Perturbation theory of commuting self-adjoint operators and related topics. Part I

Hongyin Zhao (joint work with Alexei Ber, Fedor Sukochev, Dmitriy Zanin)

School of Mathematics and Statistics of UNSW

March, 2023

ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ . ㅌ . 쒼٩♡.

Preliminaries

- \mathcal{H} : separable Hilbert space, $\dim \mathcal{H} = \infty$.
- $T:\mathcal{H} \to \mathcal{H}$ linear operator. $\|T\| = \sup_{\|x\| \le 1} \|Tx\|$, operator norm. T is bounded if and only if $\|T\| < \infty$. $B(\mathcal{H})$: the set of bounded operators on \mathcal{H} .
- For $T \in B(\mathcal{H})$, its adjoint $T^* \in B(\mathcal{H})$ is defined by

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$

$$B(\mathcal{H})_{sa} := \{ T \in B(\mathcal{H}), T = T^* \}.$$

• Spectrum of T, $\sigma(T) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - T \text{ is not invertible}\}$. For $A \in B(\mathcal{H})_{sa}$, $\sigma(A) \subset \mathbb{R}$.

Example

$$\mathcal{H} = L^2([a,b]), Af(x) = xf(x),$$

 $A \in B(\mathcal{H})_{sa} \text{ and } \sigma(A) = [a,b].$

Example

$$\mathcal{H} = \ell_2 = \{(x_n)_{n \geq 1} : \sum_{n \geq 1} |x_n|^2 < \infty\},\ (b_n)_{n \geq 1}$$
 a bounded real sequence, $B(x_n) = (b_n x_n), \ B \in B(\mathcal{H})_{sa}, \ \sigma(B) = \overline{(b_n)_{n \geq 1}}.$

• $T \in B(\mathcal{H})$ is diagonal $\stackrel{\text{def}}{\Leftrightarrow} \exists \{e_n\}_{\geq 1}$ C.O.N.S of \mathcal{H} s.t. $Te_n = \lambda_n e_n$. B is diagonal, but A is not diagonal.

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥♀♡

3/21

- $\mathcal{K}(\mathcal{H}) :=$ the set of compact operators of \mathcal{H} = $\{T \in B(\mathcal{H}) : \{Tx : ||x|| \le 1\}$ is relatively compact $\}$.
- For $T \in B(\mathcal{H})$, $\|T\|_2 := \operatorname{Tr}(T^*T)^{1/2} \in [0, \infty]$, $\mathcal{C}_2 := \{T \in B(\mathcal{H}) : \|T\|_2 < \infty\} \subset \mathcal{K}(\mathcal{H})$. Hilbert-Schmidt class.

Theorem (Weyl-von Neumann, 1909, 1935)

$$\forall A \in B(\mathcal{H})_{sa}, \forall \varepsilon > 0, \exists K \in \mathcal{C}_2 \cap B(\mathcal{H})_{sa} \text{ s.t.}$$

$$B = A + K$$
 is diagonal and $||K||_2 < \varepsilon$.

□ ト 4 個 ト 4 差 ト 4 差 ト 差 り 9 0 0 0

Spectral theorem and Lebesgue decomposition

• Every $A \in B(\mathcal{H})_{sa}$ is unitarily equivalent to

$$(\mathcal{H}, A) \simeq \bigoplus_i (L^2(\sigma(A), \mu_i), M_i)$$

$$M_i h(x) = x h(x)$$
 for $h \in L^2(\sigma(A), \mu_i)$.

- For $f:\sigma(A)\to\mathbb{C}$ bounded Borel function, define $f(A)=\oplus_i M_f|L^2(\sigma(A),\mu_i)$ where M_f is the multiplication operator by f.
- Lebesgue decomposition

$$\begin{split} &\mu_i = \mu_{i,a} + \mu_{i,s}. \\ &\mu_{i,a} \text{ absolutely continuous w.r.t. dx, i.e. } d\mu_{i,a} = \frac{d\mu_{i,a}}{dx} dx. \\ &\mu_{i,s} \text{ singular w.r.t. dx} \\ &L^2(\sigma(A), \mu_i) = L^2(\sigma(A), \mu_{i,a}) \oplus L^2(\sigma(A), \mu_{i,s}) \\ &(\mathcal{H}, A) = (\mathcal{H}_{ac}, A_{ac}) \oplus (\mathcal{H}_s, A_s) \end{split}$$

