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Introduction

Calculating volumes of polyhedra is a classical problem, that has been well
known since Euclid and remains relevant nowadays. This is partly due to
the fact that the volume of a fundamental polyhedron is one of the main
geometrical invariants for a 3-dimensional manifold.

Every 3-manifold can be presented by a fundamental polyhedron. That
means we can pair-wise identify the faces of some polyhedron to construct
a 3-manifold. Thus the volume of 3-manifold is the volume of its
fundamental polyhedron.

Theorem (Thurston, Jørgensen)
The volumes of 3-dimensional hyperbolic manifolds form a closed
non-discrete set on the real line. This set is well ordered. There are only
finitely many manifolds with a given volume.
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Some motivation to find exact volume formulas

It is difficult problem to find the exact volume formulas for hyperbolic
polyhedra of prescribed combinatorial type. It was done for hyperbolic
tetrahedron of general type, but even for general hyperbolic octahedron it
is an open problem.

Nevertheless, if we know that a polyhedron has a symmetry, then the
volume calculation is essentially simplified. Firstly this effect was shown by
Lobachevsky. He found the volume of an ideal tetrahedron, which is
symmetric by definition.

Nikolay Abrosimov (SIM, NSU) Volume of a compact hyperbolic antiprism Nov. 8, 2018 3 / 37



First examples of hyperbolic 3-manifolds

1914 Gieseking found first example of hyperbolic manifold (non-compact,
non-orientable)

1929 Klein wrote in his book «Non-Euclidean Geometry» that examples of
compact hyperbolic 3-manifolds are unknown

1931 Löbell presented the example of compact orientable hyperbolic
3-manifold

1933 Weber and Seifert constructed compact orientable «dodecahedral
hyperbolic space»
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Examples of geom. structures on knots complements in S3

1975 R. Riley found first examples of hyperbolic structures on seven
excellent knots and links in S3.
1977 W. Thurston showed that a complement of any prime knot admits a
hyperbolic structure if this knot is not toric or satellite one.

1980 W. Thurston constructed a hyperbolic 3-manifold homeomorphic to
the complement of knot 41 in S3 by gluing faces of two regular ideal
tetrahedra. This manifold has a complete hyperbolic structure.

1982 J. Minkus suggested a general topological construction for the
orbifold whose singular set is a two-bridge knot in S3.
2004 H. Hilden, J. Montesinos, D. Tejada, M. Toro considered more
general topological construction known as butterfly.

1998/2006 A. Mednykh, A. Rasskazov found a geometrical realisation of
the Minkus construction in H3,S3,E3.

2009 E. Molnár, J. Szirmai, A. Vesnin realised the figure-eight knot
cone-manifold in the five exotic Thurston’s geometries.
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Upper half-space model of hyperbolic 3-space

Denote by H3 a 3-dim hyperbolic space (Lobachevsky–Boljai–Gauss space).

H3 can be modelled in R3
+ = {(x , y , t) : x , y , t ∈ R, t > 0} with metric s

given by expression ds2 =
dx2 + dy2 + dt2

t2
.

The boundary ∂H3 = {(x , y , 0) : x , y ∈ R} caled absolute and consist of
points at infinity.

Isometry group Isom(H3) is a group of all actions on H3 preserving the
metric s. Denote by Isom+(H3) the group of orientation preserving
isometries.

Isom+(H3) ∼= PSL(2,C) (Pozitive Special Lorentz group). An element

g =

(
a b
c d

)
∈ PSL(2,C) acts on H3 by the rule

g : (z , t) 7→

(
(az + b)(cz + d) + act2

|cz + d |2 + |c |2 t2
,

t

|cz + d |2 + |c |2 t2

)
,

where z = x + i y .
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Geodesic lines and planes in half-space model of H3

Isom(H3) is generated by reflections with respect to geodesic planes.
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Geodesic lines and planes in ball model of H3

Isom(H3) is generated by reflections with respect to geodesic planes.
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Caley-Klein model of hyperbolic 3-space

Consider Minkowski space R4
1 with Lorentz scalar product

〈X ,Y 〉 = −x1 y1 − x2 y2 − x3 y3 + x4 y4. (1)

