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The main subjects of this talk are
two directions of Functional
Analysis:

a) asymptotic theory of the finite
dimensional normed spaces;

b) approximation theory.



Two current trends:

1) Fast implementation of the
theoretical results in practice due
to the development of

Computer Science and Al.

I1) Convergence of the indicated
directions of the Functional Analysis to
some directions of Theoretical
Computer Science including mutual
penetration of methods of
investigations.



Nowadays the following notions
from FA are widely used
in practice:

Kolmogorov n-width
m-term approximation

Greedy algorithm



Definition 1 (Kolmogorov width)

The Kolmogorov width of order n of a set K
in a linear metric space X with metric p
1S a quantity

dn(KaX) = LiI(l:pr(K, Ln): p(K, Ln) = Sg}f{)f)(f,[zn),

where infinum is taken over linear subspaces
of a fixed dimension n.



An example of practical
application

B3 - unit ball in 2.

THEOREM A (B.K,, 1977)

Let p > 0 is fixed and N — 1,2,‘..., nlz pN then

dn(B5 1Y) <

2 Y0

2



More generally

THEOREM B
(B.K,, 1977,
Garnaev and Gluskin, 1984)

For any (n,N) 1<n< N

1/2
1—|—ln% /
- .

L(BY.1Y) < O (



Definition 2

A sequence {u;}Y, C R™ is called tight frame
if it satisfied Parseval’s identity

N
lzl3 = Kz,u)l> foral zeR™
1=1



A frame {u;}, can be identified with n x N matrix U
with columns w;.

Let v;, 7 =1,...,n rows of U.

U is a tight frame «— {v;}"_; — orthonormal set in RY

71=1

If U={u;}Y, — tight frame, x € R™ then
N

xzz%ui, a; = {r,u;), t=1,...,N. (1)

It N > n tight frame is a redundant system
and representation (1) is not unique.



Frames are widely used in signal processing.
But if, when transmitting coefficients {a;},
we loose one very big coeflicient then
we loose all information about z.

Suppose now that L C RY — such a subspace
that dimL =N —n > pN (son < (1 —p)N),

o (BY, L) < Kdy_o(BY, 1Y) (2)

2 8 Yoo

and R” can be represented
as a orthogonal direct sum: RN = L@ U.



In 2010 Lyubarskii and Vershynin showed
that in this case a tight frame U
generated by the set of columns of U
had the following property:
for each z € RY

C(p, K)
v N

where coeflicients ¢; could be found
by fast and stable algorithm starting
with canonical representation (1).

Izl (3)

N
T = Zciu@-? max |¢;| <
1
P



Why is the representation (3) useful?

Suppose that in the process of transmission
of the vector {c¢;}Y, (see (3))
we loose exact values of < 0N
coefficients and get distorted vector z*.

Then

\ \ C(p, K)
|z — z*||5 < Z (¢; —¢cf)’ < W ON ||z|3 < el|z|)5,

i: ciFCh

where ¢ is small if ¢ is small enough.



The speed and stability of the algorithm converting (1) to (3)
depend on the following property of the subspaces U:
there exist 0 > 0, n < 1 such that
fory={y:} €U, lyll.=1, AC {1,..., N}, |A| < 6N

1/2
(Z yf) < 7.

1€EA

This property is a consequence of (2).



Another very wide field
of practical applications

of the width estimates
(Theorem B)

iIs compressed sensing.



Let M, is a set of all n x n matrices

with real elements. Let
A= {Cbij} = Mnj e > 0.

Definition 3

The approximate e-rank (or simply e-rank) of A
is the quantity

rank.(A) = min{rank (B), B € M,, ||A — Bl| < €},

where ||A — B||ooc = max ; ;)|a;; — bijl.



“This parameter is connected to other notions
of approximate rank and is motivated
by problems from various topics including
communication complexity, combinatorial
optimization, game theory,
computational geometry and learning theory.”

(from the paper by N.Alon, T. Lee,
A. Shraibman, S. Vempala,
Proc. 45th Symp. on Theory of Computing, 2013, pp. 675—684)



Let {V;}I, — the rows of the matrix A
and V = conv ({+V;}"_,). Then

rank.(A) = min {k dy, (U V@,lfw) } :

= min{k: dp(V,I") <e}.




The width of skew octahedron

'1'his problem 1s important for both
approximation theory and computer science.
Let me start with one open problem concerning
Kolmogorov width of Sobolev class W

It is known (Kulanin 1983, Kashin, Malykhin, Ryutin 2018), that

/2 5 Inn

1
- <d, (W}, L") < C,——, 2<q< oo.

Vv n

Cq

V.N. Konovalov remarked (2003), that for ¢ > 2
d, (W}, LY) =< N7V, (Qn, 1Y), N =n1,
where () — the “skew” octahedron.

QN:COHV{IIZ%}ﬁl; ‘/;;:{\111.11,707070}, 1 Q’LQN

A



The case ¢ = 0o — the width d,,(Qn, X))
was not considered in the function theory
(maybe because W} is not a compact in L).

