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Abstract. In this paper, we prove nonlinear stability of planar vortex patches concen-
trated near a non-degenerate minimum point of the Robin function in a general bounded
domain. These vortex patches are stationary solutions of the two-dimensional incompress-
ible Euler equations. The result is obtained by showing that these concentrated vortex
patches are in fact isolated maximizers of the kinetic energy among isovortical patches.

1. Introduction

In this paper, we consider the incompressible inviscid flow without external force in the
plane, the motion of which is governed by the following Euler equations:{

∂tv + (v · ∇)v = −∇P, x = (x1, x2) ∈ R2, t ∈ (0,+∞),

∇ · v = 0,
(1.1)

where v = (v1, v2) is the velocity field and P is the scalar pressure. Here we assume that
the fluid is of unit density.

Let D ⊂ R2 be a bounded and simply-connected domain with a smooth boundary, ∂D.
When the fluid moves inside D, the impermeability boundary condition is usually imposed:

v · n = 0, (1.2)
where n is the outward unit normal of ∂D. By introducing the vorticity function ω =
∂x1v2 − ∂x2v1 and using the identity 1

2
∇|v|2 = (v · ∇)v + Jvω, the first equation of (1.1)

becomes
∂tv +∇(

1

2
|v|2 + P )− Jvω = 0, (1.3)

where J(v1, v2) = (v2,−v1) denoting a clockwise rotation through π/2. Taking the curl on
both sides of (1.3) we get

∂tω + v · ∇ω = 0. (1.4)
Since v is divergence-free and D is simply-connected, by the Green formula v can be

written as v = J∇ψ for some scalar function ψ. It is obvious that{
−∆ψ = ω in D,
ψ = constant on ∂D.

(1.5)
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Without loss of generality, we can always assume that ψ vanishes on ∂D by adding a
properly chosen constant. Therefore, ψ can be expressed in terms of ω by

ψ(x) = Gω(x) :=

∫
D

G(x, y)ω(y)dy,

where G is the Green function for −∆ in D with zero Dirichlet boundary condition, which
has the following form

G(x, y) =
1

2π
ln

1

|x− y|
− h(x, y), x, y ∈ D.

Taking into account the above relation between v, ω and ψ, we are able to deduce the
following equation satisfied by ω:

∂tω + J∇Gω · ∇ω = 0, (1.6)
which is usually called the vorticity equation. To deal with solutions with discontinuity,
we need to interpret (1.6) in the weak sense.
Definition 1.1. We call ω ∈ L∞((0,+∞)×D) a weak solution to the vorticity equation
(1.6) if∫

D

ω(x, 0)ξ(x, 0)dx+

∫ +∞

0

∫
D

ω(∂tξ+∇ξ·J∇Gω)dxdt = 0, ∀ ξ ∈ C∞
c ([0,+∞)×D). (1.7)

By standard regularity theory for elliptic equations it is easy to check that ∇Gω ∈
L∞((0,+∞) × D), so the above definition makes sense. By Yudovich [32], for initial
vorticity ω(·, 0) ∈ L∞(D), there is a unique weak solution ω to (1.7). Moreover, the
distribution function of ω(·, t) is independent of t, that is,

|{x ∈ D|ω(x, t) > a}| = |{x ∈ D|ω(x, 0) > a}|,∀ a ∈ R, t ≥ 0, (1.8)
where | · | denotes the two-dimensional Lebesgue measure.

For convenience, we also write ω(x, t) as ωt(x). By (1.8), if the initial vorticity ω0 has the
form ω0 = λIA0 , where A0 ⊂ D is a measurable set, λ ∈ R represents the vorticity strength
and IA0 denotes the characteristic function of A0, i.e., IA0(x) = 1 for x ∈ A0 and IA0 = 0
elsewhere, then the evolved vorticity ωt must be of the form ωt = λIAt with |At| = |A0| for
all t ≥ 0. We call such ωt a vortex patch solution, or vortex patch briefly.

A weak solution of the vorticity equation is said to be steady if it does not depend on
the time variable. Thus for any ω ∈ L∞(D), it is a steady solution if and only if∫

D

ω∇ξ · J∇ψdx = 0, ∀ ξ ∈ C∞
c (D). (1.9)

The search for dynamically possible steady solutions to the vorticity equation is an impor-
tant and interesting issue in the study of two-dimensional incompressible Euler equations.
It is easy to check that if ω ∈ L∞(D) satisfies

ω = f(Gω), a.e. x ∈ D,

where f : R → R is a Lipschitz continuous function, then ω must be a steady solution to
the vorticity equation. Burton [12] proved that it is also true for any monotone function
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f . As a special case, we immediately deduce that ω is a steady solution of the vorticity
equation if it has the form

ω = λI{Gω>µ}, (1.10)
where λ and µ are both positive constants. Here for simplicity we denote {x ∈ D| Gω(x) >
µ} by {Gω > µ} and similar notations will be used in the sequel.

