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Weyl-von Neumann theorem

Let H be a separable Hilbert space. An operator d on H is called
diagonal if ∃{ξk}k≥1 C.O.N.B of H s.t. dξk = λkξk, λk ∈ C, k ≥ 1.

Theorem (Weyl-von Neumann, 1909, 1935)

For every self-adjoint operator b on H and every ε > 0, there is a diagonal
operator d on H such that ∥b− d∥L2(B(H)) < ε. Here L2(B(H)) is the
Hilbert-Schmidt class in B(H).
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Classical Kuroda’s theorem

Theorem (Kuroda, 1958)

Suppose J is a Banach ideal in B(H) such that J ≠ L1(B(H)). For
every self-adjoint operator b on H and every ε > 0, there is a diagonal
operator d on H such that ∥b− d∥J < ε. Here, L1(B(H)) is the trace
class in B(H).
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Voiculescu’s method

Let a ∈ B(H), α = (α(j))nj=1 ∈ (B(H))n, denote

[a, α] = ([a, α(j)])nj=1, ∥α∥J = max
1≤j≤n

∥α(j)∥J .

Theorem (Voiculescu, 1979)

Let α ∈ (B(H))n be a commuting self-adjoint n-tuple. Suppose J is a
Banach ideal in B(H). The following statements are equivalent:
(i) For every ε > 0, there is a commuting diagonal n-tuple (δ(j))nj=1 such
that ∥α(j)− δ(j)∥J < ε for every 1 ≤ j ≤ n;
(ii) There is a sequence {rk}k≥1 ⊂ F+

1 such that rk ↑ 1 and

∥[rk, α]∥J → 0, (k → ∞)

Here F+
1 = {r ∈ B(H) : 0 ≤ r ≤ 1, rank(r) <∞}.

The sequence {rk}k≥1 satisfying the conditions in (ii) is called a
quasicentral approximate unit of α relative to J .
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Quasicentral modulus

The condition (ii) in the previous slide is equivalent to say that
kJ (α) = 0. Here, kJ (α) is defined as follows

kJ (α) = sup
a∈F+

1

inf
r≥a
r∈F+

1

∥[r, α]∥J .

Hence, α is diagonal modulo J
⇔ the existence of a quasicentral approximate unit of α relative to J
⇔ kJ (α) = 0.
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Bercovici-Voiculescu’s theorem

Theorem (Bercovici-Voiculescu, 1989)

Suppose J is a Banach ideal in B(H) such that J ̸⊂ Ln,1(B(H)). For
every commuting self-adjoint n-tuple α = (α(j))nj=1 ∈ (B(H))n and for
every ε > 0, there is a commuting n-tuple of diagonal operators
δ = (δ(j))nj=1 ∈ (B(H))n such that

∥α(j)− δ(j)∥J < ε, 1 ≤ j ≤ n.

Here, Ln,1(B(H)) is the Lorentz-(n, 1) ideal in B(H).
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Semifinite setting

We concern about commuting n-tuple in von Neumann algebra. A
∗-algebra of B(H) is called a von Neumann algebra if M = M′′ where
M′′ is the bicommutant of M. It is called semifinite if there exists a
faithful normal semifinite trace τ on M. Let S(τ) denote the set of all
τ -measurable operators affiliated with M.

For x ∈ S(τ), the distribution function of x is defined by

d(s;x) = τ(e|x|(s,∞)), s ≥ 0.

The singular value function µ(x) : t 7→ µ(t;x) of the operator x, is

µ(t;x) = inf{s ≥ 0 : d(s;x) ≤ t}, t ≥ 0.

The function t 7→ µ(t;x) is also written as µ(x).

Definition (Symmetric function space)

A symmetric function space (E, ∥ · ∥E) is a Banach space of real-valued
Lebesgue measurable functions on (0,∞) such that: If y ∈ E, x is a
measurable function and µ(x) ≤ µ(y), then x ∈ E, ∥x∥E ≤ ∥y∥E .
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Symmetric space associated with a semifinite von
Neumann algebra

Let M be a von Neumann algebra with a faithful normal semifinite
trace τ . Let E be a symmetric function space on (0,∞) with norm ∥ · ∥E .
Define E(M) = {a ∈ S(τ) : µ(a) ∈ E}, and define

∥a∥E(M) = ∥µ(a)∥E , a ∈ E(M).

