On some partial orders on $\mathcal{B}(\mathcal{H})$

Guoxing Ji

School of Mathematics and Information Science
Shaanxi Normal University
Xi’an, China
gxji@snnu.edu.cn
On some partial orders on $\mathcal{B}(\mathcal{H})$

Guoxing Ji

Contents

Section 1

1. Partial orders on $\mathcal{B}(\mathcal{H})$

2. Partial order hereditary subspaces

3. Order automorphisms on the unit interval

4. Maximal lower bounds and minimal upper bounds
1. Partial orders on $\mathcal{B}(\mathcal{H})$

Example 1.1

Let \mathbb{C}^n be the n dimensional complex (Hilbert) Euclid space and let M_n be the algebra of all complex $n \times n$ matrices. Let M_i (resp. N_i) be the m_i (resp. n_i) dimensional subspace of \mathbb{C}^n for $i = 1, 2$ such that $n = m_1 + m_2 = n_1 + n_2$ and

$$\mathbb{C}^n = M_1 \oplus M_2 = N_1 \oplus N_2.$$ (1)
1. Partial orders on $\mathcal{B}(\mathcal{H})$

Example 1.1

Let \mathbb{C}^n be the n dimensional complex (Hilbert) Euclid space and let M_n be the algebra of all complex $n \times n$ matrices. Let M_i (resp. N_i) be the m_i (resp. n_i) dimensional subspace of \mathbb{C}^n for $i = 1, 2$ such that $n = m_1 + m_2 = n_1 + n_2$ and

$$\mathbb{C}^n = M_1 \oplus M_2 = N_1 \oplus N_2. \quad (1)$$

Let $A, B \in M_n$. If there are $n_i \times m_i$ matrices $B_i (i = 1, 2)$ such that

$$A = \begin{pmatrix} B_1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}$$

with respect to the decomposition (1), then we say that $A \leq B$.
1. Partial orders on $\mathcal{B}(\mathcal{H})$

It is known that ”\leq” is a partial order in M_n.
1. Partial orders on $\mathcal{B}(\mathcal{H})$

It is known that ” \leq ” is a partial order in M_n. In fact, $A \leq B \iff A^*A = A^*B, AA^* = BA^*$.

1. Partial orders on $\mathcal{B}(\mathcal{H})$

It is known that ”\leq” is a partial order in M_n. In fact, $A \leq B \iff A^*A = A^*B, AA^* = BA^*$.

We now may consider this partial order in the algebra $\mathcal{B}(\mathcal{H})$ (or a von Neumann algebra $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$) of all bounded linear operators on a complex Hilbert space \mathcal{H}.
1. Partial orders on $\mathcal{B}(\mathcal{H})$

It is known that \leq is a partial order in M_n. In fact, $A \leq B \iff A^*A = A^*B, AA^* = BA^*$.

We now may consider this partial order in the algebra $\mathcal{B}(\mathcal{H})$ (or a von Neumann algebra $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$) of all bounded linear operators on a complex Hilbert space \mathcal{H}.

Definition 1.2

Let $A, B \in \mathcal{M}$. If $A^*A = A^*B, AA^* = BA^*$, then we say that $A \preceq B$.

The order \preceq is called the star partial order in \mathcal{M}.
1. Partial orders on $\mathcal{B}(\mathcal{H})$

Let M_i and $N_i (i = 1, 2)$ be closed subspaces of \mathcal{H} such that

$$\mathcal{H} = M_1 \oplus M_2 = N_1 \oplus N_2. \quad (2)$$

For any $T \in \mathcal{B}(\mathcal{H})$, there are $T_{ji} \in \mathcal{B}(M_i, N_j) (i, j = 1, 2)$ such that

$$T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} \quad (3)$$

with respect to the orthogonal decompositions (2).
1. Partial orders on $B(\mathcal{H})$

Let M_i and $N_i(i = 1, 2)$ be closed subspaces of \mathcal{H} such that

$$\mathcal{H} = M_1 \oplus M_2 = N_1 \oplus N_2.$$ \hspace{1cm} (2)

For any $T \in B(\mathcal{H})$, there are $T_{ji} \in B(M_i, N_j)(i, j = 1, 2)$ such that

$$T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$$ \hspace{1cm} (3)

with respect to the orthogonal decompositions (2).