4□ > 4□ > 4□ > 4 = > 4 = > = 90

• $C_1 := \{T \in B(\mathcal{H}) : \operatorname{Tr}(|T|) < \infty\}$ trace class, here $|T| = \sqrt{T^*T}$. $C_1 \subsetneq C_2 \subsetneq \mathcal{K}(\mathcal{H})$

Theorem (Kato-Rosenblum, 1957)

$$A, B \in B(\mathcal{H})_{sa}, A - B \in \mathcal{C}_1 \Rightarrow A_{ac}$$
 and B_{ac} are unitarily equivalent.

Hongyin Zhao (UNSW) March, 2023 6/21

Normed ideals

- $T \in K(\mathcal{H})$. $\{\mu_k(T)\}_{k=1}^{\infty} :=$ the singular values of T, i.e. the eigenvalues of |T| in decreasing order.
- $\widehat{c} := \{(a_k)_{k=1}^{\infty} : a_k = 0 \text{ for large } k\}.$ A norm $\Phi : \widehat{c} \to [0, \infty)$ is symmetric $\stackrel{\text{def}}{\Leftrightarrow} \Phi(a) = \Phi(a^*), (a_k^*)_{k=1}^{\infty}$ is the decreasing rearrangement of $(|a_k|)_{k=1}^{\infty}.$

4 D > 4 B > 4 B > 4 B > 9 Q P

7 / 21

Normed ideals

Example

Schatten-von Neumann classes.

$$1 \le p < \infty, \ \Phi_p(a) = (\sum_{k \ge 1} |a_n|^p)^{\frac{1}{p}}.$$

$$||T||_p := ||T||_{\Phi_p} = (\text{Tr}(|T|^p))^{\frac{1}{p}}.$$

$$C_p := S_{\Phi_p} = \{ T \in K(\mathcal{H}) : ||T||_p < \infty \} \subset K(\mathcal{H}).$$

$$p_1 < p_2 \Rightarrow \mathcal{C}_{p_1} \subsetneq \mathcal{C}_{p_2}.$$

Example

(p, 1)-Lorentz ideals.

$$1 \le p \le \infty, \ \Phi_{p,1}(a) = \sum_{k=1}^{\infty} \frac{a_k^*}{1 - \frac{1}{2}}.$$

$$||T||_{p,1} := ||T||_{\Phi_{p,1}}.$$

$$\mathcal{C}_{p,1} := \{ T \in K(\mathcal{H}) : ||T||_{p,1} < \infty \}$$

$$\bigcup_{r < p} \mathcal{C}_r \subsetneq \mathcal{C}_{p,1} \subsetneq \mathcal{C}_p, \mathcal{C}_{1,1} = \mathcal{C}_1.$$

The trace class \mathcal{C}_1 is the smallest normed ideal.

8 / 21

Theorem (Kuroda '58)

If a symmetric Φ is not equivalent to $\|\cdot\|_1$, the Weyl-von Neumann theorem holds w.r.t. $S_{\Phi}^{(0)}$.

What happens in the case of normal operators?

T is normal $\stackrel{\mathrm{def}}{\Leftrightarrow} T^*T = TT^*$

 $\Leftrightarrow T = A + iB, A, B \in B(\mathcal{H})_{sa}, AB = BA.$

Theorem

The Weyl-von Neumann theorem for normal operators is true w.r.t.

- \circ \mathcal{C}_2 (Voiculescu '79)

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Approximately equivalence of representations

- Diagonality modulo compact operators is related to the approximately equivalence of representations.
- Let \mathcal{H}, \mathcal{L} be two Hilbert spaces. Suppose $\mathcal{A} \subset B(\mathcal{H})$ is a unital separable C^* -algebra and $\pi, \psi : \mathcal{A} \to B(\mathcal{L})$ be unital representations. We say that π is approximately equivalent to ψ , denoted by $\pi \sim_{K(\mathcal{L})} \psi$,

if \exists a sequence of unitaries $(U_k)_{k\geq 1}\subset B(\mathcal{L})$ s.t.

