bai; Wang; Yin)

LetU, = U, =---=U, := U, then in the regime (a), the random matrix
Z = w(®™) converges to the chaotic state

15
Px = D

In regime (b), the asymptotic eigenvalues of Z are 1/d" with multiplicity d* and
0 with multiplicity D* — d".

As D — oo, E(Tr[ZP]) = d"™™ + O(D™?)

Proposition (Bai; Wang; Yin)

For random quantum channel ®, then the convergence of the eigenvalues of
Z = w(®™) is almost sure in regime (b).
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Let ® be a random channel, then almost surely, we conclude that the
eigenvalues of Z = w(®™) converge to 1/4" with multiplicity " and 0 with
multiplicity D*> — d". Hence Z can not be full rank if

2log D
logd

DP—d">0 =n<

Therefore, if one asks @ to be primitive, then i(®) > 2log D/ logd. In
summary,

Theorem (Bai; Wang; Yin)
Let ® be a random quantum channel, then almost surely

2logD

(D) > _ '
i(®) > Togd O(log D)
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Conclusion:

m Inregime (a), our result can be understood as a thermalization of the
maximal mixed state via the n-fold random quantum channels. Namely,
the maximal entangled state thermalizes to an equilibrium state (the
chaotic state) when the dimension (d) of the bath goes large.

= In regime (b), we have obtained a necessary condition for w(®™) to be
full rank. As a corollary, we have derived a lower bound for the primitive
index of ®.

m D. Pérez-Garcia claimed that it can be verified numerically that " is
generically injective if N > 21og D/ log d for randomly chosen A;’s. And
they also claimed a rigorous proof for the case d = D = 2.
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