The Caley-Klein model of hyperbolic space is the set of vectors
K = {(x1, x2, x3, 1) : x21 + x22 + x23 < 1} forming the unit 3-ball in the
hyperplane x4 = 1. The lines and planes in K are just the intersections of
ball K with Euclidean lines and planes in the hyperplane x4 = 1.
The distance between vectors V and W is defined as

cosh ρ (V ,W ) =
〈V ,W 〉√

〈V ,V 〉 〈W ,W 〉
. (2)

A plane in K is a set P = {V ∈ K : 〈V ,N〉 = 0}, where N is a normal
vector to the plane P.
Every of four dihedral angles between the planes P,Q with normal vectors
N,M are defined by relation

cos (̂P,Q) = ± 〈N,M〉√
〈N,N〉 〈M,M〉

. (3)
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Constructing manifolds from polyhedra

Consider a right-angled polyhedron P (i.e. all the dihedral and planar
angles of P are π/2). In Euclidean space we can take a cube. In the
spherical space there is a right-angled tetrahedron (1/8 part of S3). In the
hyperbolic space there are infinitely many right-angled polyhedra.

The class of polyhedra that can be realised in hyperbolic geometry with
right angles is referred as Pogorelov polyhedra.

It follows from Andreev theorem (1968) that any polyhedron which has no
triangle and quadrilateral faces and such that any its vertex is of valency 3,
can be realised as right-angled polyhedron in H3.

Example
n-gonal Löbell prism R(n), n > 4;
all combinatorial fullerenes (including known in chemistry
C60,C70,C78,C84,C200 etc.)

R(5) = C12 = dodecahedron.
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Constructing manifolds from polyhedra

To construct hyperbolic manifolds one can follow the algorithm:

1 take a compact right-angled hyperbolic polyhedron P ;
2 set a regular colouring of the faces of P (the incidental faces should

have different colours; the number of colours will be from 3 to 7);
3 pairwise identify the faces of same colour of several copies of P .

This approach was originally used by Löbell for R(6) (1931) to construct
the first example of a compact hyperbolic manifold. M. Takahashi (1985)
do this for regular right-angled dodecahedron (or R(5)). A. Vesnin (1987)
generalised this construction for any compact hyperbolic right-angled
polyhedron P . All the manifolds constructed by colourings in 4 colours are
orientable. If one use 5, 6 or 7 colours then non-orientable hyperbolic
manifolds can be produced.
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Löbell construction of the first compact hyperbolic manifold

Consider a Löbell prism R(6) having 12 pentagonal lateral faces. Let us set
the colouring with 4 colours a, b, c , d . We take 8 copies of this coloured
R(6). Then identify faces of this 8 copies using the rule:

a : (15)(26)(37)(48)

b : (16)(25)(38)(47)

c : (17)(28)(35)(46)

d : (18)(27)(36)(45)
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Constructing manifolds from polyhedra

Denote by D the regular right-angled hyperbolic dodecahedron.

Theorem (Montesinos, 1987)
Any closed hyperbolic 3-manifold can be constructed from a finite number
of copies of D by some toplogical construction involving pairwise
identifying of their faces and coverings.

After gluing in this theorem, each edge will be surrounded by either 4 or 2
dodecahedra or just by 1 dodecahedron. In the first case there is no
singularity along this edge (the sum of angles is 2π). If the second or the
third case happens then an orbifold arises.
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From polyhedra to knots and links

Borromean Rings cone-manifold and Lambert cube

This construction done by W. Thurston, D. Sullivan and J.M. Montesinos.
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From polyhedra to knots and links

From the above consideration we get

VolB(λ, µ, ν) = 8 ·Vol L
(
λ

2
,
µ

2
,
ν

2

)
.

Recall that B(λ, µ, ν) is
i) hyperbolic iff 0 < λ, µ, ν < π (E.M. Andreev)
ii) Euclidean iff λ = µ = ν = π

iii) spherical iff π < λ, µ, ν < 3π, λ, µ, ν 6= 2π
(R. Diaz, D. Derevnin, A. Mednykh)
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From polyhedra to knots and links

Volume calculation for L(α, β, γ). The main idea.
0. Existence

L(α, β, γ) :


0 < α, β, γ < π/2, H3

α = β = γ = π/2, E3

π/2 < α, β, γ < π, S3.

