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1.1 Definition

Denote by H the Hilbert transform, which is defined by

Hf(x) = p.v.
1

π

∫
R

f(y)

x− y dy.

In 1965, A. P. Calderón (Proc. Nat. Acad. Sci.) introduced the following
commutator:

[ϕ,
d

dx
H](f)(x) := ϕ(x)

d

dx
Hf(x)− d

dx
{H(ϕf)}(x),

where ϕ ∈ Lip(R).

By a formal computation,

[ϕ,
d

dx
H](f)(x) = −p.v.

1

π

∫
R

ϕ(x)− ϕ(y)

(x− y)2
f(y)dy =: −Cϕf(x),

where Cϕ is recalled by Calderón commutator.
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1.2 Calderón’s results: Lp boundedness

Theorem A1 (Calderón, PNAS, 1965)

If ϕ ∈ Lip(R), then the commutator Cϕ is bounded on Lp(R) for 1 < p < ∞. In
particular, the commutator Cϕ is bounded on L2(R) if and only if ϕ ∈ Lip(R).

Theorem A2 (Calderón, PNAS, 1977)

The commutator Cϕ is of weak type (1,1) if ‖ϕ′‖∞ is very small.

In 1974 Vancouver-ICM, C. Fefferman gave a Plenary Report, titled ”Recent
Progress in Classical Fourier Analysis”. (See PICM., Vancouver, 1974,
95-118.)

In 1988, T. Murai (Lecture Notes in Math. 1307) collected 8 proofs on
Calderón commutator Cϕ is bounded on L2(R).
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1.3 Cauchy integral along Lipschitz curve

Let γ be a Lipschitz curve on C, that is, γ is the graph of ϕ ∈ Lip(R).
For g ∈ Lp(γ) (1 < p <∞), the Cauchy integral of g on γ is defined by

F (w) =
1

2πi

∫
γ

g(z)

z − wdz, w /∈ γ.

Denote w = z ± iy (y > 0), then by Plemelj’s formula in complex analysis,
it is know that for a.e. z0 ∈ γ,

F (z0 ± iy)→ ±1

2
g(z0) +

1

2πi
p.v.

∫
γ

g(z)

z − z0
dz as y → 0.

Thus, if
1

2πi
p.v.

∫
γ

g(z)

z − z0
dz <∞ for a.e. z0 ∈ γ,

then
lim
y→0

[F (z0 + iy)− F (z0 − iy)] = g(z0) for a.e. z0 ∈ γ.
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1.3 Cauchy integral operator on Lipschitz curve

It is easy to see that the Lp-boundedness of the operator

C̃γ(g)(w) =
1

2πi
p.v.

∫
γ

g(z)

z − wdz (w ∈ γ)

is equivalent to the Lp-boundedness of Cγ on R, where Cγ is defined by

Cγf(x) := p.v.

∫
R

f(t)

(x− t) + i(ϕ(x)− ϕ(t))
dt.

Operator Cγ is called by Cauchy integral operator on Lipschitz curve γ.
In 1960, A. Zygmund conjectured that Cγ is bounded on L2(R) for any
Lipschitz curve γ.

Theorem A5 (Calderón, PNAS, 1977)

The Cauchy integral operator Cγ is of weak type (1.1) and bounded on Lp(R) for
1 < p <∞ as long as ‖ϕ′‖∞ ≤ ε for some fixed small ε.

Calderón conjectured the restriction ‖ϕ′‖∞ ≤ ε can be removed.
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1.3 Cauchy integral operator on Lipschitz curve

Theorem A6 (Coifman-McIntosh-Meyer, 1982, Annals of Math.)

Cγ is of weak type (1.1) and bounded on Lp(R) for 1 < p < ∞ and any Lipschitz
curve γ in C.

Theorem A6 shows that both Calderón’s conjecture and Zygmund’s conjec-
ture are true.

A. Calderón, Commutators, singular integrals on Lipschitz curves and ap-
plication, Proc. ICM. Helsinki, 1978, 85-96.

C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis,
Vol. II. Cambridge Studies in Advanced Mathematics, 138. Cambridge
Univ. Press, 2013.
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1.4 Dirichlet and Neumann problems on bounded C1 domain

Suppose U is a bounded C1 domain in Rn+1 consider the following Dirichlet
problem for ∆ on U : {

∆u = 0 in U,

u|∂U = f on ∂U.
(D)

Neumann problem for ∆ on U , that is,

∆u = 0 in U,

∂u

∂n

∣∣∣∣
∂U

= f on ∂U,∫
∂U

fdσ = 0.