From [Kalton-Sukochev, 2008], (E(M), ∥ · ∥E(M)) is a Banach space and
is called a symmetric space. In particular, for 1 ≤ p <∞, if E = Lp is the
standard Lebesgue Lp function space on (0,∞), we obtain the classical
noncommutative Lp spaces Lp(M). For convenience, we set
L∞(M) = M equipped with the uniform norm ∥ · ∥M. If E = Lp,1 is the
standard Lorentz-(p, 1) space on (0,∞), we obtain the noncommutative
Lorentz-(p, 1) space Lp,1(M).
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Question in semifinite setting

Let M be a von Neumann algebra with a faithful normal semifinite
trace τ . Let α = (α(j))nj=1, β = (β(j))nj=1 ∈ Mn, we write
α± β = (α(j)± β(j))nj=1.

Question

Let α ∈ Mn be a commuting self-adjoint n-tuple. Suppose E is a
symmetric function space on (0,∞). When does there exist a commuting
diagonal n-tuple δ = (δ(j))nj=1 ∈ Mn such that ∥α− δ∥E(M) < ε?
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Development in semifinite factor

Zsidó, L., The Weyl-von Neumann theorem in semifinite factors. J.
Functional Analysis 18 (1975), 60–72.

Kaftal, V., On the theory of compact operators in von Neumann
algebras.II, Pacific Journal of Mathematics 79, no.1 (1978), 129–137.

Theorem (Li-Shen-Shi, 2020)

Suppose n ≥ 2. Let α ⊂ Mn be a commuting self-adjoint n-tuple. For
every ε > 0, there exists a commuting diagonal n-tuple
δ = (δ(j))nj=1 ∈ Mn such that ∥α− δ∥Ln(M) < ε.

Li-Shen-Shi obtained a version of Kuroda’s theorem under the
assumption that M is properly infinite vNa and a ∈ M is bounded.

Theorem (Li-Shen-Shi, 2020)

Let a ∈ M be a self-adjoint operator. Suppose E is a symmetric function
space on (0,∞) such that E ̸⊂ L1. For every ε > 0, there exists a
diagonal d ∈ M such that ∥a− d∥E(M) < ε.
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Extension of Voiculescu’s result in semifinite vNa

Let F+
1 (M) = {x ∈ M : 0 ≤ x ≤ 1, τ(l(x)) <∞}, where l(x) is the

left support projection of x, i.e. l(x) is the projection onto x(H). Define

kE(M)(α) = sup
a∈F+

1 (M)

inf
r≥a

r∈F+
1 (M)

∥[r, α]∥E(M).

Theorem 1 (Ber-Sukochev-Zanin-Zhao, 2023 (factor), 2024 (vNa))

Let M be a von Neumann algebra with a faithful normal semifinite trace
τ . Let α ∈ Mn be a commuting self-adjoint n-tuple. Suppose E is a
symmetric function space on (0,∞). T.F.A.E.
(i) kE(M)(α) = 0;
(ii) There exists a commuting diagonal n-tuple δ ∈ Mn such that
∥α− δ∥E(M) < ε.
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Application of Theorem 1

Remark. If the Hilbert space H is non-separable, but M is σ-finite,
i.e. each orthogonal family of non-zero projections in M is countable, then
Theorem 1 still holds.

Let M be a σ-finite von Neumann algebra with a faithful normal
semifinite trace τ. Let α ∈ Mn be a commuting self-adjoint n-tuple.

Corollary 1. When n ≥ 2, it can be proved that kLn(M)(α) = 0.
Thus, by Theorem 1, α is diagonal modulo Ln(M).

Corollary 2. Every normal operator b ∈ M is diagonal modulo
L2(M). This extends the Weyl-von Neumann theorem to normal
operators in semifinite von Neumann algebras.
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non-commutative Weyl-von Neumann theorem

Let A be a unital C∗-algebra. Suppose ψ, ρ : A → M are unital
∗-homomorphisms. We say that ψ and ρ are approximately equivalent in
M if there exists a sequence {um}m≥1 such that

∥ψ(a)− u∗mρ(a)um∥M → 0, (m→ ∞), a ∈ A,

and write ψ ∼M ρ. In the case when M = B(H), Voiculescu obtained the
following non-commutative Weyl-von Neumann theorem.

Theorem (Voiculescu, 1976)

If ψ : A → B(H) and ρ : A → B(H) are ∗-monomorphisms such that
ψ(A) ∩ K = ρ(A) ∩ K = {0}, then ψ ∼B(H) ρ. Here, K is the ideal of
compact operators.

