Kuroda's theorem for *n*-tuples in semifinite von Neumann algebras

Hongyin Zhao (joint work with Alexey Ber, Fedor Sukochev, Dmitriy Zanin)

School of Mathematics and Statistics of UNSW

April, 2024

April, 2024 1 / 29

▲ □ ▶ → □ ▶

Let H be a separable Hilbert space. An operator d on H is called diagonal if $\exists \{\xi_k\}_{k\geq 1}$ C.O.N.B of H s.t. $d\xi_k = \lambda_k \xi_k, \lambda_k \in \mathbb{C}, k \geq 1$.

Theorem (Weyl-von Neumann, 1909, 1935)

For every self-adjoint operator b on H and every $\varepsilon > 0$, there is a diagonal operator d on H such that $||b - d||_{L_2(B(H))} < \varepsilon$. Here $L_2(B(H))$ is the Hilbert-Schmidt class in B(H).

Theorem (Kuroda, 1958)

Suppose \mathcal{J} is a Banach ideal in B(H) such that $\mathcal{J} \neq L_1(B(H))$. For every self-adjoint operator b on H and every $\varepsilon > 0$, there is a diagonal operator d on H such that $||b - d||_{\mathcal{J}} < \varepsilon$. Here, $L_1(B(H))$ is the trace class in B(H).

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Voiculescu's method

Let
$$a \in B(H), \alpha = (\alpha(j))_{j=1}^n \in (B(H))^n$$
, denote
$$[a, \alpha] = ([a, \alpha(j)])_{j=1}^n, \quad \|\alpha\|_{\mathcal{J}} = \max_{1 \le j \le n} \|\alpha(j)\|_{\mathcal{J}}.$$

Theorem (Voiculescu, 1979)

Let $\alpha \in (B(H))^n$ be a commuting self-adjoint *n*-tuple. Suppose \mathcal{J} is a Banach ideal in B(H). The following statements are equivalent: (i) For every $\varepsilon > 0$, there is a commuting diagonal *n*-tuple $(\delta(j))_{j=1}^n$ such that $\|\alpha(j) - \delta(j)\|_{\mathcal{J}} < \varepsilon$ for every $1 \le j \le n$; (ii) There is a sequence $\{r_k\}_{k\ge 1} \subset \mathcal{F}_1^+$ such that $r_k \uparrow \mathbf{1}$ and

$$||[r_k, \alpha]||_{\mathcal{J}} \to 0, \quad (k \to \infty)$$

Here $\mathcal{F}_1^+ = \{r \in B(H) : 0 \le r \le 1, \operatorname{rank}(r) < \infty\}.$

The sequence $\{r_k\}_{k\geq 1}$ satisfying the conditions in (ii) is called a quasicentral approximate unit of α relative to \mathcal{J}_{α} and \mathcal{J}_{α} are also a sequence of α relative to \mathcal{J}_{α} and β are also a sequence of β and β are also as the sequence of β are also as the sequence of β and β are also as the sequence of β are also as the sequence of β and β are also as the sequence of β are also as

Hongyin Zhao (UNSW)

April, 2024

The condition (ii) in the previous slide is equivalent to say that $k_{\mathcal{J}}(\alpha) = 0$. Here, $k_{\mathcal{J}}(\alpha)$ is defined as follows

$$k_{\mathcal{J}}(\alpha) = \sup_{a \in \mathcal{F}_1^+} \inf_{\substack{r \geq a \\ r \in \mathcal{F}_1^+}} \|[r, \alpha]\|_{\mathcal{J}}.$$

Hence, α is diagonal modulo ${\cal J}$

 $\Leftrightarrow \text{ the existence of a quasicentral approximate unit of } \alpha \text{ relative to } \mathcal{J}$ $\Leftrightarrow k_{\mathcal{J}}(\alpha) = 0.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Bercovici-Voiculescu, 1989)

Suppose \mathcal{J} is a Banach ideal in B(H) such that $\mathcal{J} \not\subset L_{n,1}(B(H))$. For every commuting self-adjoint *n*-tuple $\alpha = (\alpha(j))_{j=1}^n \in (B(H))^n$ and for every $\varepsilon > 0$, there is a commuting *n*-tuple of diagonal operators $\delta = (\delta(j))_{j=1}^n \in (B(H))^n$ such that

$$\|\alpha(j) - \delta(j)\|_{\mathcal{J}} < \varepsilon, 1 \le j \le n.$$

Here, $L_{n,1}(B(H))$ is the Lorentz-(n,1) ideal in B(H).