(N )

Using Calderón theorem on Cauchy integral on C1 curves and method of
layer potentials, Fabes, Jodeit and Riviére (Acta Math., 1978) gave the
uniquely solvability of the Dirichlet problem (D) and Neumann problem (N)
with Lp(∂U) (1 < p < ∞) data on C1 domain. Their techniques rely also
on the compactness of the double layer potentials in the C1 case.
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1.4 Dirichlet and Neumann problems on bounded C1 domain

E. Fabes, M. Jodeit and N. RiviYre, Potential techniques for boundary
value problems on C1-domains, Acta Math. 141 (1978), no. 3-4, 165-
186.

A. Calderón, C. Calderón, E. Fabes, M. Jodeit and N. RiviYre, Applications
of the Cauchy integral on Lipschitz curves. Bull. Amer. Math. Soc. 84
(1978), no. 2, 287-290.

C. Kenig, Elliptic boundary value problems on Lipschitz domains. Beijing
lectures in harmonic analysis (Beijing, 1984), 131-183, Annals of Math.
Stud., 112, Princeton Univ. Press, Princeton, NJ, 1986.

B. Dahlberg and C. Kenig, Hardy spaces and the Neumann problem in Lp

for Laplace’s equation in Lipschitz domains, Annals of Math., 125, (1987),
437-465.
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2.1 Murray’s generalization

Recall the following characterization of the L2(R)-boundedness for Cϕ.

Theorem A1 (Calderón, PNAS, 1965)

If ϕ ∈ Lip(R), then the commutator Cϕ is bounded on Lp(R) for 1 < p < ∞. In
particular, the commutator Cϕ is bounded on L2(R) if and only if ϕ ∈ Lip(R).

1985, for 0 < α < 1, Murray extended considered the commutator of the

fractional differential operator Dα defined by D̂αf(ξ) = |ξ|αf̂(ξ).

Theorem B1 (Murray, 1985, IUMJ)

Suppose 0 < α < 1, then the Calderón commutator of fractional order [b,DαH] is
bounded on L2(R) if and only if Dαb ∈ BMO(R), i.e., b ∈ Iα(BMO), where H is the
Hilbert transform and Iα denotes the Riesz potential of α order.

Theorem B1 can be seen an extension of Theorem A1. However, it needs

to point out that [b,DαH] 6= [b,
d

dx
H] for α = 1.

Yong Ding Calderón commutators associated with the fractional differentiation



Background of the classical Calderón commutator
Calderón commutator associated with fractional differential operator

Outline of proof

Murray’s result
Our results: generalization of Murray’s result

2.1 Murray’s generalization

Recall the following characterization of the L2(R)-boundedness for Cϕ.

Theorem A1 (Calderón, PNAS, 1965)

If ϕ ∈ Lip(R), then the commutator Cϕ is bounded on Lp(R) for 1 < p < ∞. In
particular, the commutator Cϕ is bounded on L2(R) if and only if ϕ ∈ Lip(R).
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Theorem B1 (Murray, 1985, IUMJ)
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2.1 Murray’s generalization

Lip1 ⊂ I1(BMO) by Strichatez’s result (Indiana Univ. Math. J., 1980).

If 0 < α < 1, then Iα(BMO) ⊂ Lipα by above Strichatez’s paper.

If α = 0, then I0(BMO) = BMO, so Theorem B1 is just Coifman-
Rocherberg-Weiss’s result (Annals Math., 1976).

It remains an open problem whether Theorem B1 holds or not for α = 1.
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2.2 Our results

Theorem 1 (Chen-Ding-Hong, Analysis and PDE, 2016.)

Suppose α ∈ (0, 1) and b ∈ L1
loc(Rn). Let 1 < p < ∞ and 0 < λ < n. Then the

following five statements are equivalent:

(i) b ∈ Iα(BMO);

(ii) For j = 1, · · · , n, [b,DαRj ] are bounded on Lp(Rn);

(iii) For j = 1, · · · , n, [b,DαRj ] are bounded from L1(Rn) to L1,∞(Rn);

(iv) For j = 1, · · · , n, [b,DαRj ] are bounded on Lp,λ(Rn);

(v) For j = 1, · · · , n, [b,DαRj ] are bounded from L∞(Rn) to BMO(Rn).

