Analytic subalgebras of weighted Fourier algebras and complexification of Lie groups

Heon Lee (李宪)

Seoul National University

April 17, 2024

Heon Lee (李宪) (SNU)

Analytic subalgebras

April 17, 2024

Table of Contents

Basic notions

2 Motivation

3 The spectra of weighted Fourier algebras

4 Technical details

5 Generalization to compact quantum groups

2/37

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Fourier algebra of a Lie group

- G: a Lie group with a fixed left Haar measure
- $(L^2(G), \langle \cdot, \cdot \rangle)$: the L^2 -Hilbert space
- $\lambda: G \to \mathcal{B}(L^2(G))$: the left regular representation

$$(\lambda(s)f)(t) = f(s^{-1}t), \quad s, t \in G$$

Definition (Fourier algebra)

The Fourier algebra of G is defined as

$$A(G) := \left\{ \left\langle f, \lambda(\cdot)g \right\rangle : f, g \in L^2(G) \right\} \subseteq C_0(G).$$

- A(G) is a subalgebra of $C_0(G)$ w.r.t. the pointwise operations.
- It beomces a Banach algebra with the norm

$$\|u\|_{\mathcal{A}(G)} = \inf \left\{ \|f\|_2 \cdot \|g\|_2 : u = \langle f, \lambda(\cdot)g \rangle \right\}, \quad u \in \mathcal{A}(G).$$

The spectrum of A(G)

• The spectrum of an algebra A is defined as

 $\mathsf{Spec} \mathbf{A} = \Big\{ 0 \neq \chi : \mathbf{A} \to \mathbb{C} \ \Big| \ \chi \text{ is an algebra homomorphism} \Big\}.$

• Each point $s \in G$ gives rise to an algebra homomorphism

$$\operatorname{ev}_{s}: A(G) \ni u \longmapsto u(s) \in \mathbb{C}.$$

Theorem (Eymard '1964)

When SpecA(G) is endowed with the weak-* topology, the following map is a homeomorphism.

$$G
i s \mapsto \mathsf{ev}_s \in \mathsf{Spec}\mathcal{A}(G)$$

4/37

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

Basic notions

2 Motivation

3 The spectra of weighted Fourier algebras

4 Technical details

5 Generalization to compact quantum groups

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation

- If A is a topological algebra and A ⊆ A is a dense subalgebra, A tends to have more "information" than A itself.
- (Example) M: a compact smooth manifold $A := C(M) \rightsquigarrow$ Topology of M $\mathcal{A} := C^{\infty}(M) \rightsquigarrow$ Topology + Smooth structure of M

Motivation

A(G) has the information about the topology of G (Eymard's duality).

Q. Can we find some dense subalgebras of A(G) which have more "information" about G than A(G) itself?

Heon Lee ((李宪)((SNU)
------------	-------	-------

The compact case

- G: comapct Lie group
- The space of matrix coefficients of G is

$$\mathsf{Pol}(G) := \Big\{ \big\langle v, \pi(\ \cdot \) w \big\rangle \ \Big| \ G \xrightarrow{\pi} GL(V) \text{ f.dim'l repn and } v, w \in V \Big\}.$$

- By the Peter-Weyl theorem, Pol(G) is a dense subalgebra of A(G).
- The spectrum of Pol(G)?

Complexification of a compact connected Lie group

• G: a compact connected Lie group with Lie algebra \mathfrak{g} .

Theorem (Chevalley)

There exsits an embedding $G \hookrightarrow G_{\mathbb{C}}$ into a (unique) **complex Lie group** $G_{\mathbb{C}}$ such that:

for any Lie group homomorphism $\pi: G \to H$ into a *complex* Lie group H, there exsits a unique **holomorphic homomorphism** $\tilde{\pi}: G_{\mathbb{C}} \to H$ s.t.