1. Schläfli formula for V = Vol L(α, β, γ)

k dV =
1

2
(`αdα + `βdβ + `γdγ), k = ±1, 0 (curvature)

In particular in hyperbolic case:
∂V

∂α
= −`α

2
,

∂V

∂β
= −

`β
2
,

∂V

∂γ
= −`γ

2
(∗)

Vol L
(π

2
,
π

2
,
π

2

)
= 0. (∗∗)
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From polyhedra to knots and links

2. Relations between lengths and angles
(i) Tangent Rule

tanα

tanh `α
=

tanβ

tanh `β
=

tan γ

tanh `γ
=: T (Kellerhals)

(ii) Sine-Cosine Rule (3 different cases)

sinα

sinh `α

sinβ

sinh `β

cos γ

cosh `γ
= 1 (Derevnin,Mednykh)

(iii) Tangent Rule

T 2 − A2

1 + A2

T 2 − B2

1 + B2

T 2 − C 2

1 + C 2

1

T 2
= 1, (Hilden,Lozano,Montesinos)

where A = tanα,B = tanβ,C = tan γ. Equivalently,

(T 2 + 1)(T 4 − (A2 + B2 + C 2 + 1)T 2 + A2B2C 2) = 0.

Remark. (ii) ⇒(i) and (i) & (ii) ⇒ (iii).
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From polyhedra to knots and links

3. Integral formula for volume
Hyperbolic volume of L(α, β, γ) is given by

W =
1

4

∞∫
T

log

(
t2 − A2

1 + A2

t2 − B2

1 + B2

t2 − C 2

1 + C 2

1

t2

)
dt

1 + t2
,

where T is a positive root of the integrant equation (iii).
Proof. By direct calculation and Tangent Rule (i) we have:

∂W

∂α
=
∂W

∂A

∂A

∂α
= −1

2
arctan

A

T
= −`α

2
.

In a similar way

∂W

∂β
= −

`β
2

and
∂W

∂γ
= −`γ

2
.

By convergence of the integral W (π2 ,
π
2 ,

π
2 ) = 0. Hence,

W = V = Vol L(α, β, γ).
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Geometry of two bridge knots and links

The Hopf link

The Hopf link 221 is the simplest two component link.

The fundamental group π1(S3\221) = Z2 is a free Abelian group of rank 2.
It makes us sure that any finite covering of S3\221 is homeomorphic to
S3\221 again.
The orbifold 221(π, π) arises as a factor space by Z2-action on the projective
space P3. That is, P3 is a two-fold covering of the sphere S3 branched
over the Hopf link. It turns that the sphere S3 is a two-fold
unbranched covering of the projective space P3.
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Geometry of two bridge knots and links

The Hopf link (Construction by Abr. and Mednykh)

S
3

=

a

b

a

b

N=(0,1)

C=(0,e )
ibA=(1,0)

B=(e ,0)
ia

Fundamental tetrahedron
T (α, β) = T

(
α, β, π2 ,

π
2 ,

π
2 ,

π
2

)
∈ S3 ⊂ R4 = C× C

for the cone-manifold 221(α, β).

Relations between lengths and angles: `α = β, `β = α.
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Geometry of two bridge knots and links

Theorem (Abr., Mednykh)

The Hopf link cone-manifold 221(α, β) is spherical for all positive α and β.
The spherical volume is given by the formula

Vol 221(α, β) =
αβ

2
.

Proof. Let 0 < α, β 6 π. Consider a spherical tetrahedron T (α, β) with
dihedral angles α and β prescribed to the opposite edges and with right
angles prescribed to the remained ones. To obtain a cone-manifold 221(α, β)
we identify the faces of tetrahedron by α- and β-rotations in the respective
edges. Hence, 221(α, β) is spherical and Vol 221(α, β) = Vol T (α, β) = αβ

2 .

We note that T (α, β) is a union of n2 tetrahedra T (αn ,
β
n ). Hence, for large

positive α and β we also obtain Vol 221(α, β) = n2 ·Vol T (αn ,
β
n ) = αβ

2 .
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Geometry of two bridge knots and links

The Hopf link with bridge (Construction by Abr. and Mednykh)

S
3

=

a

b

g
a

g/4

g/4

g/4

g/4

b
4x =

g/4 a/2

b/2

Fundamental tetrahedron T
(
α, β,

γ

4
,
γ

4
,
γ

4
,
γ

4

)
for the Hopf link with bridge cone-manifold H(α, β; γ).
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Geometry of two bridge knots and links