Theorem (Hadwin, 1981)

If ψ : A → B(H) and ρ : A → B(H) are ∗-homomorphisms, then
ψ ∼B(H) ρ iff rank(ψ(a)) = rank(ρ(a)), ∀a ∈ A.
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Theorem (Ciuperca-Giordano-Ng-Niu, 2013)

Suppose A is a separable unital C∗-algebra and M is a infinite factor
acting on H. If ψ : A → M and ρ : A → M are ∗-monomorphisms such
that
ψ(A) ∩ K(M) = ρ(A) ∩ K(M) = {0},
then ψ ∼M ρ. Here, K(M) is the closure of all finite-supported operators
in M.

The above theorem is no longer true when M is a non-factor.
When M is a general von Neumann algebra and when A is

commutative, the following result holds.

Theorem (Ding-Hadwin, 2005)

Suppose A is a separable commutative unital C∗-algebra and M is a von
Neumann algebra acting on H. We have ψ ∼M ρ iff l(ψ(a)) ∼ l(ρ(a)).

Here l(x) is the left support projection of x, i.e. l(x) is the projection
onto x(H).
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Intermediate step for the proof of Theorem 1

For a subset A ⊂ M, let C∗(A) (resp. W ∗(A)) denote the
C∗-subalgebra (resp. von Neumann subalgebra) generated by A and 1.
Let Z(M) = M∩M′, i.e. the centre of M. Let WZ∗(A) be the von
Neumann subalgebra generated by W ∗(A) and Z(M). Let K(M, τ)
denote the closure of all τ -finitely supported operators in M.

Theorem 2 (Ber-Sukochev-Zanin-Zhao, 2024)

Let ψ : C∗(α) → M be a ∗-monomorphism. Suppose
(i) WZ∗(α) ∩ K(M, τ) =WZ∗(ψ(α)) ∩ K(M, τ) = {0};
(ii) ψ ∼M IdC∗(α);
(iii) kE(M)(α) = kE(M)(ψ(α)) = 0.
We have ψ ∼E(M) IdC∗(α), i.e. there is a sequence of unitaries {um}m≥1

in M such that ∥ψ(a)− u∗maum∥E(M) → 0 as m→ ∞, for all a ∈ C∗(α).
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Key ingredient in the proof of Theorem 2

Theorem 3

Let M be a properly infinite σ-finite von Neumann algebra with a faithful
normal semifinite trace τ . Let α ∈ Mn be a commuting self-adjoint
n-tuple such that

WZ∗(α) ∩ K(M, τ) = {0}. (1)

There exists a sequence of isometries {vj}j≥0 ⊂ M such that
(i) v∗j1vj2 = δj1,j21, j1, j2 ≥ 0;
(ii) [vj , α(i)] ∈ K(M, τ) for j ≥ 0, 1 ≤ i ≤ n;
(iii) ∥[vj , α]∥M → 0 as j → ∞.
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Sketch of the proof of Theorem 1 when M is a factor

Suppose M is an infinite factor. Assume W ∗(α) ∩ K(M, τ) = {0}.
Suppose kE(M)(α) = 0.

Choose a separating family {ψk}k∈N of characters of C∗(α) (such a
family exists since the spectrum of C∗(α) is compact and metrizable,
hence, separable). Choose a sequence {pk}k≥1 of pairwise orthogonal
projections in M such that pk ∼ 1 for each k ≥ 1. Set

ψ(a) =
∑
k≥1

ψk(a)pk, a ∈ C∗(α).

Clearly, ψ : C∗(α) → M is a faithful ∗-homomorphism. Thus,
ψ ∼M IdC∗(α) by the theorem of [Ciuperca-Giorrdano-Ng-Niu, 2013].
Hence, by Theorem 2, ψ ∼E(M) IdC∗(α). Then

∥ψ(α)− u∗mαum∥E(M) → 0, (m→ ∞).

Set δ = ψ(α), which is a commuting diagonal n-tuple.
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Sketch of the proof when M is a non-factor

Suppose M is a properly infinite. That is, every central projection z
is either infinite or zero. Let α ∈ Mn be a commuting self-adjoint n-tuple
such that W ∗(α) ∩ K(M, τ) = {0} and kE(M)(α) = 0.

We can still construct a ∗-monomorphism ψ : C∗(α) → M as in the
previous slide. That is,

ψ(a) =
∑
k≥1

ψk(a)pk, a ∈ C∗(α).