Semifinite setting

We concern about commuting *n*-tuple in von Neumann algebra. A *-algebra of B(H) is called a von Neumann algebra if $\mathcal{M} = \mathcal{M}''$ where \mathcal{M}'' is the bicommutant of \mathcal{M} . It is called *semifinite* if there exists a faithful normal semifinite trace τ on \mathcal{M} . Let $S(\tau)$ denote the set of all τ -measurable operators affiliated with \mathcal{M} .

For $x \in S(\tau)$, the distribution function of x is defined by

$$d(s;x) = \tau(e^{|x|}(s,\infty)), \quad s \ge 0.$$

The singular value function $\mu(x): t \mapsto \mu(t; x)$ of the operator x, is

$$\mu(t;x)=\inf\{s\geq 0: d(s;x)\leq t\}, \quad t\geq 0.$$

The function $t \mapsto \mu(t; x)$ is also written as $\mu(x)$.

Definition (Symmetric function space)

A symmetric function space $(E, \|\cdot\|_E)$ is a Banach space of real-valued Lebesgue measurable functions on $(0, \infty)$ such that: If $y \in E, x$ is a measurable function and $\mu(x) \leq \mu(y)$, then $x \in E$, $\|x\|_E \leq \|y\|_E$.

Hongyin Zhao (UNSW)

Symmetric space associated with a semifinite von Neumann algebra

Let \mathcal{M} be a von Neumann algebra with a faithful normal semifinite trace τ . Let E be a symmetric function space on $(0, \infty)$ with norm $\|\cdot\|_E$. Define $E(\mathcal{M}) = \{a \in S(\tau) : \mu(a) \in E\}$, and define

 $||a||_{E(\mathcal{M})} = ||\mu(a)||_E, \quad a \in E(\mathcal{M}).$

From [Kalton-Sukochev, 2008], $(E(\mathcal{M}), \|\cdot\|_{E(\mathcal{M})})$ is a Banach space and is called a *symmetric space*. In particular, for $1 \leq p < \infty$, if $E = L_p$ is the standard Lebesgue L_p function space on $(0, \infty)$, we obtain the classical noncommutative L_p spaces $L_p(\mathcal{M})$. For convenience, we set $L_{\infty}(\mathcal{M}) = \mathcal{M}$ equipped with the uniform norm $\|\cdot\|_{\mathcal{M}}$. If $E = L_{p,1}$ is the standard Lorentz-(p, 1) space on $(0, \infty)$, we obtain the noncommutative Lorentz-(p, 1) space $L_{p,1}(\mathcal{M})$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Let \mathcal{M} be a von Neumann algebra with a faithful normal semifinite trace τ . Let $\alpha = (\alpha(j))_{j=1}^n, \beta = (\beta(j))_{j=1}^n \in \mathcal{M}^n$, we write $\alpha \pm \beta = (\alpha(j) \pm \beta(j))_{j=1}^n$.

Question

Let $\alpha \in \mathcal{M}^n$ be a commuting self-adjoint *n*-tuple. Suppose E is a symmetric function space on $(0, \infty)$. When does there exist a commuting diagonal *n*-tuple $\delta = (\delta(j))_{j=1}^n \in \mathcal{M}^n$ such that $\|\alpha - \delta\|_{E(\mathcal{M})} < \varepsilon$?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Development in semifinite factor

Zsidó, L., *The Weyl-von Neumann theorem in semifinite factors*. J. Functional Analysis **18** (1975), 60–72.

Kaftal, V., On the theory of compact operators in von Neumann algebras. II, Pacific Journal of Mathematics **79**, no.1 (1978), 129–137.