There are already several papers dealing with the existence of steady vortex patches of
the form (1.10). See [16][29] for example. In the present paper, we are mainly concerned
with the nonlinear stability of such kind of steady vortex patches. Here by nonlinear
stability we mean Lyapunov type. To give the precise definition, let us first define Rω, the
rearrangement class of ω as follows

Rω := {w ∈ L∞(D) | |{w > a}| = |{ω > a}|, ∀ a ∈ R}.

Definition 1.2. A steady vortex patch ω is called to be stable, if for any ε > 0, there
exists δ > 0, such that for any ω0 ∈ Rω, ∥ω0 −ω∥L1 < δ, there holds ∥ωt−ω∥L1 < ε for all
t ≥ 0, where ωt(x) = ω(x, t) is the solution of (1.7) with initial vorticity ω0.

In the above definition, we use the L1 norm to measure the “distance” between two
solutions at any fixed time, which is very natural for vortex patch solutions. It should be
noted that for vortex patch solutions the L1 norm is equivalent to the Lp norm for any
p ∈ (1,+∞).

In this paper, we confine our attention to the nonlinear stability of steady vortex patch
solutions with concentration property, that is, solutions satisfying

ω = λI{Gω>µ}, λ|{Gω > µ}| = 1, {Gω > µ} ⊂ Bδ(x0), (1.11)

where λ > 0 is very large, δ > 0 is very small, and x0 ∈ D is a fixed point. It can be proved
that if for any sufficiently large λ, there exists ω satisfying (1.11), then x0 is necessarily in
the interior of D and must be a critical point of H, the Robin function of D, defined by

H(x) := h(x, x).

See [14] for a rigorous proof. On the other hand, if x0 is a non-degenerate critical point of
H, then for any sufficiently large λ, there exists ω satisfying (1.11). See [16] for example.

The main result of this paper is as following.

Theorem 1.3. Assume that ωλ is a family of steady vortex patch solutions of the vorticity
equation satisfying:

(i) ωλ = λI{Gωλ>µλ}, where µλ is a positive number depending on λ,
(ii)

∫
D
ωλdx = 1,

(iii) {Gωλ > µλ} ⊂ Bo(1)(x0), where o(1) → 0 as λ → +∞, and x0 is a non-degenerate
minimum point of H.

Then ωλ is stable in the sense of Definition 1.2 provided that λ is large enough.

The proof of Theorem 1.3 will be given in Section 3.
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Remark 1.4. Caffarelli and Friedman [13] proved that if D is a convex domain, then the
Robin function H is strictly convex, thus in this case H has a unique minimum point which
is non-degenerate.
Remark 1.5. Theorem 1.3 is closely related to the vortex model (see[25], Chapter 4), which
describes the motion of the fluid when the vorticity is sufficiently concentrated in N small
regions. In the case N = 1, the vorticity is simplified as a Dirac measure called a point
vortex, the location of which is determined by the following Kirchhoff-Routh equation:{

dx(t)
dt

= −1
2
J∇H(x(t)), t > 0,

x(0) = x0.
(1.12)

It is easy to see that
dH(x(t))

dt
= 0, ∀ t > 0, (1.13)

that is, the point vortex moves along the level curve of H. If x0 is critical point of H, then
it is an equilibrium of the Kirchhoff-Routh equation, and the stability of this equilibrium
is closely related to D2H(x0), the Hessian of H at x0. In particular, if D2H(x0) is positive
definite (or equivalently, x0 is a non-degenerate minimum point), then x0 must be stable.
This can be proved by choosing H as the Lyapunov function. See [25], Chapter 3 for
example. In such a way, Theorem 1.3 can be interpreted as a desingularized version of the
stability for the vortex model.