But for computer science this case is
important and equivalent to the estimate
of e-rank of N x N matrix

() ~
| = Iy




First of all it make sense to consider

1

the case of fixed € = const < %, say € = 3.

It is known (see the paper by Alon
mentioned above) that

clog® N < rankl/g(@N) < Clog® N. (4)



Using methods and results from approximation theory
it is possible to give different proofs for both
estimates in (4). But we could not improve it.

One approach to the lower estimate (4) use the following.

Definition of orthomassivity (2002)

For the set K C By

OM;.,L(K):n_l/2 sup  sup Z(S@jjfj);

{pitii {fiteK ;4

where the first supremum is taken

over all orthonormal system {@;}7_;.



Let ford=1,2,...
L*(I") D Mg = {xp: P =1[0,t1] x [0, 5] x -+ x [0, 4]},

where P C [0,1]* = I

Proposition 1

OM,, (I1;) = (logn)?, n — Q.



Let K5 — the set of indicator functions
of convex subsets of [0, 1] x [0, 1] = I*.

Proposition 2

OM,,(K5) = en'/®, c>0, n=12....



P. Grigoriev obtained the following upper estimate
OM,, (K3) < Cn**(logn)*/?, n=23,...,
and remarked that the estimate
OM,, (K>) < n'/®(logn)*/?

could be obtained as a consequence of the positive
solution of the following problem.



Problem (P. Grigoriev)

Let {fix}53=1 — O.N.S. For N =1,2,...
let us define maximal operator
with respect to triangle partial sums

Fy(z) := Sup ‘ Z f;k(»’ﬂ)‘

AB>0: ABSN' . oo i g
Is it true that

| Fxlla < CVN(log N)??



Lovasz O-function

Let G = (V, FE) — graph. Suppose that V = {1,2,...,n}.
Orthonormal representation of G — arbitrary system
of unit vectors of Hilbert space H = {v1,...,v,}

such that (v;,v;) =01if (¢,5) € E.

O(G) = sup Z’U@, (5)

||Z||H |

{v

({vi}i=; in (5) runs over all orthonormal representation of G).



Another important example
of the problem about width

of the skew octahedron

For S € {1,2,...,n} let fs(x1,...,2,) — Boolean function
OR (disjunction). Here x; € {—1,1} and
fs(x1,...,x,) = —1if and only if
there exists j € S such that z; = —1 (=1 =" true”).

The problem is to estimate

d(k,n) = di (U fg,zgjj)

and first of all to estimate

ko(n) = min {k: d(k.n) < %} |



It was proved in computer science that

CV" < ko(n) < Y™

(see A. Klivans, A. Sherstov, 2010
for a lower estimate
and references in the mentioned above
paper by N. Alon for upper estimate)



Let for S C {1,2,...,n},t € 10,1]
gs(t) = =1+ 275 [T g(ri(t) + 1)),

where r;(t) — Rademacher functions.

It is easy to check that
d(k,n) = dp (Us gs(t), L>(0,1)).



It is natural to formulate the following

PROBLEM
Let {Uj}?zl C R™.

Suppose that we know the Gram matrix

G = {(vi,v5) 13

ij=1
How to estimate the width of the skew octahedron

di(V,1%,), 'V = conv({%v;}i_)?



The table of widths
for nonlinear operator

Let X, Y — Banach spaces and V: X — Y
(nonlinear) operator such that W(By) is bounded.
(Bx — the unit ball in X.)

Forn=1,2,... and m >n

Dyg(n,m) = sup dn(V(BL),Y)
LCX, dim L<n



This numbers were defined in 1988
(B. Kashin, Vestnik Moscow State University).

I consider the case

X =Y =L0,1), W(f)=If

Proposition (B. K., 2021)
For each € < 1 there exists C.
such that forn =1.2,...

Dy, (n, [exp(Cov/nlogn)]) < e



Sighum-rank
Definition 4

For a matrix A = {a;;};;_, with a;; = £1

sign-rank (A) = min{rank B, B = {b;;}: signb;; = a;;}.

THEOREM C (Forster)

N
= T T
1A

Recently the notion of signum-rank was used
by Yu. Malykhin in order to estimate of m-term approximation.

VA sign - rank (A)



Let me recall the definitions.

Let (X, p) — linear metric space
and ® = {p,} — system of elements of X
or more general subset of X.

By 11, we define the set of polynomials with
respect to ® with < m nonzero coeflicients.



For f € X the best m-term approximation is

em(f, @, X) = inf p(f, P).

[t ' — the subset of X then

em(F, P, X) =supe,(f,®,X).
feF



Important example of m-term approximation
is the following case.

Let I = [0,1]? and for f € LP(I%)

On(f.L7) = inf _|If - 3wt (o) . (@)l
s=1

Using the notion of signum-rank
Yu. Malykhin got the sharp order
of the quantity ©,,(W,, L¢(I?)) for Sobolev classes
if d > 3 (if d = 2 it was known).



THEOREM

Eordie 3; P 3 0 P= [T :5a; )

rd

O (W, LYI%4)) < m~ &1, I £ g= 2

Here W — standard functional class.
(For r € N W — class of function
with all mixed derivatives up to the order r
— are bounded by 1 in L? norm.)