- $\bullet \quad \pi(A) U_k \psi(A) U_k^* \in K(\mathcal{L}), \quad \forall A \in \mathcal{A}, \ k \ge 1.$

ロト (個) (重) (重) (重) の(で

Voiculescu's theorem

Theorem (Voiculescu's theorem, 1976)

Suppose $\mathcal{A}\subset B(\mathcal{H})$ is a unital separable C^* -algebra and $\rho:\mathcal{A}\to B(\mathcal{L})$ is a unital representation s.t. $\rho(\mathcal{A}\cap K(\mathcal{H}))=0$.

 \exists a sequence of isometries $V_k : \mathcal{K} \to \mathcal{H}$ s.t.

 $V_k \rho(A) - AV_k$ is compact, $\forall k \geq 1, \ \forall A \in \mathcal{A}$

and $\lim_{k\to\infty} \|V_k \rho(A) - AV_k\| = 0$, $\forall A \in \mathcal{A}$.

Corollary

Suppose $\rho: \mathcal{A} \to B(\mathcal{L})$ is a unital representation s.t. $\rho(\mathcal{A} \cap \mathcal{K}(H)) = 0$. Then $id \sim_{\mathcal{K}} id \oplus \rho$.

11/21

Quasicentral modulus

$$\alpha = (A_1, \dots, A_n) \in B(\mathcal{H})^n, A \in B(\mathcal{H}).$$

 $\beta = (B_1, \dots, B_n).$
 $\alpha + \beta := (A_1 + B_1, \dots, A_n + B_n).$
 $[A, \alpha] := ([A, A_1], \dots, [A, T_n]).$
 $\|\alpha\|_{\Phi} := \max_{1 \le j \le n} \|A_j\|_{\Phi}.$

Definition

For $\alpha \in B(\mathcal{H})^n$ and a symmetric norm Φ ,

$$k_{\Phi}(\alpha) := \inf \{ \liminf_{k \to \infty} \|[A_k, \alpha]\|_{\Phi} : \operatorname{rank}(A_k) < \infty, 0 \le A_k, A_k \uparrow \mathbf{1} \}.$$

$$k_p(\alpha) := k_{\Phi_p}(\alpha).$$

$$k_{p,1}(\alpha) := k_{\Phi_{p,1}}(\alpha).$$

4□ > 4□ > 4 = > 4 = > = 900

Theorem (Voiculescu '79)

For every commuting $\alpha \in (B(\mathcal{H})_{sa})^n$ and a symmetric norm Φ , T.F.A.E.

- $\bullet k_{\Phi}(\alpha) = 0.$
- **2** \exists commuting diagonal $\beta \in (B(\mathcal{H})_{sa})^n$ s.t. $\alpha \beta \in (S_{\Phi}^{(0)})^n$.
- ③ $\forall \varepsilon > 0, \exists$ diagonal commuting $\beta \in (B(\mathcal{H})_{sa})^n$ s.t. $\alpha \beta \in (S_{\Phi}^{(0)})^n$ and $\|\alpha \beta\|_{\Phi} < \varepsilon$.

Theorem (Voiculescu '79)

Assume $\alpha \in B(\mathcal{H})^n$,

- For $1 , <math>k_p(\alpha)$ is either 0 or ∞ .
- ② If α is a commuting self-adjoint n-tuple with $n \geq 2$, then $k_n(\alpha) = 0$.
 - Question: k_p is not sharp, how about other normed ideals?