Proposition 1.3

Let $A, B \in B(\mathcal{H})$. Then $A \preceq B$ if and only if there is an orthogonal direct decomposition (2) of \mathcal{H} such that

$$A = \begin{pmatrix} A_{11} & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} A_{11} & 0 \\ 0 & B_{22} \end{pmatrix}.$$ \hspace{1cm} (4)
1. Partial orders on $\mathcal{B}(\mathcal{H})$

We next recall another partial order on $\mathcal{B}(\mathcal{H})$.
We next recall another partial order on \(\mathcal{B}(\mathcal{H}) \). Let \(A \in \mathcal{B}(\mathcal{H}) \). Denote by \(R(A) \) and \(N(A) \) the range and the kernel of \(A \) respectively.
1. Partial orders on $\mathcal{B}(\mathcal{H})$

We next recall another partial order on $\mathcal{B}(\mathcal{H})$. Let $A \in \mathcal{B}(\mathcal{H})$. Denote by $R(A)$ and $N(A)$ the range and the kernel of A respectively. For a closed subspace $M \subseteq \mathcal{H}$, P_M is the orthogonal projection on M.

Definition 1.4 (J. K. Baksalary, J. Hauke, 1990)

For $A, B \in \mathcal{B}(\mathcal{H})$, we say $A \leq \bigtriangledown B$ if $R(A) \subseteq R(B)$, $R(A^*) \subseteq R(B^*)$ and $AA^* = AB^*$. It is known that $\leq \bigtriangledown$ is a partial order on $\mathcal{B}(\mathcal{H})$ and is called the diamond partial order.
We next recall another partial order on $\mathcal{B}(\mathcal{H})$. Let $A \in \mathcal{B}(\mathcal{H})$. Denote by $R(A)$ and $N(A)$ the range and the kernel of A respectively. For a closed subspace $M \subseteq \mathcal{H}$, P_M is the orthogonal projection on M.

Definition 1.4 (J. K. Baksalary, J. Hauke, 1990)

For $A, B \in \mathcal{B}(\mathcal{H})$, we say $A \preceq B$ if $\overline{R(A)} \subseteq \overline{R(B)}$, $\overline{R(A^*)} \subseteq \overline{R(B^*)}$ and $AA^*A = AB^*A$.

It is known that \preceq is a partial order on $\mathcal{B}(\mathcal{H})$ and is called the diamond partial order.
1. Partial orders on $\mathcal{B}(\mathcal{H})$

Proposition 1.5

Let $A, B \in \mathcal{B}(\mathcal{H})$ and $U \in \mathcal{B}(\mathcal{H})$ is unitary.

1. If $A^* \leq B$ (resp. $A \leq B^\Diamond$), then $UA^* \leq UB$ (resp. $UA \leq B^\Diamond U$) and $AU \leq BU$ (resp. $AU \leq B^\Diamond U$).

2. $A^* \leq B \iff A = P_{R(A)}B = BP_{R(A^*)}$.

3. $A \leq B^\Diamond \iff A = P_{R(A)}BP_{R(A^*)} = P_{R(B)}AP_{R(B^*)}$.

4. If $A^* \leq B$, then $A \leq B^\Diamond$.

2. Partial order-hereditary subspaces

Definition 2.1
Let \(\leq \) be a partial order on a von Neumann algebra \(\mathcal{M} \) and \(\mathcal{A} \subseteq \mathcal{M} \) a subspace. For any \(A \in \mathcal{M} \) and \(B \in \mathcal{A} \), if \(A \in \mathcal{A} \) whenever \(A \leq B \), then we say that \(\mathcal{A} \) is a hereditary subspace with respect to the partial order \(\leq \).
2. Partial order-hereditary subspaces

Definition 2.1

Let ” ≤ ” be a partial order on a von Neumann algebra \mathcal{M} and $\mathcal{A} \subseteq \mathcal{M}$ a subspace. For any $A \in \mathcal{M}$ and $B \in \mathcal{A}$, if $A \in \mathcal{A}$ whenever $A \leq B$, then we say that \mathcal{A} is a hereditary subspace with respect to the partial order ” ≤ ”. If \mathcal{A} is a hereditary subspace with respect to the star(resp. diamond) partial order, then we say that \mathcal{A} is a star(resp. diamond) partial order hereditary subspace of \mathcal{M}.
2. Partial order-hereditary subspaces

Remark

1. \mathcal{A}: star (resp. diamond) partial order hereditary $\implies \mathcal{A}^* = \{X^* : X \in \mathcal{A}\}$ is.

2. \mathcal{A}: diamond partial order hereditary $\implies \mathcal{A}$: star partial order hereditary.

3. $I \subseteq \mathcal{M}$: left (resp. right) ideal $\implies I$: diamond (star) partial order hereditary.
2. Partial order-hereditary subspaces

Remark

1. \(\mathcal{A} \): star\((\text{resp. diamond}) \) partial order hereditary \(\implies \) \(\mathcal{A}^* = \{X^* : X \in \mathcal{A}\} \) is.

2. \(\mathcal{A} \): diamond partial order hereditary \(\implies \) \(\mathcal{A} \): star partial order hereditary.

3. \(I \subseteq \mathcal{M} \): left\((\text{resp. right}) \) ideal \(\implies \) \(I \): diamond\((\text{star}) \) partial order hereditary.