- The Lie algebra of $G_{\mathbb{C}}$ is given by $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \otimes \mathbb{C}$.
- The following map is a diffeomorphism (Cartan Decomposition):

$$G \times \mathfrak{g} \ni (s, X) \longmapsto s \exp_{G_{\mathbb{C}}}(iX) \in G_{\mathbb{C}}$$

The spectrum of Pol(G)

- Let $u := \langle v, \pi(\cdot) w \rangle \in \mathsf{Pol}(G)$ with $\pi : G \to GL(n, \mathbb{C})$ a f.dim'l repn.
- By the universal property,

- The map $\tilde{u}: G_{\mathbb{C}} \ni z \longmapsto \langle v, \tilde{\pi}(z)w \rangle \in \mathbb{C}$ is an extension of u.
- Every point $z \in G_{\mathbb{C}}$ gives rise to an algebra homomorphism

$$\operatorname{ev}_{z}:\operatorname{Pol}(G)
i u\longmapsto \tilde{u}(z)\in\mathbb{C}.$$

Theorem

$$\operatorname{Spec}(\operatorname{Pol}(G)) = {\operatorname{ev}_z : z \in G_{\mathbb{C}}} \cong G_{\mathbb{C}}$$

Heon Lee (李宪) (SNU)

Remarks

- So, the dense subalgebra Pol(G) ⊆ A(G) indeed has more
 "information" than A(G) itself, namely the complexification of the group.
- However, if G is noncompact, then Pol(G) isn't that useful.
 (For example, it is not dense in A(G).)

3 × < 3 ×

Motivation made precise

Let *G* be a noncompact Lie group. We seek to find other **dense subalgebras** of the Fourier algebra whose **spectra** can reveal the structure of the **complexification** of the group.

Complexification of Lie group

• G: connected Lie group with Lie algebra \mathfrak{g}

Definition (Complexification)

A complex Lie group $G_{\mathbb{C}}$ is called a **complexification** of G if

$$\bullet \quad G \subseteq G_{\mathbb{C}}$$

2 The Lie algebra of $G_{\mathbb{C}}$ is $\mathfrak{g}_{\mathbb{C}} := \mathfrak{g} \otimes \mathbb{C}$

S is the connected subgroup of G_ℂ corresponding to the subalgebra $\mathfrak{g} \leq \mathfrak{g}_{ℂ}$

• (Example)

$$\mathbb{T}_{\mathbb{C}} = \mathbb{C}^{\times}, \ SU(2)_{\mathbb{C}} = SL(2,\mathbb{C}), \ \mathbb{R}_{\mathbb{C}} = \mathbb{C}, \ SL(2,\mathbb{R})_{\mathbb{C}} = SL(2,\mathbb{C})$$

Not every connected Lie group possesses a complexification.
 (e.g., the double cover of SL(2, ℝ))

Table of Contents

Basic notions

2 Motivation

3 The spectra of weighted Fourier algebras

4 Technical details

5 Generalization to compact quantum groups

∃ ► < ∃ ►</p>

Image: A matrix and a matrix

Weighted Fourier algebras (Giselsson/Turowska '22)

- W is called a weight of the Lie group G if
 - W is a positive (unbounded) operator on $L^2(G)$
 - 2 *W* is invertible and $W^{-1} \in VN(G)_+$

$$W^{-2} \otimes W^{-2} \leq \Gamma(W^{-2})$$

where Γ is the comultiplication $\Gamma : VN(G) \rightarrow VN(G) \overline{\otimes} VN(G)$.

Definition (Weighted Fourier algebras)

The weighted Fourier algebra with weight W is defined as

$$\mathcal{A}(\mathcal{G},\mathcal{W}):=\left\{\left\langle f,\lambda(\ \cdot\)\mathbf{g}\right\rangle:f\in L^2(\mathcal{G}),\ \mathbf{g}\in\mathcal{D}(\mathcal{W})\right\}\subseteq\mathcal{A}(\mathcal{G}).$$

- A(G, W) is a dense subalgebra of A(G).
- It is a Banach algebra with the norm

$$\left\|\left\langle f,\lambda(\ \cdot\)g\right\rangle\right\|_{\mathcal{A}(G,\mathcal{W})}:=\left\|\left\langle f,\lambda(\ \cdot\)\mathcal{W}g\right\rangle\right\|_{\mathcal{A}(G)}$$

14/37

・ 同 ト ・ ヨ ト ・ ヨ ト …

The spectrum of A(G, W): the compact case

Ludwig/Spronk/Turowska '12

- G: compact connected Lie group
- For any weight W of G, the following *dense* inclusions hold.