Theorem (Li-Shen-Shi, 2020)

Suppose $n \geq 2$. Let $\alpha \subset \mathcal{M}^n$ be a commuting self-adjoint *n*-tuple. For every $\varepsilon > 0$, there exists a commuting diagonal *n*-tuple $\delta = (\delta(j))_{j=1}^n \in \mathcal{M}^n$ such that $\|\alpha - \delta\|_{L_n(\mathcal{M})} < \varepsilon$.

Li-Shen-Shi obtained a version of Kuroda's theorem under the assumption that \mathcal{M} is properly infinite vNa and $a \in \mathcal{M}$ is bounded.

Theorem (Li-Shen-Shi, 2020)

Let $a \in \mathcal{M}$ be a self-adjoint operator. Suppose E is a symmetric function space on $(0,\infty)$ such that $E \not\subset L_1$. For every $\varepsilon > 0$, there exists a diagonal $d \in \mathcal{M}$ such that $||a - d||_{E(\mathcal{M})} < \varepsilon$.

Extension of Voiculescu's result in semifinite vNa

Let $\mathcal{F}_1^+(\mathcal{M}) = \{x \in \mathcal{M} : 0 \le x \le \mathbf{1}, \tau(\mathfrak{l}(x)) < \infty\}$, where $\mathfrak{l}(x)$ is the left support projection of x, i.e. $\mathfrak{l}(x)$ is the projection onto $\overline{x(H)}$. Define

$$k_{E(\mathcal{M})}(\alpha) = \sup_{a \in \mathcal{F}_1^+(\mathcal{M})} \inf_{\substack{r \ge a \\ r \in \mathcal{F}_1^+(\mathcal{M})}} \|[r, \alpha]\|_{E(\mathcal{M})}.$$

Theorem 1 (Ber-Sukochev-Zanin-Zhao, 2023 (factor), 2024 (vNa))

Let \mathcal{M} be a von Neumann algebra with a faithful normal semifinite trace τ . Let $\alpha \in \mathcal{M}^n$ be a commuting self-adjoint *n*-tuple. Suppose E is a symmetric function space on $(0, \infty)$. T.F.A.E. (i) $k_{E(\mathcal{M})}(\alpha) = 0$; (ii) There exists a commuting diagonal *n*-tuple $\delta \in \mathcal{M}^n$ such that $\|\alpha - \delta\|_{E(\mathcal{M})} < \varepsilon$.

イロト イヨト イヨト ・

Remark. If the Hilbert space H is non-separable, but \mathcal{M} is σ -finite, i.e. each orthogonal family of non-zero projections in \mathcal{M} is countable, then Theorem 1 still holds.

Let \mathcal{M} be a σ -finite von Neumann algebra with a faithful normal semifinite trace τ . Let $\alpha \in \mathcal{M}^n$ be a commuting self-adjoint *n*-tuple.

Corollary 1. When $n \ge 2$, it can be proved that $k_{L_n(\mathcal{M})}(\alpha) = 0$. Thus, by Theorem 1, α is diagonal modulo $L_n(\mathcal{M})$.

Corollary 2. Every normal operator $b \in \mathcal{M}$ is diagonal modulo $L_2(\mathcal{M})$. This extends the Weyl-von Neumann theorem to normal operators in semifinite von Neumann algebras.

イロト 不得 トイヨト イヨト 二日

non-commutative Weyl-von Neumann theorem

Let \mathcal{A} be a unital C^* -algebra. Suppose $\psi, \rho : \mathcal{A} \to \mathcal{M}$ are unital *-homomorphisms. We say that ψ and ρ are approximately equivalent in \mathcal{M} if there exists a sequence $\{u_m\}_{m\geq 1}$ such that

$$\|\psi(a) - u_m^*\rho(a)u_m\|_{\mathcal{M}} \to 0, \quad (m \to \infty), \ a \in \mathcal{A},$$

and write $\psi \sim_{\mathcal{M}} \rho$. In the case when $\mathcal{M} = B(H)$, Voiculescu obtained the following non-commutative Weyl-von Neumann theorem.