Here

Rj : the Riesz transforms j = 1, · · · , n;

L1,∞(Rn): the weak L1 space;

Lp,λ(Rn) :=

{
f : ‖f‖Lp,λ =

(
sup

x∈Rn,r>0

1

rλ

∫
Q(x,r)

|f(y)|p dy
)1/p

<∞
}
.
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2.2 Our results

Remark 1: If α = 0, then I0(BMO) = BMO and [b,D0Rj ] = [b,Rj ]. In
this case, the following equivalents are well known:

(i) b ∈ BMO;

(ii) For j = 1, · · · , n, [b,Rj ] are bounded on Lp(Rn);

(iv) For j = 1, · · · , n, [b,Rj ] are bounded on Lp,λ(Rn).

In fact, these conclusions still hold if replacing Rj by the singular integral
operator with Calderón-Zygmund standard kernels.

Remark 2: For α = 0, the commutator [b,Rj ] is not bounded from L1(Rn)
to L1,∞(Rn); so is not bounded from L∞(Rn) to BMO(Rn).

Remark 3: It is not clear whether the conclusions of Theorem 1 hold or not
for α = 1.
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3.1 Sufficiency for Lp boundedness of [b, Tα]

Theorem 1 is a consequence of the general results obtained in our paper.

Suppose that b ∈ L1
loc(Rn) and Ω satisfies the following conditions:

(i) Ω(x) = Ω(λx) for all λ > 0 and x ∈ Rn \ {0};
(ii)

∫
Sn−1 Ω(x′) dσ(x′) = 0;

(iii) Ω ∈ L1(Sn−1).

Then for 0 ≤ α ≤ 1, the commutator associated with b,Ω, α is defined by

[b, Tα]f(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n+α (b(x)− b(y))f(y)dy.

If α = 0, b ∈ L1
loc(Rn) and Ω ∈ Lip(Sn−1), by Coifman-Rocherberg-Weiss

(Annals Math., 1976), [b, T0] is bounded on Lp(Rn) for all 1 < p <∞ if
and only if b ∈ BMO(Rn).
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3.1 Sufficiency for Lp boundedness of [b, Tα]

Theorem 2

Suppose α ∈ (0, 1) and b ∈ Iα(BMO). If Ω ∈ L log+L(Sn−1) with mean zero on
Sn−1, then for 1 < p <∞, ‖[b, Tα]f‖Lp . ‖Dαb‖BMO‖f‖Lp .

Proof of Theorem 2: Littlewoof-Paley decomposition + Fourier trans-
form estimates.
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3.2 Sufficiency for L1,∞ boundedness of [b, Tα]

Note that when b ∈ Iα(BMO) for 0 < α ≤ 1 and Ω ∈ Lip(Sn−1) with
mean zero on Sn−1, it is easy to check that the kernel

k(x, y) =
Ω(x− y)

|x− y|n+α (b(x)− b(y))

is a Calderón-Zygmund standard kernel.

Hence, by Theorem 2 and the C-Z singular integral theory, we see that
[b, Tα] for 0 < α < 1 is of weak type (1,1).
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3.2 Sufficiency for L1,∞ boundedness of [b, Tα]

On the other hand, if α = 1, the commutator [b, T1] was defined by Calderón
in 1965.

Theorem C1 (Calderón, PNAS, 1965)

If Ω ∈ L log+L(Sn−1) is odd and satisfies∫
Sn−1

Ω(x′)x′j dσ(x′) = 0, j = 1, 2, · · · , n (3.1)

and ∇b ∈ Lr(Rn) (1 < r ≤ ∞). Then for 1 < p <∞ and 1
q

= 1
p

+ 1
r

,

‖[b, T1]f‖Lq(Rn) . ‖∇b‖Lr(Rn)‖f‖Lp(Rn).
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3.2 Sufficiency for L1,∞ boundedness of [b, Tα]

Note that if Ω ∈ Lip(Sn−1) is odd and satisfies (3.1), then the kernel

k(x, y) =
Ω(x− y)

|x− y|n+1
(b(x)− b(y))

is a Calderón-Zygmund standard kernel, so we have

Corollary 3

(i) If b ∈ Lip(Rn) and Ω ∈ Lip(Sn−1) is odd and satisfies (3.1), then [b, T1] is of weak
type (1,1).

(ii) If b ∈ Iα(BMO) for 0 < α < 1 and Ω ∈ Lip(Sn−1) with mean zero on Sn−1,
then [b, Tα] for 0 < α < 1 is of weak type (1,1).