We recall that if \(I \) is a weak* closed left, right or two-sided ideal in \(\mathcal{M} \) respectively, then there are projections \(E, F \in \mathcal{M} \) or a central projection \(P \in Z(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}' \) such that \(I = ME, I = FM \) or \(I = PM \).
2. Partial order-hereditary subspaces

Remark

1. \(\mathcal{A} \): star (resp. diamond) partial order hereditary \(\Rightarrow \) \(\mathcal{A}^* = \{ X^* : X \in \mathcal{A} \} \) is.

2. \(\mathcal{A} \): diamond partial order hereditary \(\Rightarrow \) \(\mathcal{A}: \) star partial order hereditary.

3. \(I \subseteq \mathcal{M} \): left (resp. right) ideal \(\Rightarrow \) \(I : \) diamond (star) partial order hereditary.

We recall that if \(I \) is a weak* closed left, right or two-sided ideal in \(\mathcal{M} \) respectively, then there are projections \(E, F \in \mathcal{M} \) or a central projection \(P \in Z(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}' \) such that \(I = \mathcal{M}E, I = FM \) or \(I = PM \).

In general, let \(E, F \in \mathcal{M} \) be two projections. Then \(EMF \) is weak* closed diamond as well as star partial order-hereditary.
2. Partial order-hereditary subspaces

What is a diamond or star partial order hereditary subspace?
2. Partial order-hereditary subspaces

What is a diamond or star partial order hereditary subspace?

We next consider star partial order hereditary subspaces. Let $\mathcal{K}(\mathcal{H})$ be the ideal of all compact operators in $\mathcal{B}(\mathcal{H})$.

Theorem 2.2

Let A be a nonzero norm closed star partial order hereditary subspace in $\mathcal{B}(\mathcal{H})$. Then there exists a unique pair of projections $E, F \in \mathcal{B}(\mathcal{H})$ such that $A \cap \mathcal{K}(\mathcal{H}) = E\mathcal{K}(\mathcal{H})F$ and $A_{w^*} = E\mathcal{B}(\mathcal{H})F$, where A_{w^*} is the weak* closure of A. That is, $E\mathcal{K}(\mathcal{H})F \subseteq A \subseteq E\mathcal{B}(\mathcal{H})F$.
2. Partial order-hereditary subspaces

What is a diamond or star partial order hereditary subspace?

We next consider star partial order hereditary subspaces. Let $\mathcal{K}(\mathcal{H})$ be the ideal of all compact operators in $\mathcal{B}(\mathcal{H})$.

Theorem 2.2

Let \mathfrak{A} be a nonzero norm closed star partial order hereditary subspace in $\mathcal{B}(\mathcal{H})$. Then there exists a unique pair of projections $E, F \in \mathcal{B}(\mathcal{H})$ such that

$$\mathfrak{A} \cap \mathcal{K}(\mathcal{H}) = E\mathcal{K}(\mathcal{H})F$$

and

$$\overline{\mathfrak{A}}^{w*} = E\mathcal{B}(\mathcal{H})F,$$

where $\overline{\mathfrak{A}}^{w*}$ is the weak* closure of \mathfrak{A}. That is,

$$E\mathcal{K}(\mathcal{H})F \subseteq \mathfrak{A} \subseteq E\mathcal{B}(\mathcal{H})F.$$
2. Partial order-hereditary subspaces

Example 2.3

Let \mathcal{N} be an infinite dimensional Hilbert space and $\mathcal{H} = \mathcal{N} \oplus \mathcal{N}$. Put

$$\mathfrak{A} = \left\{ \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} : X_{11}, X_{12} \in \mathcal{B}(\mathcal{N}), X_{21}, X_{22} \in \mathcal{K}(\mathcal{N}) \right\}.$$

Then \mathfrak{A} is a norm closed star partial order hereditary subspace such that $\mathcal{K}(\mathcal{H}) \nsubseteq \mathfrak{A} \nsubseteq \mathcal{B}(\mathcal{H})$.
2. Partial order-hereditary subspaces

Example 2.3

Let \mathcal{N} be an infinite dimensional Hilbert space and $\mathcal{H} = \mathcal{N} \oplus \mathcal{N}$. Put

$$\mathfrak{A} = \left\{ \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} : X_{11}, X_{12} \in \mathcal{B}(\mathcal{N}), X_{21}, X_{22} \in \mathcal{K}(\mathcal{N}) \right\}.$$

Then \mathfrak{A} is a norm closed star partial order hereditary subspace such that $\mathcal{K}(\mathcal{H}) \nsubseteq \mathfrak{A} \nsubseteq \mathcal{B}(\mathcal{H})$.