Theorem (Voiculescu, 1976)

If $\psi : \mathcal{A} \to B(H)$ and $\rho : \mathcal{A} \to B(H)$ are *-monomorphisms such that $\psi(\mathcal{A}) \cap \mathcal{K} = \rho(\mathcal{A}) \cap \mathcal{K} = \{0\}$, then $\psi \sim_{B(H)} \rho$. Here, \mathcal{K} is the ideal of compact operators.

Theorem (Hadwin, 1981)

If $\psi : \mathcal{A} \to B(H)$ and $\rho : \mathcal{A} \to B(H)$ are *-homomorphisms, then $\psi \sim_{B(H)} \rho$ iff $\operatorname{rank}(\psi(a)) = \operatorname{rank}(\rho(a)), \forall a \in \mathcal{A}.$

Theorem (Ciuperca-Giordano-Ng-Niu, 2013)

Suppose \mathcal{A} is a separable unital C^* -algebra and \mathcal{M} is a infinite factor acting on H. If $\psi : \mathcal{A} \to \mathcal{M}$ and $\rho : \mathcal{A} \to \mathcal{M}$ are *-monomorphisms such that

 $\psi(\mathcal{A}) \cap \mathcal{K}(\mathcal{M}) = \rho(\mathcal{A}) \cap \mathcal{K}(\mathcal{M}) = \{0\},\$ then $\psi \sim_{\mathcal{M}} \rho$. Here, $\mathcal{K}(\mathcal{M})$ is the closure of all finite-supported operators in \mathcal{M} .

The above theorem is no longer true when \mathcal{M} is a non-factor. When \mathcal{M} is a general von Neumann algebra and when \mathcal{A} is commutative, the following result holds.

Theorem (Ding-Hadwin, 2005)

Suppose \mathcal{A} is a separable commutative unital C^* -algebra and \mathcal{M} is a von Neumann algebra acting on H. We have $\psi \sim_{\mathcal{M}} \rho$ iff $\mathfrak{l}(\psi(a)) \sim \mathfrak{l}(\rho(a))$.

Here $\mathfrak{l}(x)$ is the left support projection of x, i.e. $\mathfrak{l}(x)$ is the projection onto $\overline{x(H)}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Intermediate step for the proof of Theorem 1

For a subset $A \subset \mathcal{M}$, let $C^*(A)$ (resp. $W^*(A)$) denote the C^* -subalgebra (resp. von Neumann subalgebra) generated by A and 1. Let $\mathcal{Z}(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}'$, i.e. the centre of \mathcal{M} . Let $WZ^*(A)$ be the von Neumann subalgebra generated by $W^*(A)$ and $\mathcal{Z}(\mathcal{M})$. Let $\mathcal{K}(\mathcal{M}, \tau)$ denote the closure of all τ -finitely supported operators in \mathcal{M} .

Theorem 2 (Ber-Sukochev-Zanin-Zhao, 2024)

Let
$$\psi : C^*(\alpha) \to \mathcal{M}$$
 be a *-monomorphism. Suppose
(i) $WZ^*(\alpha) \cap \mathcal{K}(\mathcal{M}, \tau) = WZ^*(\psi(\alpha)) \cap \mathcal{K}(\mathcal{M}, \tau) = \{0\};$
(ii) $\psi \sim_{\mathcal{M}} \mathrm{Id}_{C^*(\alpha)};$
(iii) $k_{E(\mathcal{M})}(\alpha) = k_{E(\mathcal{M})}(\psi(\alpha)) = 0.$
We have $\psi \sim_{E(\mathcal{M})} \mathrm{Id}_{C^*(\alpha)}$, i.e. there is a sequence of unitaries $\{u_m\}_{m\geq 1}$
in \mathcal{M} such that $\|\psi(a) - u_m^* a u_m\|_{E(\mathcal{M})} \to 0$ as $m \to \infty$, for all $a \in C^*(\alpha)$.