 $\mathsf{Pol}(\mathit{G})\subseteq \mathit{A}(\mathit{G},\mathit{W})\subseteq \mathit{A}(\mathit{G})$

• Hence, for any weight W,

$$G \cong \operatorname{Spec} A(G) \subseteq \operatorname{Spec} A(G, W) \subseteq \operatorname{SpecPol}(G) \cong G_{\mathbb{C}}.$$

• $G_{\mathbb{C}}$ is covered by the spectra of weighted Fourier algebras. I.e.,

$$G_{\mathbb{C}} = \bigcup_{W} \operatorname{Spec} A(G, W).$$

15/37

- 4 回 ト 4 三 ト - 4 三 ト - -

The spectrum of A(G, W): a few noncompact cases

Ghandehari/Lee/Ludwig/Spronk/Turowska, '22

- $G = \mathbb{H}^3, \mathbb{H}^3_r, \mathcal{E}(2), \text{ or } \tilde{\mathcal{E}}(2)$
- $\exists A \subseteq A(G)$ a dense subalgebra s.t.
 - **①** Every $u \in \mathcal{A}$ admits a holomorphic extension to $G_{\mathbb{C}}$.
 - 2 The following correspondence is a bijection.

$$G_{\mathbb{C}} \ni z \longmapsto ev_z \in Spec\mathcal{A}$$

③ For some weights W, the *dense* inclusions $A \subseteq A(G, W) \subseteq A(G)$ hold.

- Thus, $G \cong \operatorname{Spec} A(G) \subseteq \operatorname{Spec} A(G, W) \subseteq \operatorname{Spec} A \cong G_{\mathbb{C}}$.
- $G_{\mathbb{C}}$ is covered by the spectra of weighted Fourier algebras. I.e.,

$$G_{\mathbb{C}} = \bigcup_{W} \operatorname{Spec} A(G, W).$$

A limitation

- The definition of A in this work was highly dependent on the representation theory of each group.
- As a result, it could not be generalized to more general class of Lie groups.

The spectrum of A(G, W): general case

$L./Lee,\ `24$

- G: any connected Lie group which has a complexification $G_{\mathbb{C}}$
- We constructed a family of subalgebras A_r ⊆ A(G) (0 < r ≤ ∞), called analytic subalgebras with the following properties:

There exists $0 < R \le \infty$ such that for all $0 < r \le R$,

- Solution Every $u \in A_r$ admits a holomorphic extension to a neighborhood G_r in $G_{\mathbb{C}}$ containing G.
- 2 The following correspondence is an injection.

$$G_r \ni z \longmapsto ev_z \in Spec \mathcal{A}_r$$

So For a class of weights W depending on r, the following dense inclusions hold.

$$\mathcal{A}_r \subseteq \mathcal{A}(\mathcal{G}, \mathcal{W}) \subseteq \mathcal{A}(\mathcal{G})$$

The spectrum of A(G, W): general case

L./Lee, '24

• For this class of weights W,

$$\mathsf{Spec}\mathcal{A}(\mathcal{G},\mathcal{W})\subseteq \mathcal{G}_r\subseteq\mathsf{Spec}\mathcal{A}_r.$$

•
$$G_r = \bigcup_W^! \operatorname{Spec} A(G, W).$$

• If G is simply-connected nilpotent, we can choose $R = \infty$ and thus

$$G_{\mathbb{C}} = \bigcup_{r>0} G_r = \bigcup_{W}^! \operatorname{Spec} A(G, W).$$