Matrix rigidity

For a matrix A = {aw}w_
with a;; e Randr=1,... N —1

Ra(r) = min{|A| C [1, N] x [1, N]:
1B = {b@j}j rank B = T,
a;; = b;; Ipn (i;j) Z A}-



The famous problem in discrete mathematics:
to find EFFECTIVE examples of matrices

with big value of Ra(r).

This problem is unsolved.

Until recently the candidates for such example
were Walsh matrices Wy, N =2% s =23, ....

It was known (Kashin, Razborov, 1998),
that for r < %
NQ

RV[/N (T) = C 7

For » =< N this estimate becomes trivial.



THEOREMD
(J. Alman, R.Williams, 2017)

For sufficiently small € > 0
RWN (Nl—f(e)) < NH_E,

52
where f(€) > ¢ ;75

In fact in the proof of Theorem D it was shown, that
dyi-s({wo, ..., wx}, RY) < N°,

0 > 0 — absolute constant,
R% — space RY with Hamming metric h,

h(z,y) = #{i: x # yi}.



In order to get lower estimate for a width
in Hamming metric we can replace it by the metric
“convergence in measure”: for z,y € RY

For upper estimate of this width
we can replace it by any L?, 0 < p < 00, metric.



THEOREM E (Yu. Malykhin)

Let wy, ws, ... — Walsh-Paley system.
For any p < 2 there exists d = d(p) > 0
such that for any big enough NV

dyi—s({wn, ..., wy}, LP(0,1)) < N7°.



Definition 4

Let F' = {f;};_, — the set of elements
of linear metric space (X, p).
Averaged n-width of the set F' is

1/p
dys (F, X) mefx( Z,op fir L ) . (6)

where 1 < p < oo and infinum is taken over
all linear subspaces of dimension n.

Classical result from linear algebra implies that for any
orthonormal system W = {¢1,...,¥n} C L?(0,1)}

dE (W, L%) =1 — % 1<n<N.



Recently some estimates of averaged n-width
were obtained by Yu. Malykhin and B. Kashin.

I used this quantity in order to get lower estimates
for n-term approximation in LY metric.



Forn=1,2...,let
En:{e:{sy ey =11 V:I,Q,...,n}

and let 1, be a natural measure on E,: for A C E,, we put u,(4A) = |A|- 27",
where |A| is the cardinality of A.

Theorem 5. There are positive absolute constants ¢; and cy such that
n
ma em(zlem,@, Lﬁ) > ¢
V=

for anyn =1,2,..., any orthonormal bases ¢ = {fpj}?:l and U = {1, }v_, in R",
and allm < ¢pn.



Theorem 5 is a consequence of the following result.

Theorem 6. There are absolute constants 0 < y9< 1, e3> 0, and s> 0 such

that )
ﬂn{g cky: p(zgume) < 04} < 761

v=1

for any n = 1,2,..., any orthonormal basis ¥ = {1, }7_, in R", and any linear
subspace L of R" of dimension dim L < e3n.



Gram matrices of the systems
of uniformly bounded functions

Classical Grothendieck inequality is equivalent to the following

Proposition

Let Z = {z};t; CRY, |z| <1, j=1,...,N
and W = {’wk}k_ICRN wy,| < 1,k:1,...,N.

There exists the set of functions

{fitizi, {grtimy with || fillze©1) <2,
gk Lo 0,1y < 2, j,]f— l,..., N, such that

(2, W) fo fi(Dgt)dt, j,k=1,... N.



The point is that if Z = W it is not always possible
to find {f;}1, I fillzeny < K, j=1,..., N, such that

(), 2%) = / LA b (7

The best possible estimate of max; || f;|| o (0,1)
under requirement (7) is (log N)'/2.



The problem about conditions on Z which guarantee
the existence of uniformly bounded functions {f;}L,
such that (7) holds is important
for the orthogonal series theory:.

It is important also for computer science.



Let G = (V, F) — graph.

Definition

Grothendieck constant of the graph G is
a smallest constant K such that for any A: £ — R

sup S A{(uw,0)}(fin ) <

{fr}CBH (u0)EE

\ sup Z A{(u,v)}eg - €

(u'v EE

(here By — the unit ball of some Hilbert space).



The problem mentioned above (see (7))
is closely connected with the estimate
of Grothendieck constant.

A. Olevskii in 1975 stated the following

PROBLEM

Suppose that {zj}évzl CRY, |zl <1,j=1,...,N, and

IGzllop < B Gz ={{2,2t) }}emr-  (8)

It is possible to find the set of functions {f;} 3,
such that || f;||L=1) < C(R) and (7) is satisfied 7



THEOREM E
(B.K., Russian Math. Surv., 2022, N2 1)

If the conditions (8) are satisfied
for the set {z;}21, CRY, |z <1,j=1,...,N,
then there ex1sts the set of functlons
F = {f;};2; € L*(0,1) such that

1) |fi(x)| = (2R)"/? for almost all z and j = 1,..., N;

1
2) <2j92k>:/ fifkdt ity #k, 1<5,k<N.
0



Thank you for your attention!
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