Theorem 3

Let \mathcal{M} be a properly infinite σ -finite von Neumann algebra with a faithful normal semifinite trace τ . Let $\alpha \in \mathcal{M}^n$ be a commuting self-adjoint n-tuple such that

$$WZ^*(\alpha) \cap \mathcal{K}(\mathcal{M}, \tau) = \{0\}.$$
 (1)

There exists a sequence of isometries $\{v_j\}_{j\geq 0} \subset \mathcal{M}$ such that (i) $v_{j_1}^* v_{j_2} = \delta_{j_1, j_2} \mathbf{1}, \quad j_1, j_2 \geq 0;$ (ii) $[v_j, \alpha(i)] \in \mathcal{K}(\mathcal{M}, \tau)$ for $j \geq 0, 1 \leq i \leq n;$ (iii) $\|[v_j, \alpha]\|_{\mathcal{M}} \to 0$ as $j \to \infty$.

Sketch of the proof of Theorem 1 when $\mathcal M$ is a factor

Suppose \mathcal{M} is an infinite factor. Assume $W^*(\alpha) \cap \mathcal{K}(\mathcal{M}, \tau) = \{0\}$. Suppose $k_{E(\mathcal{M})}(\alpha) = 0$.

Choose a separating family $\{\psi_k\}_{k\in\mathbb{N}}$ of characters of $C^*(\alpha)$ (such a family exists since the spectrum of $C^*(\alpha)$ is compact and metrizable, hence, separable). Choose a sequence $\{p_k\}_{k\geq 1}$ of pairwise orthogonal projections in \mathcal{M} such that $p_k \sim \mathbf{1}$ for each $k \geq 1$. Set

$$\psi(a) = \sum_{k \ge 1} \psi_k(a) p_k, \quad a \in C^*(\alpha).$$

Clearly, $\psi : C^*(\alpha) \to \mathcal{M}$ is a faithful *-homomorphism. Thus, $\psi \sim_{\mathcal{M}} \operatorname{Id}_{C^*(\alpha)}$ by the theorem of [Ciuperca-Giorrdano-Ng-Niu, 2013]. Hence, by Theorem 2, $\psi \sim_{E(\mathcal{M})} \operatorname{Id}_{C^*(\alpha)}$. Then

$$\|\psi(\alpha) - u_m^* \alpha u_m\|_{E(\mathcal{M})} \to 0, \quad (m \to \infty).$$

Set $\delta = \psi(\alpha)$, which is a commuting diagonal *n*-tuple.

Suppose \mathcal{M} is a properly infinite. That is, every central projection z is either infinite or zero. Let $\alpha \in \mathcal{M}^n$ be a commuting self-adjoint *n*-tuple such that $W^*(\alpha) \cap \mathcal{K}(\mathcal{M}, \tau) = \{0\}$ and $k_{E(\mathcal{M})}(\alpha) = 0$.

We can still construct a *-monomorphism $\psi: C^*(\alpha) \to \mathcal{M}$ as in the previous slide. That is,

$$\psi(a) = \sum_{k \ge 1} \psi_k(a) p_k, \quad a \in C^*(\alpha).$$

However, we no longer have $\psi \sim_{\mathcal{M}} \mathrm{Id}_{C^*(\alpha)}$ since \mathcal{M} is not a factor.

Here comes the key idea: Instead of considering a separating family of characters $\{\psi_k\}_{k\geq 1}$ of $C^*(\alpha)$, how about considering a separating family of centre-valued homomorphisms $\{\psi_k : C^*(\alpha) \to \mathcal{Z}(\mathcal{M})\}_{k\geq 1}$ which "roughly resembles" a separating family of characters?

Proposition 4

Let \mathcal{M} be a von Neumann algebra. Suppose $G \subset \mathcal{P}(\mathcal{M})$ is a countable commuting family of projections, and $Z \subset \mathcal{P}(\mathcal{Z}(\mathcal{M}))$ is a countable family of central projections in \mathcal{M} such that $\mathbf{1} \in Z$. Let $\mathcal{A} = C^*(G \cup Z)$ and $\mathcal{B} = C^*(Z)$. There exists a family $\{\psi_k\}_{k \in \mathbb{N}} \subset \operatorname{Hom}(\mathcal{A}, \mathcal{Z}(\mathcal{M}))$ such that (i) $\psi_k|_{\mathcal{B}} = \operatorname{Id}_{\mathcal{B}}$; (ii) for every $0 \neq a \in \mathcal{A}$ there exists $k \in \mathbb{N}$ such that $\psi_k(a) \neq 0$; (iii) $p \leq \bigvee_{k \in \mathbb{N}} \psi_k(p)$ for every $p \in G$.