э

19/37

イロト 不得 トイヨト イヨト

Table of Contents

Basic notions

2 Motivation

3 The spectra of weighted Fourier algebras

4 Technical details

5 Generalization to compact quantum groups

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation

• When G is compact, each $u = \langle v, \pi(\ \cdot\)w \rangle \in {\rm Pol}(G)$ admits a holomorphic extension

$$\mathcal{G}_{\mathbb{C}} \ni \mathfrak{s} \exp_{\mathcal{G}}(iX) \longmapsto \left\langle v, \tilde{\pi}(\mathfrak{s} \exp_{\mathcal{G}}(iX)) w \right\rangle = \left\langle v, \pi(\mathfrak{s}) e^{i\pi_* X} w \right\rangle \in \mathbb{C}.$$

• Is there a subalgebra $\mathcal{A} \subseteq \mathcal{A}(G)$ consisting of $u = \langle f, \lambda(\cdot)g \rangle \in \mathcal{A}(G)$ s.t. the following expression makes sense?

$$G imes \mathfrak{g} \ni (s, X) \longmapsto \left\langle f, \lambda(s) e^{i \partial \lambda(X)} g \right\rangle \in \mathbb{C}$$

Here, $\partial \lambda(X)$ is **the infinitesimal generator** of the one-parameter group of unitaries $\mathbb{R} \ni t \mapsto \lambda(\exp_{\mathcal{G}}(tX)) \in U(L^2(\mathcal{G}))$. E.g.,

$$\Big(\partial\lambda(X)g\Big)(s) = \left.\frac{d}{dt}\right|_{t=0} g\Big(\exp_G(-tX)s\Big), \quad g\in C^\infty_c(G)\subseteq L^2(G).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G: connected Lie group which has a complexification G_C
For 0 < r ≤ ∞, define

$$\mathcal{H}^{\boldsymbol{a}}_{\boldsymbol{r}} := \left\{ \boldsymbol{g} \in \mathcal{L}^2(\boldsymbol{G}) : \mathcal{E}_{\boldsymbol{s}}(\boldsymbol{g}) < \infty, \ 0 <^{orall} \boldsymbol{s} < \boldsymbol{r}
ight\}$$

where $E_s : L^2(G) \to [0,\infty]$ is defined as, for $g \in L^2(G)$,

$$E_{s}(g) := \sum_{n=0}^{\infty} \frac{s^{n}}{n!} \left(\sum_{1 \leq j_{1}, \cdots, j_{n} \leq d} \|\partial \lambda(X_{j_{1}}) \cdots \partial \lambda(X_{j_{n}})g\|_{2}^{2} \right)^{\frac{1}{2}}$$

• There exists $0 < R \le \infty$ such that \mathcal{H}_r^a is dense in $L^2(G)$ for all $0 < r \le R$ (Nelson, 1959).

Heon Lee (李宪) (SNU)

April 17, 2024

• Let \mathfrak{g} be the Lie algebra of G with a basis $\{X_1, \cdots, X_d\}$. Define a norm $|\cdot| : \mathfrak{g} \to [0, \infty)$ by

$$\left|a_1X_1+\cdots+a_dX_d\right| = \left(\sum_{j=1}^d a_j^2\right)^{\frac{1}{2}}, \ a_j \in \mathbb{R}$$

and denote
$$\mathfrak{g}_r := \{X \in \mathfrak{g} : |X| < r\}.$$

Proposition

For each $f \in \mathcal{H}_r^a$, the map

$$\mathfrak{g}_r \ni X \longmapsto e^{i\partial\lambda(X)} f \in L^2(G)$$

is well-defined.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Definition (Analytic subalgebras)

Fix $0 < r \leq \infty$. Let

$$\mathcal{A}'_r := \left\{ \left\langle f, \lambda(\ \cdot\) g \right\rangle : f \in L^2(G), \ g \in \mathcal{H}^a_r
ight\} \subseteq \mathcal{A}(G).$$

Its completion, denoted as A_r , w.r.t. a certain locally convex topology becomes a subalgebra of A(G), called the **analytic subalgebra of** A(G) with radius r.