The Hopf link with bridge

Relations between lengths and angles:

Tangent Rule (Abr., Mednykh)

tan
α

2
tanh

`α
2

=
tanh `γ
tan γ

4

= tan
β

2
tanh

`β
2

Sine-Cosine Rule (Abr., Mednykh)

cos γ4
cosh `γ

=
sin α

2

cosh `α
2

·
sin β

2

cosh
`β
2

Given α, β, γ these theorems are sufficient to determine `α, `β, `γ . This
allows us to use Schläfli equation: we are able to solve the system of PDE’s
to get the volume formula.
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Geometry of two bridge knots and links

The Hopf link with bridge

Theorem (Abr., Mednykh)
The Hopf link with bridge cone manifold H(α, β; γ) is hyperbolic for any
α, β ∈ (0, π) if and only if 

γ > 2(π − α)

γ > 2(π − β)

γ < 2π

The hyperbolic volume is given by the formula

Vol H(α, β; γ) = i · S
(
α
2 ,

β
2 ,

γ
4

)
, where S

(
π
2 − x , y , π2 − z

)
=

S̃(x , y , z) =
∞∑

m=1

(
D−sin x sin z
D+sin x sin z

)m
· cos 2mx−cos 2my+cos 2mz−1

m2 − x2 + y2 − z2

is the Schläfli function.
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Antiprism An

Definition
An antiprism An is a convex polyhedron with two equal regular n-gons as
the top and the bottom and 2n equal triangles as the lateral faces.

c c
c c c

c c
c c

a a a a a

a a a a a

c cc c c cc c cc c

Fig.: The lateral faces of antiprism A5

The antiprism can be regarded as a drum with triangular sides (see Fig.
where for n = 5 the lateral boundary is shown).
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Antiprism An

An antiprism An with 2n vertices admits a symmetry group S2n generated
by a mirror-rotational symmetry of order 2n denoted by C2n h (in Shönflies
notation). The element C2n h is a composition of a rotation by the angle of
π/n about an axis passing through the centres of the top and the bottom
faces and reflection with respect to a plane perpendicular to this axis and
passing through the middles of the lateral edges

π

5

π

n

n=5

Fig.: The symmetry of an antiprism
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Antiprism An(a, c)

π

5

π

n

n=5

Fig.: The symmetry of an antiprism

The above definitions of an antiprism An and its symmetry group S2n take
place either for Euclidean or the hyperbolic space. By definition, An has
two types of edges. Denote by a the length of those edges that form top
and bottom n-gonal faces. Set c for the length of the lateral edges. Denote
the dihedral angles by A,C respectively. Thus, we will designate as
An(a, c) for the antiprism An given by its edge lengths a, c .
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Antiprism: ideal or compact

The ideal antiprism in H3 with all vertices at infinity was studied by
A. Vesnin and A. Mednykh (1995–1996). A particular case of ideal regular
antiprism is due to W. Thurston (1980).

In the case of ideal antiprism the dihedral angles are related by a condition
2A + 2C = 2π while in a compact case the inequality 2A + 2C > 2π holds.
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Antiprism An: cases n=2 and n=3

For n = 2 the n-gons at the top and the bottom of antiprism An

degenerate to corresponding two skew edges. Thus we obtain a tetrahedron
with symmetry group S4 (see Fig.). The volume a compact hyperbolic
tetrahedron of this type was given by Abr. and Vuong (2017).

π

3

π

2

n=2 n=3

For n = 3 the antiprism An is an octahedron with symmetry group S6 (see
Fig.). The volume of a compact hyperbolic octahedron with this type of
symmetry was found by Abr., Kudina and Mednykh (2015).
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Since the symmetry group S2n acts transitively on the set of vertices of An,
it suffices to point out the coordinates of one of the vertices. Without loss
of generality, we can assume that a vertex v1 has coordinates (r , 0, h/2)
with some positive real numbers r and h. The orbit of v1 under the action
of C2n h consists of all vertices of the antiprism An.