The above proposition can be transformed into a purely topological one, which we will now show.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Topological lemma

The lemma below follows from the fact that a continuous mapping of a compact metrizable space has a Borel inverse mapping.

Fact

Let X be a compact metric space, let Y be a Hausdorff topological space, and let $\pi : X \to Y$ be a continuous surjective mapping. \exists Borel set $B \subset X$ such that π is injective on B. In addition, $f^{-1} : Y \to B$ is Borel.

Lemma 5 (Ber-Sukochev-Zanin-Zhao, 2024)

Let X be a totally disconnected compact metrizable space and let Y be a Hausdorff topological space. Let $\pi : X \to Y$ be a continuous surjective map. There exists a family of Borel mappings $\{\pi_k : Y \to X\}_{k \in \mathbb{N}}$ such that (i) $\pi \circ \pi_k = \operatorname{Id}_Y$; (ii) for every open $A \subset X$, we have $A \subset \bigcup_{k \in \mathbb{N}} (\pi_k \circ \pi)^{-1}(A)$; (iii) for every $0 \le f \in C(X)$, we have $f \le \sup_{k \in \mathbb{N}} f \circ \pi_k \circ \pi$.

イロト イヨト イヨト イヨト

Construction

Let \mathcal{M} be a properly infinite von Neumann algebra. Let $\alpha \in \mathcal{M}^n$ be a commuting self-adjoint *n*-tuple.

For every $m \in \mathbb{Z}_+$, let At_m be the collection of all cubes

$$\left[\frac{k_1}{2^m}, \frac{k_1+1}{2^m}\right) \times \dots \times \left[\frac{k_n}{2^m}, \frac{k_n+1}{2^m}\right), \quad (k_1, \dots, k_n) \in \mathbb{Z}^n.$$

Set

$$G = \bigcup_{m \in \mathbb{Z}_+} \{ e^{\alpha}(U) : U \in \operatorname{At}_m \}, \quad Z = \{ c(p) : p \in G \}, \quad \mathcal{A} = C^*(G \cup Z).$$

Let the sequence $\{\psi_k\}_{k\in\mathbb{N}} \subset \operatorname{Hom}(\mathcal{A}, \mathcal{Z}(\mathcal{M}))$ be given by Proposition 4. Let $\{p_k\}_{k\in\mathbb{N}}$ be a sequence of pairwise orthogonal projections in \mathcal{M} such that $p_k \sim \mathbf{1}$ for each $k \in \mathbb{N}$ and such that $\sum_{k\in\mathbb{N}} p_k = \mathbf{1}$. Define the *-homomorphism $\psi : \mathcal{A} \to \mathcal{M}$ by the formula

$$\psi(a) = \sum_{k \in \mathbb{N}} \psi_k(a) p_k, \quad a \in \mathcal{A},$$

Theorem 6

Suppose $WZ^*(\alpha) \cap \mathcal{K}(\mathcal{M}, \tau) = \{0\}$. The *-homomorphism $\psi : \mathcal{A} \to \mathcal{M}$ constructed in the previous slide is faithful, and satisfies $\psi \sim_{\mathcal{M}} \mathrm{Id}_{C^*(\alpha)}$.

Thus, by Theorem 2, $\psi \sim_{E(\mathcal{M})} \operatorname{Id}_{C^*(\alpha)}$, namely, for every $\varepsilon > 0$, there is unitary $u \in \mathcal{M}$ such that $\|u\psi(\alpha)u^* - \alpha\|_{E(\mathcal{M})} < \varepsilon$.