• Each element $u = \langle f, \lambda(\cdot)g \rangle \in \mathcal{A}'_r$ with $g \in \mathcal{H}^a_r$ admits an extension

$$G imes \mathfrak{g}_r \ni (s, X) \longmapsto \left\langle f, \lambda(s) e^{i\partial\lambda(X)} g \right\rangle \in \mathbb{C}.$$

* Why completion? For all $f, f' \in L^2(G)$ and $g, g' \in \mathcal{H}_r^a$,

$$\langle f, \lambda(\cdot)g \rangle \langle f', \lambda(\cdot)g' \rangle = \int_{G} \langle F_t, \lambda(\cdot)G_t \rangle dt$$

where $F_t(\cdot) = f(\cdot t)f'(\cdot) \in L^2(G), \ G_t(\cdot) = g(\cdot,t)g'(\cdot) \in \mathcal{H}^a_{\mathbb{F}^*}$

The spectrum of A_r : holomorphic evaluations

L./Lee '24

There exists $0 < R \le \infty$ such that for all $0 < r \le R$,

• The following subset is a neighborhood of G in $G_{\mathbb{C}}$.

$$G_r := \left\{ s \exp_{G_{\mathbb{C}}}(iX) \in G_{\mathbb{C}} : s \in G, \ X \in \mathfrak{g}_r \right\}$$

• $u = \langle f, \lambda(\cdot)g \rangle \in \mathcal{A}'_r$ with $g \in \mathcal{H}^a_r$ admits a (unique) holomorhpic extension to G_r given by

$$\tilde{u}: G_r \ni s \exp_{G_{\mathbb{C}}}(iX) \longmapsto \langle f, \lambda(s) e^{i\partial\lambda(X)}g \rangle \in \mathbb{C}.$$

• Each element of A_r admits a (unique) holomorphic extension to G_r .

• Thus, each element $z \in G_r$ gives rise to a homomorphism $ev_z : A_r \ni u \mapsto \tilde{u}(z) \in \mathbb{C}$ and we get an embedding

$$G_r \ni z \longmapsto \operatorname{ev}_z \in \operatorname{Spec} \mathcal{A}_r.$$

The spectra of some weighted Fourier algebras

L./Lee '24

- For each $X \in \mathfrak{g}$, the operator $e^{|\partial\lambda(X)|}$ is a weight of G.
- For all $0 < r \le R$,

$$\mathcal{A}_r \subseteq A(G, e^{|\partial\lambda(X)|})$$

densely for all $X \in \mathfrak{g}_r$.

• Hence, for all $X \in \mathfrak{g}_r$, we get an embedding provided by the restriction map

$$\operatorname{Spec} A(G, e^{|\partial \lambda(X)|}) \hookrightarrow \operatorname{Spec} A_r.$$

The spectra of some weighted Forier algebras

L./Lee '24

In this identification,

$$\mathsf{Spec}A(G, e^{|\partial\lambda(X)|}) \cong \{s \exp_{G_{\mathbb{C}}}(itX) : s \in G, \ -1 \le t \le 1\}$$

 $\subseteq G_r \subseteq \mathsf{Spec}A_r$

for all $X \in \mathfrak{g}_r$.

Hence,

$$G_r = igcup_{X\in \mathfrak{g}_r} \operatorname{Spec} A igl(G, e^{|\partial\lambda(X)|} igr).$$

• If G is simply-connected nilpotent, we can choose $R=\infty$ and thus

$$G_{\mathbb{C}} = igcup_{X\in\mathfrak{g}} {
m Spec} Aigl(G, e^{|\partial\lambda(X)|}igr).$$

27 / 37

< □ > < □ > < □ > < □ > < □ > < □ >

Restrictions on R

- Here, I collect some issues that impose restrictions on the choice of $0 < R \le \infty$ such that the above statements hold.
 - \mathcal{H}_R^a must be dense in $L^2(G)$.
 - 2 The following map is a diffeomorphism.

$$G \times \mathfrak{g}_R \ni (s, X) \longmapsto s \exp_{G_{\mathbb{C}}}(iY) \in G_R$$

3 There exists a neighborhood $0 \in U \subseteq \mathfrak{g}$ such that for all $X \in U$ and $Y \in \mathfrak{g}_R$,

$$\exp_{G_{\mathbb{C}}}(X)\exp_{G_{\mathbb{C}}}(iY) = \exp_{G_{\mathbb{C}}}\left(\Phi(X, iY)\right)$$

holds where $\Phi: U \times i\mathfrak{g}_R \to \mathfrak{g}_{\mathbb{C}}$ is given by the Baker-Campbell-Hausdorff formula.