However, we no longer have ψ ∼M IdC∗(α) since M is not a factor.
Here comes the key idea: Instead of considering a separating family of

characters {ψk}k≥1 of C∗(α), how about considering a separating family
of centre-valued homomorphisms {ψk : C∗(α) → Z(M)}k≥1 which
“roughly resembles” a separating family of characters?
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Proposition 4

Let M be a von Neumann algebra. Suppose G ⊂ P(M) is a countable
commuting family of projections, and Z ⊂ P(Z(M)) is a countable family
of central projections in M such that 1 ∈ Z. Let A = C∗(G ∪ Z) and
B = C∗(Z). There exists a family {ψk}k∈N ⊂ Hom(A,Z(M)) such that
(i) ψk|B = IdB;
(ii) for every 0 ̸= a ∈ A there exists k ∈ N such that ψk(a) ̸= 0;
(iii) p ≤ ∨k∈Nψk(p) for every p ∈ G.

The above proposition can be transformed into a purely topological
one, which we will now show.
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Topological lemma

The lemma below follows from the fact that a continuous mapping of
a compact metrizable space has a Borel inverse mapping.

Fact

Let X be a compact metric space, let Y be a Hausdorff topological space,
and let π : X → Y be a continuous surjective mapping. ∃ Borel set
B ⊂ X such that π is injective on B. In addition, f−1 : Y → B is Borel.

Lemma 5 (Ber-Sukochev-Zanin-Zhao, 2024)

Let X be a totally disconnected compact metrizable space and let Y be a
Hausdorff topological space. Let π : X → Y be a continuous surjective
map. There exists a family of Borel mappings {πk : Y → X}k∈N such that
(i) π ◦ πk = IdY ;
(ii) for every open A ⊂ X, we have A ⊂ ∪k∈N(πk ◦ π)−1(A);
(iii) for every 0 ≤ f ∈ C(X), we have f ≤ supk∈N f ◦ πk ◦ π.
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Construction

Let M be a properly infinite von Neumann algebra. Let α ∈ Mn be a
commuting self-adjoint n-tuple.
For every m ∈ Z+, let Atm be the collection of all cubes[ k1

2m
,
k1 + 1

2m

)
× · · · ×

[ kn
2m

,
kn + 1

2m

)
, (k1, . . . , kn) ∈ Zn.

Set

G = ∪m∈Z+{eα(U) : U ∈ Atm}, Z = {c(p) : p ∈ G}, A = C∗(G∪Z).

Let the sequence {ψk}k∈N ⊂ Hom(A,Z(M)) be given by Proposition 4.
Let {pk}k∈N be a sequence of pairwise orthogonal projections in M such
that pk ∼ 1 for each k ∈ N and such that

∑
k∈N pk = 1. Define the

∗-homomorphism ψ : A → M by the formula

ψ(a) =
∑
k∈N

ψk(a)pk, a ∈ A,
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Completion of the proof of Theorem 1

Theorem 6

Suppose WZ∗(α) ∩ K(M, τ) = {0}. The ∗-homomorphism ψ : A → M
constructed in the previous slide is faithful, and satisfies ψ ∼M IdC∗(α).

Thus, by Theorem 2, ψ ∼E(M) IdC∗(α), namely, for every ε > 0,
there is unitary u ∈ M such that ∥uψ(α)u∗ − α∥E(M) < ε.

It can be proved that there exists a commuting diagonal n-tuple
δ ∈ Mn such that ∥ψ(α)− δ∥E(M) < ε. Hence,

∥α− uδu∗∥E(M) < ε.

Note that uδu∗ is a commuting diagonal n-tuple since u is a unitary. The
proof is complete.
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Extension of Kuroda-Bercovici-Voiculecu’s theorem

Theorem 7 (Ber-Sukochev-Zanin-Zhao, 2024)

Let M be a σ-finite von Neumann algebra with a faithful normal
semifinite trace τ and let n ∈ N. Let (E, ∥ · ∥E) be a symmetric function
space on (0,∞). If E ∩ L∞ ̸⊂ Ln,1, then for every commuting self-adjoint
n-tuple α ∈ (Aff(M))n and every ε > 0, there exists a commuting
diagonal n-tuple δ ∈ (Aff(M))n such that

α− δ ∈ (E0(M) ∩M)n, ∥α− δ∥(E∩L∞)(M) < ε.
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A few words for the proof of Theorem 7

Consider the special case when E is a Lorentz space Λψ.
Let ψ be an increasing concave function on [0,∞) such that

ψ(0) = 0. The Lorentz space Λψ is
Λψ = {f ∈ S(0,∞) :

∫
µ(t; f)dψ(t) <∞}.