It is also known that both \mathfrak{A}^* and $\mathfrak{A} \cap \mathfrak{A}^*$ are also star partial order hereditary subspaces containing $\mathcal{K}(\mathcal{H})$. However $\mathfrak{A} \vee \mathfrak{A}^*$ is not star partial order hereditary.
2. Partial order-hereditary subspaces

Let \mathcal{M} be a von Neumann algebra and $Z(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}'$ the center of \mathcal{M}. Let $A \in \mathcal{M}$.

$$C_A = \inf \{ E \in Z(\mathcal{M}) : E \text{ is a projection such that } EA = A \}$$

denotes the central carrier of A.

Let \mathcal{M} be a von Neumann algebra and $Z(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}'$ the center of \mathcal{M}. Let $A \in \mathcal{M}$.
2. Partial order-hereditary subspaces

Let \mathcal{M} be a von Neummann algebra and $Z(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}'$ the center of \mathcal{M}. Let $A \in \mathcal{M}$.

$$C_A = \inf\{E \in Z(\mathcal{M}) : E \text{ is a projection such that } EA = A\}$$

denotes the central carrier of A. We know that C_A in fact is the projection from \mathcal{H} onto $[\mathcal{M}A(\mathcal{H})]$.
2. Partial order-hereditary subspaces

Let \mathcal{M} be a von Neumann algebra and $Z(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}'$ the center of \mathcal{M}. Let $A \in \mathcal{M}$.

$$C_A = \inf \{ E \in Z(\mathcal{M}) : E \text{ is a projection such that } EA = A \}$$

denotes the central carrier of A. We know that C_A in fact is the projection from \mathcal{H} onto $[\mathcal{M}A(\mathcal{H})]$.

Theorem 2.4

Let $\mathcal{A} \subseteq \mathcal{M}$ be a weak* closed star partial order hereditary subspace. Then there exists a unique pair of projections $E, F \in \mathcal{M}$ with the same central carriers $C_E = C_F$ such that $\mathcal{A} = EMF$.
Corollary 2.5

Let $\mathcal{A} \subseteq \mathcal{M}$ be a weak* closed diamond partial order hereditary subspace. Then there exists a unique pair of projections $E, F \in \mathcal{M}$ with the same central carriers $C_E = C_F$ such that $\mathcal{A} = E\mathcal{M}F$.
Corollary 2.5

Let $\mathcal{A} \subseteq \mathcal{M}$ be a weak* closed diamond partial order hereditary subspace. Then there exists a unique pair of projections $E, F \in \mathcal{M}$ with the same central carriers $C_E = C_F$ such that $\mathcal{A} = E \mathcal{M} F$.

Remark

$\mathcal{A} \subseteq \mathcal{M}$: norm closed star partial order hereditary subspace. $\Rightarrow \mathcal{A}$: diamond partial order hereditary?
2. Partial order-hereditary subspaces

Corollary 2.5
Let $\mathcal{A} \subseteq \mathcal{M}$ be a weak* closed diamond partial order hereditary subspace. Then there exists a unique pair of projections $E, F \in \mathcal{M}$ with the same central carriers $C_E = C_F$ such that $\mathcal{A} = E\mathcal{M}F$.

Remark
$\mathcal{A} \subseteq \mathcal{M}$: norm closed star partial order hereditary subspace.
$\implies \mathcal{A}$: diamond partial order hereditary?

If it is also weak* closed, then it is.
3. Order automorphisms on the unit interval

We consider the unit interval with respect to a partial order.
3. Order automorphisms on the unit interval

We consider the unit interval with respect to a partial order.

Put $\Sigma = \{T \in \mathcal{B}(\mathcal{H}) : 0 \preceq T \preceq I\}$, the unit interval with respect to the star partial order. Then
3. Order automorphisms on the unit interval

We consider the unit interval with respect to a partial order.

Put \(\Sigma = \{ T \in \mathcal{B}(\mathcal{H}) : 0 \preceq T \preceq I \} \), the unit interval with respect to the star partial order. Then

\[
\Sigma = \{ E \in \mathcal{B}(\mathcal{H}) : E \text{ is a projection} \}
\]

and for any \(E, F \in \Sigma \), \(E \preceq F \iff E \leq F \).

In this case, \(\Sigma \) is just the lattice of subspaces in \(\mathcal{H} \).
3. Order automorphisms on the unit interval

We consider the unit interval with respect to a partial order.

Put \(\Sigma = \{T \in \mathcal{B}(\mathcal{H}) : 0 \preceq T \preceq I\} \), the unit interval with respect to the star partial order. Then

\[
\Sigma = \{E \in \mathcal{B}(\mathcal{H}) : E \text{ is a projection}\}
\]

and for any \(E, F \in \Sigma \), \(E^* \leq F \iff E \leq F \).

In this case, \(\Sigma \) is just the lattice of subspaces in \(\mathcal{H} \).