• If G is simply-connected nilpotent, all these conditions are satisfied for $R = \infty$.

28/37

(日本) (日本) (日本)

Table of Contents

Basic notions

2 Motivation

3 The spectra of weighted Fourier algebras

4 Technical details

5 Generalization to compact quantum groups

29/37

ヨト・イヨト

Image: A matrix and a matrix

Generalization to compact quantum groups

- $C(\mathbb{G})$: compact quantum group.
- $\bullet\,$ The Fourier algebra of $\mathbb G$ is defined as

$$\mathcal{A}(\mathbb{G}) := \left\{ \mathsf{VN}(\mathbb{G}) \ni \mathsf{T} \mapsto \langle \xi, \mathsf{T}\eta \rangle \ \Big| \ \xi, \eta \in L^2(\mathbb{G}) \right\} = \mathsf{VN}(\mathbb{G})_*.$$

• The definition of weight carries over to the quantum case. So,

$$A(\mathbb{G}, W) := \Big\{ \langle \xi, (\cdot)\eta \rangle \Big| \xi \in L^2(\mathbb{G}), \ \eta \in \mathcal{D}(W) \Big\}.$$

• The following is the matrix coefficients algebra:

$$\mathsf{Pol}(\mathbb{G}) := \left\{ \langle v, \pi(\cdot)w \rangle \middle| G \xrightarrow{\pi} GL(V) \text{ f. dim'l repn and } v, w \in V \right\}$$

• For any weight W of \mathbb{G} , the following *dense* inclusions hold.

$$\mathsf{Pol}(\mathbb{G}) \subseteq A(\mathbb{G}, W) \subseteq A(\mathbb{G})$$

Generalization to compact quantum groups

• Hence, for any weight W of \mathbb{G} ,

```
\mathbb{G} \cong \mathsf{Spec}\mathcal{A}(\mathbb{G}) \subseteq \mathsf{Spec}\mathcal{A}(\mathbb{G}, W) \subseteq \mathsf{SpecPol}(\mathbb{G}) \cong \mathbb{G}_{\mathbb{C}}.
```

And

$$\mathbb{G}_{\mathbb{C}} = \bigcup_{W} \mathsf{SpecA}(\mathbb{G}, W).$$

Problems

- $A(\mathbb{G})$ being noncommutative, Spec $A(\mathbb{G})$ doesn't give us useful information about the quantum group \mathbb{G} .
- What would be "the complexification of G"?

31/37

The case $SU_q(2)$

• $\mathit{C}(\mathit{SU}_q(2))$ is the universal $\mathit{C}^*\text{-algebra}$ generated by the generators α,γ and the relations

$$egin{pmatrix} lpha & -m{q}\gamma^* \ \gamma & lpha^* \end{pmatrix} \in M_2ig(\mathcal{C}(\mathcal{SU}_{m{q}}(2))ig)$$
 is a unitary matrix.

 $\bullet\,$ The "quantum double" of ${\it SU}_{\it q}(2),$ which, as a ${\it C}^*\mbox{-algebra, is}$

$$C_0(SL_q(2,\mathbb{C})) := C(SU_q(2)) \otimes c_0(\widehat{SU_q(2)}).$$

It was introduced in [Podleś & Woronowicz '1990] and is widely considered as "the complexification of $SU_q(2)$ ".