By the way, the conclusion (i) in Corollary 3 has been improved by Ding
and Lai (to appear in Trans. Amer. Math. Soc.)
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3.2 Sufficiency for L1,∞ boundedness of [b, Tα]

Note that if Ω ∈ Lip(Sn−1) is odd and satisfies (3.1), then the kernel

k(x, y) =
Ω(x− y)

|x− y|n+1
(b(x)− b(y))

is a Calderón-Zygmund standard kernel, so we have

Corollary 3

(i) If b ∈ Lip(Rn) and Ω ∈ Lip(Sn−1) is odd and satisfies (3.1), then [b, T1] is of weak
type (1,1).

(ii) If b ∈ Iα(BMO) for 0 < α < 1 and Ω ∈ Lip(Sn−1) with mean zero on Sn−1,
then [b, Tα] for 0 < α < 1 is of weak type (1,1).

By the way, the conclusion (i) in Corollary 3 has been improved by Ding
and Lai (to appear in Trans. Amer. Math. Soc.)
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3.3 Sufficient condition of Lp,λ boundedness

To get the Morrey space Lp,λ boundedness of [b, Tα], we need to use an
implying relationship.

Theorem C2 (Chen-Ding-Wang, Canad. J. Math., 2012)

Suppose Ω ∈ Lq(Sn−1) for q > n/(n− λ) and S is a sublinear operator satisfying

|Sf(x)| ≤ C
∫
Rn

|Ω(x− y)|
|x− y|n

|f(y)|dy.

Let 1 < p < ∞. If the operator S is bounded on Lp(Rn), then S is bounded on
Lp,λ(Rn).

Thus, applying Theorem 2 and Theorem C2, we have

Corollary 4

Let 0 < λ < n. Suppose α ∈ (0, 1) and b ∈ Iα(BMO). If Ω ∈ Lq(Sn−1) for
q > n/(n− λ), then for 1 < p <∞,

‖[b, Tα]f‖Lp,λ . ‖Dαb‖BMO‖f‖Lp,λ .
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3.4 Necessary for Lp,λ boundedness of [b, Tα]

We gave a necessary condition for Lp,λ boundedness of [b, Tα].

Theorem 5

Suppose 0 < α ≤ 1, b ∈ L1
loc(Rn) and Ω ∈ Lip(Sn−1) satisfying mean zero on Sn−1

or (3.1). If for some 1 < p < ∞ and 0 ≤ λ < n, [b, Tα] is a bounded on Lp,λ(Rn),
then b ∈ Lipα(Rn).

In particular, if [b, Tα] is a bounded on Lp(Rn) for some 1 < p <∞, then
b ∈ Lipα(Rn).

In the proof of Theorem 5, we used the following equivalent, which was
given by N. Meyers in [PAMS, 1964]:

b ∈ Lipα(Rn)⇐⇒ sup
Q⊂Rn

1

|Q|1+α
n

∫
Q

|b(x)− bQ|dx ≤ C.
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3.5 Necessary for L1,∞ boundedness of [b, Tα]

Theorem 6

Suppose 0 < α ≤ 1, b ∈ L1
loc(Rn) and Ω ∈ Lip(Sn−1) satisfying mean zero on Sn−1

or (3.1). If [b, Tα] is bounded from L1(Rn) to L1,∞(Rn), then b ∈ Lipα(Rn).

As far as we know, this is the first time to give a necessary condition for
the L1(Rn)→ L1,∞(Rn) boundedness of an operator.
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3.5 Necessary for L1,∞ boundedness of [b, Tα]

Applying Theorem C1, Theorem C2, Corollary 3, Theorems 5 and 6 for
α = 1, we give the characterizations for the Calderón commutator [b, T1].

Corollary 7

Let 1 < p < ∞, 0 < λ < n. Suppose that b ∈ L1
loc(Rn) and Ω ∈ Lip(Sn−1) is odd

and satisfying (3.1), then the following four statements are equivalent:

(i) b ∈ Lip(Rn);

(ii) [b, T1] is bounded on Lp(Rn);

(iii) [b, T1] is bounded from L1(Rn) to L1,∞(Rn);

(iv) [b, T1] is bounded on Lp,λ(Rn).

Yong Ding Calderón commutators associated with the fractional differentiation



Background of the classical Calderón commutator
Calderón commutator associated with fractional differential operator

Outline of proof

Sufficiency for Lp boundedness of [b, Tα]
Sufficiency for L1,∞ boundedness of [b, Tα]
Sufficient for the Lp,λ boundedness of [b, Tα]
Necessary for Lp,λ boundedness of [b, Tα]
Necessary for L1,∞ boundedness of [b, Tα]
Implicative relationships (I)
Tα = DαT for 0 < α < 1
Implicative relationships (II)
Proof of Theorem 1

3.5 Necessary for L1,∞ boundedness of [b, Tα]

Applying Theorem C1, Theorem C2, Corollary 3, Theorems 5 and 6 for
α = 1, we give the characterizations for the Calderón commutator [b, T1].