Spectral multiplicity theory

For a commuting $\alpha \in (B(\mathcal{H})_{sa})^n$,

- $\sigma(\alpha) \subset \mathbb{R}^n$, here $\sigma(\alpha)$ is the support of the spectral measure of α . $(\mathcal{H}, \alpha) \cong \bigoplus_i (L^2(\sigma(\alpha), \mu_i), \alpha_i)$ $\alpha_i = (M_{x_1}, M_{x_2} \dots, M_{x_n})$ on $L^2(\sigma(\alpha), \mu_i)$.
- $(\mathcal{H}, \alpha) \simeq (\mathcal{H}_{ac}, \alpha_{ac}) \oplus (\mathcal{H}_s, \alpha_s)$ w.r.t. the *n*-dimensional Lebesgue measure λ_n .
- $\begin{aligned} \bullet & & (\mathcal{H}_{ac},\alpha_{ac}) \backsimeq \oplus_{k=1}^{\infty} (L^2(X_k,\lambda_n),\alpha_k) \\ & & \sigma(\alpha) = X_0 \supset X_1 \supset X_2 \supset \cdots \\ & & \text{The mutiplicity function } m:\sigma(\alpha) \to \{0,1,2,\ldots,\infty\} \text{ is defined by} \\ & & m(x) := \begin{cases} k & \text{if } x \in X_k \backslash X_{k+1} \\ \infty & \text{if } x \in \cap_{k=1}^{\infty} X_k. \end{cases}$

4□ > 4□ > 4□ > 4□ > 4□ > 9

Theorem (Voiculescu '79)

 \exists a universal constant $0 < \gamma_n < \infty$ s.t. \forall commuting $\alpha \in (B(\mathcal{H})_{sa})^n$, $(k_{n,1}(\alpha))^n = \gamma_n \int_{\sigma(\alpha)} m(x) d\lambda_n(x)$.

 $\gamma_1 = \frac{1}{\pi}, \gamma_n$ for $n \ge 2$ is unknown.

Corollary (Voiculescu '79)

 $\forall \alpha \in (B(\mathcal{H})_{sa})^n, \ \alpha = \alpha_s \Leftrightarrow k_{n,1}(\alpha) = 0 \Leftrightarrow \exists \text{ commuting diagonal } \beta \in (B(\mathcal{H})_{sa})^n \text{ s.t. } \alpha - \beta \in (\mathcal{C}_{n,1})^n.$

ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ . ㅌ . 쒸٩♡

15 / 21

• A normed ideal S_{Φ} is called an n-diagonalization ideal if \forall commuting self-adjoint n-tuple α is diagonal modulo $(S_{\Phi})^n$.

A normed ideal which is not an n-diagonalization ideal will be called an n-obstruction ideal.

Theorem (Bercovici-Voiculescu '89)

Let $n \geq 1$. A symmetric normed ideal S_{Φ} is an n-obstruction ideal if and only if $S_{\Phi} \subset \mathcal{C}_{n,1}$.

16 / 21

Generalizations to hybrid normed ideals

Theorem (Voiculescu, 2018)

Let $n \geq 1$. For every commuting self-adjoint $\alpha \in (B(\mathcal{H})_{sa})^n$ and symmetric normed ideals $S_{\Phi_1}^{(0)}, \ldots, S_{\Phi_n}^{(0)}, \Phi = S_{\Phi_1}^{(0)} \times \cdots \times S_{\Phi_n}^{(0)}, T.F.A.E.$

- $\forall \varepsilon > 0, \ \exists \ commuting \ diagonal \ \delta \subset (B(\mathcal{H})_{sa})^n \ \text{s.t.}$ $\alpha \delta \in S_{\Phi_1}^{(0)} \times \cdots \times S_{\Phi_n}^{(0)} \ \text{and} \ \|\alpha \delta\|_{\varPhi} < \varepsilon.$

Theorem (Voiculescu, 2018)

where m is the multiplicity function of α_{ac} .

Let $p_j > 1, 1 \le j \le n$ s.t. $\sum_{j=1}^n \frac{1}{p_j} = 1$ and $\Phi_j = \Phi_{p_j,1}, 1 \le j \le n$. \exists a universal constant $0 < \gamma_n < \infty$ depending only on $p_j, 1 \le j \le n$ s.t. \forall commuting $\alpha \in (B(\mathcal{H})_{sa})^n$, $(k_{\Phi}(\alpha))^n = \gamma_n \int m(x) dx$,

, , ac

Unbounded Fredholm modules

Unbounded Fredholm modules is an object studied in non-commutative geometry.