• Can we recover the following set from $A(SU_q(2), W)$ for some classes of weights W?

$$\begin{split} \mathsf{sp} \, \mathcal{C}_0(\mathcal{SL}_q(2,\mathbb{C})) \\ &:= \{ [\pi] : \, \mathcal{C}_0(\mathcal{SL}_q(2,\mathbb{C})) \xrightarrow{\pi} \mathcal{B}(\mathcal{H}) \text{ is an irreducible } *\text{-repn} \} \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The case $SU_q(2)$

The set

$$\begin{split} \mathcal{C}(\mathit{SL}_q(2,\mathbb{C})) \\ &:= \{ \mathsf{The} \text{ ``unbounded elements affiliated to } \mathcal{C}_0(\mathit{SL}_q(2,\mathbb{C})) \} \end{split}$$

is a *-algebra that contains $C_0(SL_q(2,\mathbb{C}))$ as a *-subalgebra.

• There is an algebra embedding

$$i: \mathsf{Pol}(SU_q(2)) \hookrightarrow C(SL_q(2,\mathbb{C})).$$

• Every $\pi \in spC_0(SL_q(2,\mathbb{C}))$ extends to a *-representation $\tilde{\pi} : C(SL_q(2,\mathbb{C})) \to \mathcal{B}(\mathcal{H}_{\pi})$, inducing an algebra representation

$$\varphi_{\pi} : \mathsf{Pol}(SU_q(2)) \xrightarrow{i} C(SL_q(2,\mathbb{C})) \xrightarrow{\tilde{\pi}} \mathcal{B}(\mathcal{H}_{\pi}).$$

医静脉 医原体 医原体 医原

The case $SU_q(2)$

• Fix a weight W on $SU_q(2)$. We say that $\pi \in spC_0(SL_q(2,\mathbb{C}))$ is *W*-extendible if

such that $\tilde{\varphi}_{\pi}$ is completely-bounded.

Franz/Lee '21

For any weight W on $SU_q(2)$,

 $\mathsf{sp}\mathit{C}(\mathit{SU}_{\mathit{q}}(2)) \subseteq \{\pi \in \mathsf{sp}\mathit{C}_0(\mathit{SL}_{\mathit{q}}(2,\mathbb{C})) : \pi \; \mathit{W}\text{-extendible}\} \subseteq \mathsf{sp}\mathit{C}_0(\mathit{SL}_{\mathit{q}}(2,\mathbb{C}))$

and

$${\rm sp}\,{\cal C}_0({\it SL}_q(2,\mathbb{C}))=\bigcup_W\{\pi\in {\rm sp}\,{\cal C}_0({\it SL}_q(2,\mathbb{C})):\pi\; {\it W}\text{-extendible}\}.$$

Heon Lee (李宪) (SNU)

The general case

- Let K be a compact semisimple Lie group and G its complexification.
- One can analogously define the compact quantum group $C(K_q)$ and its "complexification" $C_0(G_q)$.
- There is an algebra embedding $i : Pol(K_q) \to C(G_q)$ and every $\pi \in spC_0(G_q)$ extends to $C(G_q)$, inducing an algebra representation

$$\varphi_{\pi}: \operatorname{Pol}(K_q) \xrightarrow{i} C(G_q) \xrightarrow{\tilde{\pi}} \mathcal{B}(\mathcal{H}_{\pi}).$$

The general case

• Fix a weight W on K_q . We say that $\pi \in \operatorname{sp} C_0(G_q)$ is W-extendible if

such that $\tilde{\varphi}_{\pi}$ is completely-bounded.

L./Voigt '24

For any weight W on K_q ,

 $\mathsf{sp}\mathit{C}(\mathit{K_q}) \subseteq \{\pi \in \mathsf{sp}\mathit{C}_0(\mathit{G_q}): \pi \; \mathit{W}\text{-extendible}\} \subseteq \mathsf{sp}\mathit{C}_0(\mathit{G_q})$

and

$$\operatorname{sp} C_0(G_q) = \bigcup_W \{ \pi \in \operatorname{sp} C_0(G_q) : \pi \ W ext{-extendible} \}.$$

Heon Lee (李宪) (SNU)

Thank you for your attention

э

イロト イポト イヨト イヨト