Lemma 8

Let n ∈ N and let ψ be an increasing concave function on [0,∞) such that
ψ(0) = 0. The following conditions are equivalent.

(1) Λψ ∩L∞ ̸⊂ Ln,1; (2) lim inft→∞
ψ(t)

t
1
n

= 0; (3) lim infm→∞
ψ(2mn)

2m = 0.

The key point is to construct a sequence of τ -finite projections
{pm}m∈N in M such that

∥[α(j), pm]∥Λψ(M) ≤ C
ψ(2mn)

2m
→ 0, (m→ ∞),

or equivalently, kΛψ(M)(α) = 0. Then Theorem 1 yields the proof for this
case.
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Pass from Λψ to E

We have proved Kuroda’s theorem for Lorentz spaces Λψ.
To prove it for general symmetric function spaces E on (0,∞) with

E ∩ L∞ ̸⊂ Ln,1, suppose that there is a commuting self-adjoint n-tuple
α ∈ Mn such that Theorem 7 does not hold. By Theorem 1,

kE(M)(α) > 0. (2)

It can be proved that, there exists an increasing concave function ψ on
(0,∞) such that E ⊂ Λψ, ψ(0+) = 0 and

kΛψ(α) > 0.

Then Λψ ∩ L∞ ⊂ Ln,1. In particular, E ∩ L∞ ⊂ Ln,1, which is a
contradiction. This proves Theorem 7.

(To find the mentioned ψ: (2) provides us with a convex subset in
(E(M))n that does not intersect the open unit ball in (E(M))n, the we
use Hahn-Banach separation theorem and consider the Köthe dual of E.)
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The case not covered by Kuroda’s theorem, i.e. E = L1

Let a be a self-adjoint operator on H. Let ea be the spectral measure
of a. There exists a complex measure µ on R such that ea(A) = 0 iff
µ(A) = 0 for any Borel sets A ⊂ R. Let µ = µac + µs be the
Radon-Nikodym decomposition of µ with respect to the Lebesgue measure.
The projection Pac(a) = ea(supp(µac)) (resp. Ps(a) = ea(supp(µs))) is
called the absolutely continuous part (resp. singular part) of a.

Theorem (Kato-Rosenblum, 1957)

If a, b are self-adjoint operators on H such that a− b ∈ L1(B(H)), then
the following limits exist in the strong operator topology
W± = limt→±∞ eitbe−itaPac(a).
As a result, the absolutely continuous parts of a and b are unitarily
equivalent, i.e. W ∗

±W± = Pac(a),W±W
∗
± = Pac(b).

Corollary: A self-adjoint operator a is diagonal modulo L1(B(H)) if
and only if Pac(a) = 0.
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The case not covered by Bercovici-Voiculescu’s theorem,
i.e. E = Ln,1

Theorem (Voiculescu, 1979)

Let n ∈ N. We have
(kLn,1(B(H))(α))

n = γn
∫
Rnm(s)dλ(s)

where 0 < γn <∞ is a constant independent of α, m is the multiplicity
function of the absolutely continuous part of α. For n = 1 we have
γ1 =

1
π . In particular, if αac ̸= 0, then kLn,1(B(H))(α) ̸= 0.

Theorem (Voiculescu, 1981)

Suppose n ≥ 2. Let α, β ∈ (B(H))n be commuting self-adjoint n-tuple. If
β(j)− α(j) ∈ Ln,1(B(H)) for all 1 ≤ j ≤ n, then αac = u∗βacu for some
unitary u.

Corollary

α is diagonal modulo Ln,1(B(H)) if and only if αac = 0.
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Kato-Rosenblem theorem in semifinite setting

Theorem (Li-Shen-Shi-Wang, 2018)

If A,B are densely-defined self-adjoint operators affiliated with M such
that A−B ∈ M∩ L1(M, τ), then
W := s.o.t.- limt→∞ eitBe−itAP∞

ac (A) exists in M.
Moreover, W ∗W = P∞

ac (A), and WW ∗ = P∞
ac (B).

Here the definition of P∞
ac (·) is an adaptation of the notion of

absolutely continuous part in the von Neumann algebras setting, which
equals to Pac(·) when M = B(H).
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