- Let $\mathcal H$ be a separable Hilbert space, $\mathcal A\subset B(\mathcal H)$ a unital C^* -algebra, $\mathcal J$ a normed ideal.
 - An unbounded \mathcal{J} -Fredholm module over \mathcal{A} is a pair (\mathcal{H}, D) , where D is an unbounded densely defined self-adjoint operator on \mathcal{H} s.t.
 - ① the set $\mathfrak{A} := \{a \in \mathcal{A} : [D,a] \text{ can be extended to a bounded operator}\}$ is dense in \mathcal{A} .
 - $|D|^{-1} \in \mathcal{J}.$
 - Here $|D|^{-1}$ is the pseudoinverse of |D|.
- If $\mathcal{J}=K(\mathcal{H})$, an unbounded \mathcal{J} -Fredholm module is simply called an unbounded Fredholm module.

4□ > 4□ > 4 = > 4 = > = 900

• (p, ∞) -Lorentz ideals, 1

$$\Phi_{p,\infty}(a) = \sup_{k \ge 1} \frac{\sum_{j=1}^k a_j}{\sum_{j=1}^k (\frac{1}{j})^{1/p}}$$

$$\mathcal{C}_{p,\infty}:=\{T\in K(\mathcal{H}): \|\mathring{T}\|_{p,\infty}<\infty\}.$$
 $(\mathcal{C}_{q,1})^{dual}=\mathcal{C}_{p,\infty}$ with $q=rac{p}{p-1}$, where the dual is with respect to the

coupling $\langle A, B \rangle = \text{Tr}(AB)$.

Dixmier trace

$$\operatorname{Tr}_{\omega}(A) := \omega\left(\left\{\frac{1}{\log(N+1)}\sum_{k=1}^{N}\mu_k(A)\right\}_{N\geq 1}\right), \quad A\geq 0, A\in\mathcal{C}_{1,\infty}.$$
 where $\omega\in\ell_{\infty}^*$, s.t.

- $oldsymbol{0}$ ω is a singular: i.e. vanishes for any finite sequence
- ω dialation-invariant: $\omega(a_1, a_2, \ldots,) = \omega(a_1, a_1, a_2, a_2, \ldots,)$
- $\omega(1,1,1,\ldots)=1$

ロ ト 4回 ト 4 車 ト 4 車 ・ り Q ()

19 / 21

Dixmier trace as an estimate of $k_{p,1}$

Theorem (Connes, '88)

Let D be an unbounded self-adjoint operator in \mathcal{H} , such that $|D|^{-1} \in \mathcal{C}_{p,\infty}$ (where $1). <math>\forall$ finite subset X of $\mathfrak{A} = \{T \in B(H) : [T,D] \text{ bounded}\}$, $k_{p,1}(X) \leq \beta_p(\sup_{T \in X} \|[D,X]\|)(\mathrm{Tr}_{\omega}(|D|^{-p}))^{1/p}$, where β_p is a universal constant and Tr_{ω} is the Dixmier trace.

(ロ) (型) (重) (重) (Q)

Hongyin Zhao (UNSW) March, 2023 20 / 21

Problems

What happens if instead of $B(\mathcal{H})$, we consider von Neumann algebras $\mathcal{M} \subset B(\mathcal{H})$, normed ideals $\mathcal{J}_1, \ldots, \mathcal{J}_n$ of \mathcal{M} and commuting self-adjoint tuple $\alpha \in (\mathcal{M}_{sa})^n$?

For convenience, we denote $\Phi = \mathcal{J}_1 \times \cdots \times \mathcal{J}_n$. If \exists commuting diagonal n-tuple $\delta = (D_1, \ldots, D_n) \in (\mathcal{M}_{sa})^n$ s.t. $A_i - D_i \in \mathcal{J}_i$, we say that α is diagonal modulo Φ .

- If $\mathcal{J}_1 = \ldots = \mathcal{J}_n = \mathcal{J}$, we say α is diagonal modulo \mathcal{J} .

 Can we define analogously quasicentral modulus $k_{\Phi}(\alpha)$ for $\alpha \in \mathcal{M}^n$?
- Is is true that $k_{\Phi}(\alpha) = 0 \Leftrightarrow \alpha$ is diagonal modulo Φ ?
- What can we say about α_s and α_{ac} ?
- Spectral multiplicity function does not work well for von Neumann algebras, what is the proper analogue of spectral multiplicity theory in von Neumann algebras?

Hongyin Zhao (UNSW) March, 2023 21/21