C2n h =

 cosπ/n − sinπ/n 0
sinπ/n cosπ/n 0

0 0 −1

 , C2n h : vi 7−→ vi+1,

where the indices are taken modulo 2n.
The coordinates of the vertices of the antiprism An in E3

v2k+1 =

(
r cos

2kπ

n
, r sin

2kπ

n
,
h

2

)
,

v2k+2 =

(
r cos

(2k + 1)π

n
, r sin

(2k + 1)π

n
,−h

2

)
,

(4)

where k = 0, . . . , n − 1. Odd vertices form the top n-gonal face and even
vertices form the bottom n-gonal face of An.
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Caley-Klein model of hyperbolic 3-space

Consider Minkowski space R4
1 with Lorentz scalar product

〈X ,Y 〉 = −x1 y1 − x2 y2 − x3 y3 + x4 y4. (5)

The Caley-Klein model of the hyperbolic space is the set of vectors
K = {(x1, x2, x3, 1) : x21 + x22 + x23 < 1} forming the unit 3-ball in the
hyperplane x4 = 1. The lines and planes in K are just the intersections of
ball K with Euclidean lines and planes in the hyperplane x4 = 1.
The distance between vectors V and W is defined as

cosh ρ (V ,W ) =
〈V ,W 〉√

〈V ,V 〉 〈W ,W 〉
. (6)

A plane in K is a set P = {V ∈ K : 〈V ,N〉 = 0}, where N is a normal
vector to the plane P.
Every of four dihedral angles between the planes P,Q with normal vectors
N,M are defined by relation

cos (̂P,Q) = ± 〈N,M〉√
〈N,N〉 〈M,M〉

. (7)
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The coordinates of the vertices of the antiprism An in the Caley-Klein
model of H3

V2k+1 =

(
r cos

2kπ

n
, r sin

2kπ

n
,
h

2
, 1

)
,

V2k+2 =

(
r cos

(2k + 1)π

n
, r sin

(2k + 1)π

n
,−h

2
, 1

)
,

(8)

where k = 0, . . . , n − 1. Odd vertices form the top n-gonal face and even
vertices form the bottom n-gonal face of An.
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Compact Hyperbolic Antiprism

Theorem 1 (Abr., Vuong)

The dihedral angles A,C and the edge lengths a, c of a compact hyperbolic
antiprism with 2n vertices are related by the equalities

cosA =
−
√

cosh a− 1
(
1 + cosh a− 2 cosh c cos πn

)√
2(1 + cosh a− 2 cosh2 c)(cos 2π

n − cosh a)
,

cosC =
cosh c − cosh a cosh c + 2(cosh2 c − 1) cos πn

1 + cosh a− 2 cosh2 c
.
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Compact Hyperbolic Antiprism

Theorem 2 (Abr., Vuong)

A compact hyperbolic antiprism An(a, c) with the symmetry group S2n is
exist if and only if 1 + cosh a− 2 cosh c + 2 (1− cosh c) cos πn < 0.

1

1

cosh c

cosh a

0

c
o

sh
 a

 =
 1

(cosh a, cosh c)

(cosh a,                               )cosh a +1+2cos !/n

2(1+cos !/n)

Ω

2cosh c(1+cos "
/n) =

 1 + cosh a +
 2cos !

/n

Fig.: Existence domain of a compact hyperbolic antiprism An(a, c)
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Proposition (Schläfli differential equation)

Let H3 be a hyperbolic 3-dimensional space of constant curvature -1.
Consider a family of convex polyhedra P in H3 depending on one or more
parameters in a differential manner and keeping the same combinatorial
type. Then the differential of the volume V = V (P) satisfies the equation

dV = −1

2

∑
θ

`θ dθ

where the sum is taken over all edges of P, `θ denotes the edge length and
θ is the interior dihedral angle along it.
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Compact Hyperbolic Antiprism

Theorem 3 (Abr., Vuong)

The volume of a compact hyperbolic antiprism with 2n vertices and edge
lengths a, c is given by the formula

V = n

∫ c

c0

a G + t H

(2 cosh2 t − 1− cosh a)
√
R

dt, where

G = 2
(

cosh t − cos
π

n

)
sinh a sinh t,

H = −(cosh a− 1)
(

1 + cosh a + 2 cosh2 t − 4 cosh t cos
π

n

)
,

R = 2− cosh a(2 + cosh a) + cosh 2t + 4(cosh a− 1) cosh t cos
π

n

− 2 sinh2 t cos
2π

n
and c0 is the root of the equation

2 cosh c
(

1 + cos
π

n

)
= 1 + cosh a + 2 cos

π

n
.
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