Theorem 3.1 (A basic theorem)

Assume \(\dim \mathcal{H} = n \geq 3 \), that is, \(\mathcal{H} = \mathbb{C}^n \). Let \(\varphi \) be a lattice automorphism on \(\Sigma \). Then there are a ring automorphism \(\tau \) on \(\mathbb{C} \) and a \(\tau \) linear bijection \(S(S(ax + by) = \tau(a)x + \tau(b)y, \forall a, b \in \mathbb{C}, x, y \in \mathbb{C}^n) \) on \(\mathbb{C}^n \) such that

\[
\varphi(E) = P_R(SES^{-1}) = P_R(SE), \quad \forall E \in \Sigma.
\]
3. Order automorphisms on the unit interval

Theorem 3.2 (Fillmore and Longstaff)

Assume \(\dim \mathcal{H} = \infty \). Let \(\varphi \) be a lattice automorphism on \(\Sigma \). Then there is a bounded invertible linear or conjugate linear operator \(S \) on \(\mathcal{H} \) such that

\[
\varphi(E) = P_R(SES^{-1}) = P_R(SE), \quad \forall E \in \Sigma.
\]
3. Order automorphisms on the unit interval

Theorem 3.2 (Fillmore and Longstaff)

Assume $\dim \mathcal{H} = \infty$. Let φ be a lattice automorphism on Σ. Then there is a bounded invertible linear or conjugate linear operator S on \mathcal{H} such that

$$\varphi(E) = P_R(SES^{-1}) = P_R(SE), \quad \forall E \in \Sigma.$$

Theorems 3.1 and 3.2 give a complete description of order automorphism on Σ.
3. Order automorphisms on the unit interval

Put $\Lambda = \{T \in \mathcal{B}(\mathcal{H}) : 0 \leq \diamond T \leq \diamond I\}$. Then Λ is a poset but not a lattice.
Put $\Lambda = \{ T \in \mathcal{B}(\mathcal{H}) : 0 \preceq T \preceq I \}$. Then Λ is a poset but not a lattice.

Theorem 3.3

$\Lambda = \{ EF : E, F \in \Sigma \}$.
3. Order automorphisms on the unit interval

Put \(\Lambda = \{ T \in \mathcal{B}(\mathcal{H}) : 0 \leq T \leq I \} \). Then \(\Lambda \) is a poset but not a lattice.

Theorem 3.3
\[
\Lambda = \{ EF : E, F \in \Sigma \}.
\]

Let \(T \in \Lambda \). Then

\[
T = P_{R(T)}P_{N(T)}\perp = P_{R(T)}P_{R(T^*)} = P_{N(T^*)}\perp P_{N(T)}\perp.
\]

This factorization is called the canonical factorization of \(T \).
3. Order automorphisms on the unit interval

\[\varphi : \Lambda \rightarrow \Lambda : \text{diamond order automorphism}. \quad \varphi = ? \]
3. Order automorphisms on the unit interval

φ : Λ → Λ: diamond order automorphism. φ = ?

Let Δ be the set of all semi-linear bijections on H if the dimension of H is finite, and let Δ be the set of all bounded invertible linear or conjugate linear operators on H if the dimension of H is infinite.
3. Order automorphisms on the unit interval

ϕ : Λ → Λ: diamond order automorphism. ϕ = ?

Let Δ be the set of all semi-linear bijections on \(\mathcal{H} \) if the dimension of \(\mathcal{H} \) is finite, and let Δ be the set of all bounded invertible linear or conjugate linear operators on \(\mathcal{H} \) if the dimension of \(\mathcal{H} \) is infinite.

For \(A \in \Delta \), we define \(\delta_A(T) = ATA^{-1}, \forall T \in \mathcal{B}(\mathcal{H}) \). We now define two canonical maps on Λ.

\[
\varphi^1_A(T) = P_{R(\delta_A(T))}P_{R(\delta_A(T)^*)}, \forall T \in \Lambda;
\]

\[
\varphi^2_A(T) = P_{R(\delta_A(T^*))}P_{R((\delta_A(T^*))^*)}, \forall T \in \Lambda.
\]
3. Order automorphisms on the unit interval

Proposition 3.4

Let $A \in \Delta$. Then φ_A^1 and φ_A^2 defined as above are automorphisms of the poset (Λ, \leq°).
3. Order automorphisms on the unit interval

Proposition 3.4
Let \(A \in \Delta \). Then \(\varphi_A^1 \) and \(\varphi_A^2 \) defined as above are automorphisms of the poset \((\Lambda, \leq^\Diamond) \).

Theorem 3.5
Let \(\varphi : \Lambda \rightarrow \Lambda \) be a map. Then \(\varphi \) is an automorphism of the poset \((\Lambda, \leq^\Diamond) \) if and only if there is some \(A \in \Delta \) such that either \(\varphi = \varphi_A^1 \) or \(\varphi = \varphi_A^2 \).
3. Order automorphisms on the unit interval

Remark

Let $\varphi : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$: star(diamond) partial order automorphism. $\varphi =$?
3. Order automorphisms on the unit interval

Remark

Let $\varphi : \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{H}):$ star(diamond) partial order automorphism. $\varphi =$?