It can be proved that there exists a commuting diagonal *n*-tuple $\delta \in \mathcal{M}^n$ such that $\|\psi(\alpha) - \delta\|_{E(\mathcal{M})} < \varepsilon$. Hence,

$$\|\alpha - u\delta u^*\|_{E(\mathcal{M})} < \varepsilon.$$

Note that $u\delta u^*$ is a commuting diagonal *n*-tuple since u is a unitary. The proof is complete.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Theorem 7 (Ber-Sukochev-Zanin-Zhao, 2024)

Let \mathcal{M} be a σ -finite von Neumann algebra with a faithful normal semifinite trace τ and let $n \in \mathbb{N}$. Let $(E, \|\cdot\|_E)$ be a symmetric function space on $(0, \infty)$. If $E \cap L_{\infty} \not\subset L_{n,1}$, then for every commuting self-adjoint n-tuple $\alpha \in (\operatorname{Aff}(\mathcal{M}))^n$ and every $\varepsilon > 0$, there exists a commuting diagonal n-tuple $\delta \in (\operatorname{Aff}(\mathcal{M}))^n$ such that

 $\alpha - \delta \in (E^0(\mathcal{M}) \cap \mathcal{M})^n, \quad \|\alpha - \delta\|_{(E \cap L_\infty)(\mathcal{M})} < \varepsilon.$

A few words for the proof of Theorem 7

Consider the special case when E is a Lorentz space Λ_{ψ} . Let ψ be an increasing concave function on $[0, \infty)$ such that $\psi(0) = 0$. The Lorentz space Λ_{ψ} is $\Lambda_{\psi} = \{f \in S(0, \infty) : \int \mu(t; f) d\psi(t) < \infty\}.$

Lemma 8

Let $n \in \mathbb{N}$ and let ψ be an increasing concave function on $[0, \infty)$ such that $\psi(0) = 0$. The following conditions are equivalent. (1) $\Lambda_{\psi} \cap L_{\infty} \not\subset L_{n,1}$; (2) $\liminf_{t \to \infty} \frac{\psi(t)}{t^{\frac{1}{n}}} = 0$; (3) $\liminf_{m \to \infty} \frac{\psi(2^{mn})}{2^m} = 0$.

The key point is to construct a sequence of τ -finite projections $\{p_m\}_{m\in\mathbb{N}}$ in \mathcal{M} such that

$$\|[\alpha(j), p_m]\|_{\Lambda_{\psi}(\mathcal{M})} \le C \frac{\psi(2^{mn})}{2^m} \to 0, \quad (m \to \infty),$$

or equivalently, $k_{\Lambda_{\psi}(\mathcal{M})}(\alpha) = 0$. Then Theorem 1 yields the proof for this case.

Pass from Λ_{ψ} to E

We have proved Kuroda's theorem for Lorentz spaces Λ_{ψ} . To prove it for general symmetric function spaces E on $(0, \infty)$ with $E \cap L_{\infty} \not\subset L_{n,1}$, suppose that there is a commuting self-adjoint *n*-tuple $\alpha \in \mathcal{M}^n$ such that Theorem 7 does not hold. By Theorem 1,

$$k_{E(\mathcal{M})}(\alpha) > 0. \tag{2}$$

It can be proved that, there exists an increasing concave function ψ on $(0,\infty)$ such that $E\subset\Lambda_\psi,\,\psi(0+)=0$ and

 $k_{\Lambda_{\psi}}(\alpha) > 0.$

Then $\Lambda_{\psi} \cap L_{\infty} \subset L_{n,1}$. In particular, $E \cap L_{\infty} \subset L_{n,1}$, which is a contradiction. This proves Theorem 7.

(To find the mentioned ψ : (2) provides us with a convex subset in $(E(\mathcal{M}))^n$ that does not intersect the open unit ball in $(E(\mathcal{M}))^n$, the we use Hahn-Banach separation theorem and consider the Köthe dual of E.)

The case not covered by Kuroda's theorem, i.e. $E = L_1$

Let a be a self-adjoint operator on H. Let e^a be the spectral measure of a. There exists a complex measure μ on \mathbb{R} such that $e^a(A) = 0$ iff $\mu(A) = 0$ for any Borel sets $A \subset \mathbb{R}$. Let $\mu = \mu_{ac} + \mu_s$ be the Radon-Nikodym decomposition of μ with respect to the Lebesgue measure. The projection $P_{ac}(a) = e^a(\operatorname{supp}(\mu_{ac}))$ (resp. $P_s(a) = e^a(\operatorname{supp}(\mu_s))$) is called the absolutely continuous part (resp. singular part) of a.