Corollary 7

Let 1 < p < ∞, 0 < λ < n. Suppose that b ∈ L1
loc(Rn) and Ω ∈ Lip(Sn−1) is odd

and satisfying (3.1), then the following four statements are equivalent:

(i) b ∈ Lip(Rn);

(ii) [b, T1] is bounded on Lp(Rn);

(iii) [b, T1] is bounded from L1(Rn) to L1,∞(Rn);

(iv) [b, T1] is bounded on Lp,λ(Rn).

Yong Ding Calderón commutators associated with the fractional differentiation



Background of the classical Calderón commutator
Calderón commutator associated with fractional differential operator

Outline of proof

Sufficiency for Lp boundedness of [b, Tα]
Sufficiency for L1,∞ boundedness of [b, Tα]
Sufficient for the Lp,λ boundedness of [b, Tα]
Necessary for Lp,λ boundedness of [b, Tα]
Necessary for L1,∞ boundedness of [b, Tα]
Implicative relationships (I)
Tα = DαT for 0 < α < 1
Implicative relationships (II)
Proof of Theorem 1

3.6 Implicative relationships (I)

For 0 < α < 1, there are the following implicative relationships between
boundedness of [b, Tα].

Theorem 8

Suppose 0 < α < 1, b ∈ L1
loc(Rn) and Ω ∈ Lip(Sn−1) satisfying mean value zero

property. Let 1 < p < ∞ and 0 < λ < n. Then the implicative relationships (i) ⇒
(ii)⇒ (iii)⇒ (iv) hold for the following four statements:

(i) [b, Tα] is bounded on Lp(Rn);

(ii) [b, Tα] is bounded from L1(Rn) to L1,∞(Rn); (by Theorem 6, b ∈ Lipα(Rn))

(iii) [b, Tα] is bounded on Lp,λ(Rn); (by Theorem 5, b ∈ Lipα(Rn))

(iv) [b, Tα] is bounded from L∞(Rn) to BMO(Rn).
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3.7 Tα = DαT for 0 < α < 1

We now show that Tα = DαT for 0 < α < 1, where

Tαf(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n+αf(y)dy, 0 < α < 1, (3.2)

Tf(x) = p.v.

∫
Rn

Ω̃(x− y)

|x− y|n f(y)dy, (3.3)

Here both Ω and Ω̃ are homogeneous of degree zero and with mean value
zero.

Proposition 9

(i) For 0 < α < 1 and Ω ∈ L2(Sn−1), there exists a singular integral operator T

defined by (3.3) with Ω̃ ∈ L2
α(Sn−1) such that Tα = DαT.

(ii) Conversely, for any singular integral operator T with Ω̃ ∈ L2
α(Sn−1), there exists

an operator Tα defined by (3.2) with Ω ∈ L2(Sn−1) such that Tα = DαT.
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3.7 Tα = DαT for 0 < α < 1

Denote byHm the spaces of spherical harmonics of degree m and {Ym,j}dmj=1

denotes the normalized orthonormal basis of Hm. Then using the spherical
harmonic decomposition,

L2(Sn−1) =
{

Ω : Ω(x′) =
∑
m≥1

dm∑
j=1

am,jYm,j(x
′),
∑
m≥1

dm∑
j=1

a2m,j <∞.
}

and for 0 < α < 1,

L2
α(Sn−1) =

{
Ω : Ω(x′) =

∑
m≥1

∑dm
j=1 bm,jYm,j(x

′),∑
m≥1

∑dm
j=1(mαbm,j)

2 <∞.
}
.

Proof of Proposition 9: Fourier transform estimate of spherical harmonic
functions and Riesz potential.