Theorem 3.6

Let $\varphi : \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{H}):$ star partial order automorphism. If φ is additive, then there are a nonzero constant $\alpha \in \mathbb{C}$ and both unitary operators $U, V \in \mathcal{B}(\mathcal{H})$ or both anti-unitary operators U and V on \mathcal{H} such that $\varphi(A) = \alpha UAV$, $\forall A \in \mathcal{B}(\mathcal{H})$ or $\varphi(A) = \alpha U A^*V$, $\forall A \in \mathcal{B}(\mathcal{H})$.
3. Order automorphisms on the unit interval

Remark
Let $\varphi : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$: star(diamond) partial order automorphism. $\varphi =$?

Theorem 3.6
Let $\varphi : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$: star partial order automorphism. If φ is additive, then there are a nonzero constant $\alpha \in \mathbb{C}$ and both unitary operators $U, V \in \mathcal{B}(\mathcal{H})$ or both anti-unitary operators U and V on \mathcal{H} such that $\varphi(A) = \alpha UAV$, $\forall A \in \mathcal{B}(\mathcal{H})$ or $\varphi(A) = \alpha U A^* V$, $\forall A \in \mathcal{B}(\mathcal{H})$.

In general, unknown.
4. Maximal lower bounds and minimal upper bounds

Definition 4.1

Let \leq be a partial order on a von Neumann algebra \mathcal{M} and let $S \subseteq \mathcal{M}$ be a subset.

1. If there is a $C \in \mathcal{M}$ such that $S \leq C$, $\forall S \in S$, then we say that C is an upper bound of S.

If $\mathcal{M} = \mathcal{B}(\mathcal{H})$, then we abbreviate as $\bigvee S$ if there exists the supremum.

We similarly may define maximal lower bounds and the infimum of S and denoted by $\bigwedge S$.
4. Maximal lower bounds and minimal upper bounds

Definition 4.1

Let \leq be a partial order on a von Neumann algebra \mathcal{M} and let $S \subseteq \mathcal{M}$ be a subset.

1. If there is a $C \in \mathcal{M}$ such that $S \leq C$, $\forall S \in S$, then we say that C is an upper bound of S.

2. Let C be an upper bound of S. If there are not any upper bound D of S such that $D \leq C$, then we say that C is a minimal upper bound of S. If for any upper bound D of S, $C \leq D$, then we say that C is the supremum of S and denoted by $\bigvee_{\mathcal{M}} S$.

If $\mathcal{M} = \mathcal{B}(\mathcal{H})$, then we abbreviate as $\bigvee_{\mathcal{M}} S$ if there exists the supremum. We similarly may define maximal lower bounds and the infimum of S and denoted by $\bigwedge_{\mathcal{M}} S$.

4. Maximal lower bounds and minimal upper bounds

Definition 4.1

Let \(\leq \) be a partial order on a von Neumann algebra \(\mathcal{M} \) and let \(S \subseteq \mathcal{M} \) be a subset.

1. If there is a \(C \in \mathcal{M} \) such that \(S \leq C, \forall S \in S \), then we say that \(C \) is an upper bound of \(S \).

2. Let \(C \) be an upper bound of \(S \). If there are not any upper bound \(D \) of \(S \) such that \(D \leq C \), then we say that \(C \) is a minimal upper bound of \(S \). If for any upper bound \(D \) of \(S \), \(C \leq D \), then we say that \(C \) is the supremum of \(S \) and denoted by \(\bigvee_{\mathcal{M}} S \).

3. If \(\mathcal{M} = \mathcal{B}(\mathcal{H}) \), then we abbreviate as \(\bigvee S \) if there exists the supremum.
4. Maximal lower bounds and minimal upper bounds

Definition 4.1

Let \leq be a partial order on a von Neumann algebra \mathcal{M} and let $S \subseteq \mathcal{M}$ be a subset.

1. If there is a $C \in \mathcal{M}$ such that $S \leq C$, $\forall S \in S$, then we say that C is an upper bound of S.

2. Let C be an upper bound of S. If there are not any upper bound D of S such that $D \leq C$, then we say that C is a minimal upper bound of S. If for any upper bound D of S, $C \leq D$, then we say that C is the supremum of S and denoted by $\bigvee_{\mathcal{M}} S$.

3. If $\mathcal{M} = \mathcal{B}(\mathcal{H})$, then we abbreviate as $\bigvee S$ if there exists the supremum.

We similarly may define maximal lower bounds and the infimum of S and denoted by $\bigwedge_{\mathcal{M}} S$ ($\bigwedge S$) the infimum of S.
4. Maximal lower bounds and minimal upper bounds

We firstly consider the star partial order.
4. Maximal lower bounds and minimal upper bounds

We firstly consider the star partial order.