Theorem (Kato-Rosenblum, 1957)

If a, b are self-adjoint operators on H such that $a - b \in L_1(B(H))$, then the following limits exist in the strong operator topology $W_{\pm} = \lim_{t \to \pm \infty} e^{itb} e^{-ita} P_{ac}(a)$. As a result, the absolutely continuous parts of a and b are unitarily equivalent, i.e. $W_{\pm}^*W_{\pm} = P_{ac}(a), W_{\pm}W_{\pm}^* = P_{ac}(b)$.

Corollary: A self-adjoint operator a is diagonal modulo $L_1(B(H))$ if and only if $P_{ac}(a) = 0$.

Hongyin Zhao (UNSW)

April, 2024 26 / 29

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The case not covered by Bercovici-Voiculescu's theorem, i.e. $E = L_{n,1}$

Theorem (Voiculescu, 1979)

Let $n \in \mathbb{N}$. We have $(k_{L_{n,1}(B(H))}(\alpha))^n = \gamma_n \int_{\mathbb{R}^n} m(s) d\lambda(s)$ where $0 < \gamma_n < \infty$ is a constant independent of α , m is the multiplicity function of the absolutely continuous part of α . For n = 1 we have $\gamma_1 = \frac{1}{\pi}$. In particular, if $\alpha_{ac} \neq 0$, then $k_{L_{n,1}(B(H))}(\alpha) \neq 0$.

Theorem (Voiculescu, 1981)

Suppose $n \ge 2$. Let $\alpha, \beta \in (B(H))^n$ be commuting self-adjoint *n*-tuple. If $\beta(j) - \alpha(j) \in L_{n,1}(B(H))$ for all $1 \le j \le n$, then $\alpha_{ac} = u^* \beta_{ac} u$ for some unitary u.

Corollary

 α is diagonal modulo $L_{n,1}(B(H))$ if and only if $\alpha_{ac} = 0$.

Hongyin Zhao (UNSW)

Theorem (Li-Shen-Shi-Wang, 2018)

If A, B are densely-defined self-adjoint operators affiliated with \mathcal{M} such that $A - B \in \mathcal{M} \cap L^1(\mathcal{M}, \tau)$, then $W := s.o.t.-\lim_{t\to\infty} e^{itB}e^{-itA}P_{ac}^{\infty}(A)$ exists in \mathcal{M} . Moreover, $W^*W = P_{ac}^{\infty}(A)$, and $WW^* = P_{ac}^{\infty}(B)$.

Here the definition of $P_{ac}^{\infty}(\cdot)$ is an adaptation of the notion of absolutely continuous part in the von Neumann algebras setting, which equals to $P_{ac}(\cdot)$ when $\mathcal{M} = B(H)$.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

References

- Ber, A., Sukochev, F., Zanin, D., Zhao, H.: Diagonality modulo hybrid Lorentz-(*p*,1) ideals in semifinite factors. *J. Funct. Anal.*, 285(8):Paper No. 110071, 2023.

- Ber, A., Sukochev, F., Zanin, D., Zhao, H.: Diagonality modulo symmetric spaces in semifinite von Neumann algebras, 2024. arXiv:2404.00259
- Ber, A., Sukochev, F., Zanin, D., Zhao, H.: Kuroda's theorem for *n*-tuples in semifinite von Neumann algebras, 2024. Unpublished (submitted)

Kuroda, S., On a theorem of Weyl-von Neumann. Proc. Japan Acad. 34 (1958), 11-15.

Li, Q and Shen, J and Shi, R., A generalization of Voiculescu's theorem for normal operators to semifinite von Neumann algebras, Advances in Mathematics 375 (2020), 107347.

Voiculescu, D. A non-commutative Weyl-von Neumann theorem, Rev. roum. math. pures et appl 21 (1976), 97-113.

Voiculescu, D., Some results on norm-ideal perturbations of hilbert space operators, Journal of Operator Theory (1979), 3–37.

< □ > < 同 > < 回 > < 回 > < 回 >