To prove Theorem 1.3, a stability criterion due to Burton [12] and a local uniqueness
result due to Cao, Guo, Peng and Yan [14] are used. In [12], Burton proved that steady
vortex patches as isolated maximizers of the kinetic energy among all isovortical patches
are stable. In [14], Cao, Guo, Peng and Yan proved that there is only one steady vortex
patch supported near x0 for fixed large λ. For convex domains, Theorem 1.3 is a very
straightforward deduction of these two results, since in this case every vortex patch with
maximal energy must be supported near the unique non-degenerate minimum point of the
Robin function. However, for a general domain it is not obvious at all. One of the novelties
of this paper is the reconstruction of steady vortex patches by variational method, from
which we can show that vortex patches in Theorem 1.3 are energy maximizers among
patches supported near x0. Another novelty of this paper is that we adapt the method
in Wan and Pulvirenti [31] to exclude the possibility that there is a patch with maximal
energy but separated support, from which and the local uniqueness result we can further
prove that the vortex patches in Theorem 1.3 are in fact energy maximizers among all
isovortical patches. This is the key ingredient and allows us to apply Burton’s criterion.

The analysis of stability for steady Euler flows in two dimensions is very important
in fluid mechanics and has been studied by many authors in history. See for example
[2, 3, 12, 21, 22, 24, 28, 31]. Here we recall some of the relevant and significant results
associated with the stability of planar vortex patches. The first stability result is due to
Kelvin in [21], where he established the linear stability for circular vortex patches in the
whole plane. Later Love [24] proved linear stability of a rotating Kirchhoff elliptical vortex
patch in the plane. Another excellent work is due to Arnold [2, 3]. Arnold gave several
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criteria for nonlinear stability of smooth steady Euler flows in general bounded domains,
which can be seen as a nonlinear version of the classical Rayleigh inflection point criterion
for linear stability of shear flows in a channel. Moreover, he asserted in [4] in general terms
that a steady flow can be seen as a constrained critical point of the kinetic energy; if this
critical point is a non-degenerate extreme, then it should be stable. Unfortunately, it seems
that his method is not easy to apply to prove the nonlinear stability of vortex patches,
since there is strong discontinuity for the vorticity.

In 1985, based on energy conservation, Wan and Pulvirenti in [31] proved nonlinear
stability of circular vortex patches in an open disk. In that paper, they established a relative
variational principle for the kinetic energy and turned the L1 perturbation problem into a
C1 perturbation problem. When dealing with the C1 perturbation case, the key ingredient
of their proof is that for a circle, the Green function is explicitly known and rotationally
invariant, then the C1 perturbation case can be handled by spectral analysis of a negative
definite operator. In 1987, Tang [28] proved nonlinear stability of both circular vortex
patches and rotating elliptic vortex patches in the plane based on the same idea as in [31].
The method developed by Marchioro, Pulvirenti and Tang is still not easy to apply to
prove nonlinear stability of steady vortex patches in general bounded domains, since in
such cases the Green functions have no explicit expression and good symmetry anymore.
However, their idea of turning L1 perturbation into C1 perturbation is very clever, and is
used in the present paper as a key ingredient to prove Theorem 1.3.

In 2005, Burton in [12] proved that a steady vortex flow as an isolated maximizer of the
kinetic energy relative to an “isovortical surface” (rearrangement class of a given function)
is stable in some Lp norm. But only in few cases can the isolatedness of the maximizer of
the kinetic energy be verified. Burton’s result is crucial for the proof of Theorem 1.3 and
will be stated precisely in Section 2.

Recently Cao, Guo, Peng and Yan in [14] established a local uniqueness result for steady
vortex patches concentrated near a non-degenerate critical point of the Robin function.
They considered the following semilinear elliptic equation satisfied by the stream function:

{
−∆ψλ = λI{ψλ>µλ} in D,

ψλ = 0 on ∂D,
(1.14)

where µλ > 0 is an unknown constant and λ|{ψλ > µλ}| = 1. They proved that if the
vortex core {ψλ > µλ} shrinks to a non-degenerate critical point of the Robin function
as λ → +∞, then the solution of (1.14) is unique provided that λ is large enough. The
precise statement will be given in Section 2. This local uniqueness result is used in this
paper to verify the isolatedness of the maximizer of the kinetic energy.

This paper is organized as follows. In Section 2 we state several known results that will
be used later. In Section 3 we give the proof of Theorem 1.3. In Section 4 we give the
construction of steady vortex patches concentrated near a given isolated minimum point
of the Robin function for completeness.
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2. Preliminaries

In this section, we mainly recall several known results on the existence, local uniqueness
and stability of planar vortex patches in general bounded domains.

Let us set some notations first. For any function f : D → R, we denote supp(f) :=

{f ̸= 0}. For any planar set A, we use diam(A) to denote the diameter of A, i.e.,
diam(A) = sup

x,y∈A
|x− y|.