Lemma 4.2

Let $\mathcal{H} = H_1 \oplus H_2$ and $A, B \in \mathcal{B}(\mathcal{H})$ such that

$$A = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & 0 \\ 0 & B_{22} \end{pmatrix}. $$

Then

1. $A \land B = \begin{pmatrix} A_{11} \land B_{11} & 0 \\ 0 & A_{22} \land B_{22} \end{pmatrix}$.

2. If there is a upper bound for A and B, then $A \lor B = \begin{pmatrix} A_{11} \lor B_{11} & 0 \\ 0 & A_{22} \lor B_{22} \end{pmatrix}$.
4. Maximal lower bounds and minimal upper bounds

Theorem 4.3
Let $S \subseteq M$ be a subset of M.

$\bigwedge_M S = \bigwedge S.$
4. Maximal lower bounds and minimal upper bounds

Theorem 4.3

Let $S \subseteq \mathcal{M}$ be a subset of \mathcal{M}.

1. \[^* \bigwedge_{\mathcal{M}} S = ^* \bigwedge S. \]

2. If there is an upper bound for S, then \[^* \bigvee_{\mathcal{M}} S = ^* \bigvee S. \]
4. Maximal lower bounds and minimal upper bounds

Theorem 4.3
Let $\mathcal{S} \subseteq \mathcal{M}$ be a subset of \mathcal{M}.

1. $^*\bigwedge_{\mathcal{M}} \mathcal{S} = \bigwedge \mathcal{S}$.

2. If there is an upper bound for \mathcal{S}, then $^*\bigvee_{\mathcal{M}} \mathcal{S} = \bigvee \mathcal{S}$.
4. Maximal lower bounds and minimal upper bounds

However, there are no supremum and infimum for a bounded subset in $B(H)$ with respect to the diamond partial order in general.

Are there maximal lower bounds and minimal upper bounds for a bounded subset?
4. Maximal lower bounds and minimal upper bounds

However, there are no supremum and infimum for a bounded subset in $\mathcal{B}(\mathcal{H})$ with respect to the diamond partial order in general.

Are there maximal lower bounds and minimal upper bounds for a bounded subset?

Theorem 4.4

Let $S \subseteq \mathcal{B}(\mathcal{H})$. If S is bounded with respect to the diamond partial order, then there exists a minimal upper bound for S.
4. Maximal lower bounds and minimal upper bounds

However, there are no supremum and infimum for a bounded subset in $\mathcal{B}(\mathcal{H})$ with respect to the diamond partial order in general.

Are there maximal lower bounds and minimal upper bounds for a bounded subset?

Theorem 4.4

Let $\mathcal{S} \subseteq \mathcal{B}(\mathcal{H})$. If \mathcal{S} is bounded with respect to the diamond partial order, then there exists a minimal upper bound for \mathcal{S}.

Let B be an upper bound of \mathcal{S}. Put $P = P \bigvee \{ \overline{P_{R(S)}} : S \in \mathcal{S} \}$, $Q = P \bigvee \{ \overline{P_{R(S^*)}} : S \in \mathcal{S} \}$ and $A = PBQ$. Moreover, put $H_1 = \overline{R(A)}$, $H_2 = P(\mathcal{H}) \ominus H_1$ and $H_3 = \mathcal{H} \ominus P(\mathcal{H})$. $K_1 = \overline{P_{R(A^*)}}$, $K_2 = \mathcal{H} \ominus Q(\mathcal{H})$ and $K_3 = Q(\mathcal{H}) \ominus K_1$. Then

$$\mathcal{H} = K_1 \oplus K_2 \oplus K_3 = H_1 \oplus H_2 \oplus H_3.$$
4. Maximal lower bounds and minimal upper bounds

Theorem 4.5
Let $T \in \mathcal{B}(K_2, H_2)$ and $S \in \mathcal{B}(K_3, H_3)$ such that both T and S^* with dense ranges. Then

$$B_{T,S} = \begin{pmatrix} A & 0 & 0 \\ 0 & T & 0 \\ 0 & 0 & S \end{pmatrix}$$

with respect to decomposition (5) of \mathcal{H} is an upper bound of S. $B_{T,S}$ is a minimal upper bound if and only if both T and S^* are surjective.
4. Maximal lower bounds and minimal upper bounds

Proposition 4.6

Let \(\{A_{\alpha}\}_{\alpha \in \Lambda} \) be an increasing net in \(\mathcal{B}(\mathcal{H}) \) and bounded from above with respect to the diamond partial order. Then

1. \(A_{\alpha} \rightarrow A(SOT) \) for some \(A \in \mathcal{B}(\mathcal{H}) \) such that \(A \leq^\diamond D \) for any upper bound \(D \) of \(\{A_{\alpha}\}_{\alpha \in \Lambda} \).