Yong Ding Calderón commutators associated with the fractional differentiation



Background of the classical Calderón commutator
Calderón commutator associated with fractional differential operator

Outline of proof

Sufficiency for Lp boundedness of [b, Tα]
Sufficiency for L1,∞ boundedness of [b, Tα]
Sufficient for the Lp,λ boundedness of [b, Tα]
Necessary for Lp,λ boundedness of [b, Tα]
Necessary for L1,∞ boundedness of [b, Tα]
Implicative relationships (I)
Tα = DαT for 0 < α < 1
Implicative relationships (II)
Proof of Theorem 1

3.7 Tα = DαT for 0 < α < 1

Denote byHm the spaces of spherical harmonics of degree m and {Ym,j}dmj=1

denotes the normalized orthonormal basis of Hm. Then using the spherical
harmonic decomposition,

L2(Sn−1) =
{

Ω : Ω(x′) =
∑
m≥1

dm∑
j=1

am,jYm,j(x
′),
∑
m≥1

dm∑
j=1

a2m,j <∞.
}

and for 0 < α < 1,

L2
α(Sn−1) =

{
Ω : Ω(x′) =

∑
m≥1

∑dm
j=1 bm,jYm,j(x

′),∑
m≥1

∑dm
j=1(mαbm,j)

2 <∞.
}
.

Proof of Proposition 9: Fourier transform estimate of spherical harmonic
functions and Riesz potential.
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3.8 Implicative relationships (II)

The following implicative relationships between boundedness of [b,DαT ] is
an immediate consequence of Theorem 8 and Proposition 9.

Corollary 10

Suppose 0 < α < 1, b ∈ L1
loc(Rn) and Ω̃ ∈ C2(Sn−1) satisfying mean value zero

property. Let 1 < p < ∞ and 0 < λ < n. Then the implicative relationships (i) ⇒
(ii)⇒ (iii)⇒ (iv) hold for the following four statements:

(i) [b,DαT ] is bounded on Lp(Rn);

(ii) [b,DαT ] is bounded from L1(Rn) to L1,∞(Rn);

(iii) [b,DαT ] is bounded on Lp,λ(Rn);

(iv) [b,DαT ] is bounded from L∞(Rn) to BMO(Rn).
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3.9 Proof of Theorem 1

Finally, applying Corollary 10 to Riesz transforms, we get the conclusion of
Theorem 1.

Theorem 1

Suppose 0 < α < 1 and b ∈ L1
loc(Rn). Let 1 < p < ∞ and 0 < λ < n. Then the

following five statements are equivalent:

(i) b ∈ Iα(BMO);

(ii) For j = 1, · · · , n, [b,DαRj ] are bounded on Lp(Rn);

(iii) For j = 1, · · · , n, [b,DαRj ] are bounded from L1(Rn) to L1,∞(Rn);

(iv) For j = 1, · · · , n, [b,DαRj ] are bounded on Lp,λ(Rn);

(v) For j = 1, · · · , n, [b,DαRj ] are bounded from L∞(Rn) to BMO(Rn).

In fact, let Ω̃j(x) =
xj
|x| for j = 1, · · · , n, then we see that (ii) ⇒ (iii) ⇒

(iv)⇒ (v) hold by Corollary 10. So, it remains to show that (i)⇒ (ii) and
(v)⇒ (i).
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3.9 Proof of Theorem 1

Note that for j = 1, 2, · · · , n, D̂αRjf(ξ) = −iξj |ξ|α−1f̂(ξ) and

η(α)

(
p.v.

xj
|x|n+1+α

)∧
(ξ) = iξj |ξ|α−1,

where η(α) =
1− n− α

2π

Γ(n+α−1
2

)

π
n
2
+α−1Γ( 1−α

2
)
. Hence we get

[b,DαRj ]f(x) = p.v.

∫
Rn

Ωj(x− y)

|x− y|n+α (b(x)− b(y))f(y) dy,

where Ωj(x) = η(α)
xj
|x| .

If b ∈ Iα(BMO), then by Theorem 2,

‖[b,DαRj ]‖Lp ≤ C‖Dαb‖BMO‖f‖Lp

for j = 1, 2, · · · , n and 1 < p <∞. Thus we show that (i)⇒ (ii).
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3.9 Proof of Theorem 1

Finally, we show that (v)⇒ (i).

Using the relationship betweenBMO function and Carleson measure, Fefferman-
Stein (Acta Math., 1972) showed that

n∑
j=1

R2
jf ∈ BMO =⇒ f ∈ BMO. (∗)

By (v), [b,DαRj ] : L∞ → BMO, the vanishing moment of Ωj gives

[b,DαRj ](1)(x) = −DαRjb(x) = −RjDα(b)(x) ∈ BMO, for j = 1, 2, · · · , n.

Hence, −
∑n
j=1R

2
jD

α(b) ∈ BMO. By (∗), Dα(b) ∈ BMO, so (i) holds.
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