Define E(ω) as the kinetic energy of the fluid with vorticity ω by setting

E(ω) :=
1

2

∫
D

∫
D

G(x, y)ω(x)ω(y)dxdy, (2.1)

By integration by parts, it is easy to check that

E(ω) =
1

2

∫
D

ψ(x)ω(x)dx =
1

2

∫
D

|∇Gω(x)|2dx. (2.2)

2.1. Existence of Steady Vortex Patches. To our knowledge, there are mainly two
methods dealing with the existence of steady vortex flows in two dimensions. The first
one is called the stream function method, whose starting point is to solve (1.14) for a give
nonlinearity f . See [7, 16, 15, 26, 27] for example. The other one is to solve a variational
problem for the kinetic energy subject to some appropriate constraints for the vorticity.
See [6, 8, 9, 10, 11, 29] for example.

In this subsection, for our purpose, we recall the existence of steady vortex patches of the
form (1.10) via the vorticity method. The result and idea are mostly based on Turkington
[29].

To this end, we define

Kλ ≜ {ω ∈ L∞(D)| 0 ≤ ω ≤ λ,

∫
D

ω(x)dx = 1},

where λ is positive and large enough so that Kλ is not empty. Let ε be the positive number
determined by λπε2 = 1.

Turkington [29] proved the following result.
Theorem 2.1. E attains it maximum on Kλ, and each maximizer ωλ has the form ωλ =
λI{Gωλ>µλ} (thus must be a steady solution to the vorticity equation), where µλ is a real
number depending on λ. Moreover, supp(ωλ) shrinks to a global minimum point of H as
λ→ +∞; more precisely, diam(supp(ωλ)) ≤ Cε and

∫
D
xω(x)dx→ x0 as λ→ +∞, where

C is a positive number not depending on λ and x0 is a global minimum point of H.
Remark 2.2. It should be noted that limx→∂DH(x) = +∞, so H attains its global minimum
in D. But there may be more than one global minimum point of H, and we do not know
which one supp(ωλ) shrinks to as λ→ +∞.

By performing a similar procedure to the one in [29], in the following theorem we prove
existence of a family of steady vortex patches concentrated near an isolated minimum point
of H. Similar results have been obtained by Elcrat and Miller [17, 18].
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To state our result, we need some notations slightly different. Here and in the sequel
let x1 ∈ D be a strict local minimum point of H. We choose a sufficiently small positive
number r such that x1 is the unique minimum point of H on Br(x1) and Br(x1) ⊂⊂ D.
Define

Nλ ≜ {ω ∈ L∞(D)| 0 ≤ ω ≤ λ,

∫
D

ω(x)dx = 1, supp(ω) ⊂ Br(x1)}.

Theorem 2.3. E attains it maximum on Nλ, and each maximizer ωλ has the form ωλ =
λI{Gωλ>µλ}∩Br(x1), where µλ is a real number depending on λ. Moreover, supp(ωλ) shrinks
to x1 as λ→ +∞; more precisely, diam(supp(ωλ)) ≤Cε for some C independent of λ and∫
D
xωλ(x)dx → x1 as λ → +∞. If λ is large enough, then ωλ is a steady solution to the

vorticity equation, that is, ωλ satisfies (1.9).
For readers’ convenience, we will give a complete proof of Theorem 2.3 in Section 4.

Remark 2.4. In fact, we will prove in Section 4 that µλ → +∞ as λ → +∞. Taking into
account the fact that supp(ωλ) shrinks to x1, by using maximum principle we immediately
deduce that ωλ has the form ωλ = λI{Gωλ>µλ} if λ is sufficiently large.
2.2. Burton’s Stability Criterion. In [12], Burton proved that steady vortex flow as
isolated maximizer of the kinetic energy on an isovortical surface is stable in some Lp norm.
In the case of vortex patches, the corresponding result can be stated as follows:
Theorem 2.5. Let ω be a vortex patch in D(that is, ω = λIA for some λ > 0 and A ⊂ D).
Suppose that ω is an isolated maximizer of the kinetic energy E on Rω, that is, there exists
δ0 > 0, such that for any ω̄ ∈ Rω, 0 < ∥ω̄ − ω∥L1 < δ0, there holds E(ω̄) < E(ω). Then ω
is stable in the sense of Definition 1.2.
Remark 2.6. Burton’s result is a very general stability criterion. According to [12], Theorem
5, any steady vortex flow as isolated maximizer or minimizer relative to the rearrangement
class of a given Lp function with p ≥ 3/2 is stable in the Lp norm. But in the case of
vortex patches, Theorem 2.5 is enough for our use.