2. \(A \) is the supremum of \(\{A_{\alpha}\}_{\alpha \in \Lambda} \) if and only if \(P_{A_{\alpha}} \rightarrow P_A(SOT) \) and \(Q_{\alpha} \rightarrow Q_A(SOT) \).
4. Maximal lower bounds and minimal upper bounds

Example 4.7

Let $\mathcal{H} = L^2([0, 1]) \oplus L^2([0, 1]) \oplus L^2([0, 1])$. Put $\Delta_s = [0, s]$, $\Omega_s = (s, 1]$ and $f_s(t) = \chi_{\Delta_s}(t) + \frac{1}{2}\chi_{\Omega_s}(t)$, $\forall s \in [0, 1)$. We define

$$P_s = \begin{pmatrix} f_s & \frac{1}{2}\chi_{\Omega_s} & 0 \\ \frac{1}{2}\chi_{\Omega_s} & f_s & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad Q_s = \begin{pmatrix} f_s & 0 & \frac{1}{2}\chi_{\Omega_s} \\ 0 & 0 & 0 \\ \frac{1}{2}\chi_{\Omega_s} & 0 & f_s \end{pmatrix}.$$

Then P_s and Q_s are projections and $A_s = P_sQ_s$ is increasing and with an upper bound I. Note that $P = P\bigvee\{R(P_sQ_s) : 0 \leq s < 1\} = I \oplus I \oplus 0$ and $Q = P\bigvee\{R(Q_sP_s) : 0 \leq s < 1\} = I \oplus 0 \oplus I$. However, $A_s = P_sQ_s \to PQ = A = I \oplus 0 \oplus 0 (SOT)$ and A is not an upper bound of $\{A_s : 0 \leq s < 1\}$. By Theorem 2.6, there many minimal upper bounds for $\{A_s : 0 \leq s < 1\}$.
4. Maximal lower bounds and minimal upper bounds

Are there maximal lower bounds for S?

Theorem 4.8

Let A be a nonempty subset in $B(\mathcal{H})$. If $B \in B(\mathcal{H})$ is an upper bound of A with respect to the diamond partial order, then EBF is a maximal lower bound of A.
Are there maximal lower bounds for S?

Theorem 4.8

Let \mathcal{A} be a nonempty subset in $\mathcal{B}(\mathcal{H})$. If $B \in \mathcal{B}(\mathcal{H})$ is an upper bound of \mathcal{A} with respect to the diamond partial order, then EBF is a maximal lower bound of \mathcal{A}.

Proposition 4.9

Let $\{A_\alpha\}_{\alpha \in \Lambda}$ be a decreasing net in $\mathcal{B}(\mathcal{H})$ respect to the diamond partial order. Then $A_\alpha \rightarrow A(SOT)$ and A is a maximal lower bound for $\{A_\alpha\}_{\alpha \in \Lambda}$. A is the infimum of $\{A_\alpha\}_{\alpha \in \Lambda}$ if and only if $P_{A_\alpha} \rightarrow P_A(SOT)$ and $Q_\alpha \rightarrow Q_A(SOT)$.
4. Maximal lower bounds and minimal upper bounds

Example 4.10

\(\mathcal{K} \): separable infinite dimensional Hilbert space.
\(C, D \in \mathcal{B}(\mathcal{K}) \): injective with dense range.
\(M \subset \mathcal{K} \): linear manifold s.t. \(R(D^*) + M = \mathcal{K} \) and \(\overline{M} = \mathcal{K} \).
\(\{f_1, f_2, \cdots, f_n, \cdots\} \subset M \): basis for \(\mathcal{K} \).
\(F_n \): projection onto \(\bigvee [f_{n+1}, f_{n+2}, \cdots, f_{n+k}, \cdots] \), \(\forall n \in \mathbb{N} \).
\(F_n \downarrow 0(SOT) \).
\(\mathcal{H} = \mathcal{K} \oplus \mathcal{K} \oplus \mathcal{K} \), \(B = C \oplus D \oplus D^* \).
\(P_n = I \oplus I \oplus F_n \downarrow P = I \oplus I \oplus 0 \).
\(Q_n = I \oplus F_n \oplus I \downarrow Q = I \oplus 0 \oplus I \).
\(A_n = P_n B Q_n \downarrow A = C \oplus 0 \oplus 0 \).
Put \(B_E = EBQ \), for any projection \(E \leq P \) such that \(EP_A \neq PA_E \).
\(B_E \leq^\circ A_n \) for all \(n \).
\(B_E \): not comparable with \(A \).
On some partial orders on $\mathcal{B}(\mathcal{H})$

Guoxing Ji

Contents
Section 1
Section 2
Section 3
Section 4

Thank You!