The key assumption in Theorem 2.5 is the “isolatedness” of the energy maximizer, which
in general terms is an non-degeneracy condition. In [12], only one example of strict global
maximizer is given, i.e., D is an open disk and ω is a non-negative radially symmetric
decreasing function. For general maximizers, especially local maximizers, the isolatedness
assumption is not easy to be verified, since “isolatedness” is equivalent to uniqueness in
some sense, which is usually a more difficult problem than existence.
2.3. Local Uniqueness of Steady Vortex Patches. Fortunately, Cao et al. [14] proved
the following local uniqueness result of steady vortex patches near a non-degenerate critical
of the Robin function based on fine estimates for the corresponding stream function, which
may be used to prove isolatedness of the energy maximizer on isovortical patches.
Theorem 2.7. Let x∗ be a non-degenerate critical point of H. Then there exists λ0 > 0,
such that for each λ > λ0, the ωλ satisfying the following properties is unique:

(i) ωλ = λI{Gωλ>µλ}, where µλ is an unknown positive number depending on λ;
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(ii)
∫
D
ωλdx = 1;

(iii) the support of ωλ shrinks to x∗, or equivalently, supp(ωλ) ⊂ Bo(1)(x
∗).

Remark 2.8. When λ is not large, there is no uniqueness result on steady vortex patches
in general bounded domains. However, we conjecture that this is true when D is a convex
domain.

3. Proof of the Theorem 1.3

In this section, we give the proof of Theorem 1.3.
When D is a convex domain, there is no gap between local uniqueness and isolatedness

of the energy maximizer, so in this case the proof of Theorem 1.3 is much simpler. For
clarity, we give the short proof here.

Proof of Theorem 1.3 (the case D is convex). By Theorem 2.5, it suffices to show that ωλ
is an isolated maximizer of E over Rωλ

.
When D is convex, there is only one critical point of H, which is exactly the unique

global minimum point. So the x0 in Theorem 1.3 must be the unique minimum point of
H. Now combining Theorem 2.1 and Theorem 2.7, we immediately deduce that the ωλ in
Theorem 1.3 must be the uniqueness maximizer of E over Kλ if λ is large enough. Taking
into the fact that Rωλ

⊂ Kλ, we reach the conclusion that ω is in fact the unique maximizer
of E over Rωλ

, which is the desired result.
□

When D is a general bounded domain, there is a gap between local uniqueness and
isolatedness of energy maximizer. To eliminate the gap, we follow the idea of Wan and
Pulvirenti [31] to turn L1 perturbation into C1 perturbation.

To make the idea more adaptable, we give a more general stability criterion for steady
vortex patches, that is, Lemma 3.1 below. For convenience, we introduce the following
notation. Let ω be a vortex patch enclosed by a C1 closed curve denoted by γω (thus γω
is a planar set). A δ neighbourhood of γω is defined by:

γω,δ ≜ {x ∈ R2 | dist(x, γω) < δ}. (3.1)

Lemma 3.1. Suppose that ω0 is a steady vortex patch in D satisfying the following condi-
tions:

(C1) ω0 has the form ω0 = λI{ψ0>µ} for some µ > 0, where ψ0 =
∫
D
G(x, y)ω0(y)dy;

(C2) ∂{ψ0 > µ} is a C1 closed curve and ∂ψ0

∂n⃗
< 0 on this curve, where ~n is the outward

unit normal of ∂{ψ0 > µ};
(C3) there exists δ > 0, such that if ω1 ∈ Rω0 is another vortex patch(not necessarily

steady) enclosed by a C1 simple curve γω1 and γω1 ⊂ γω0,δ, then E(ω1) ≤ E(ω0), the equality
holds if and only if ω0 ≡ ω1.
Then ω0 is stable.

Proof. By Theorem 2.5, it suffices to show that ω0 is an isolated maximizer of E over Rω0 .
We show this by contradiction in the following.
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Suppose that ω0 is not an isolated maximizer of E over Rω0 , then we can choose a
sequence {ωn} ⊂ Rω0 such that 0 < ∥ωn − ω0∥L1 < 1

n
, and

E(ωn) ≥ E(ω0). (3.2)
For such a sequence, we have the following claim:
Claim: Denote ψn = Gωn and ψ0 = Gω0, then, if n is large, there exists a unique νn > 0

such that
(i) ∂{ψn > νn} is a C1 closed curve,
(ii) |{ψn > νn}| = |{ψ0 > µ}|,
(iii)∂{ψn > νn} ⊂ γω0,δ, where δ is the one in (C3).

Proof of the claim: First, notice that ψn and ψ0 satisfy the following equations:{
−∆ψn = ωn,

−∆ψ0 = ω0.
(3.3)

For vortex patches, ∥ωn− ω0∥L1 → 0 implies ∥ωn− ω0∥Lp → 0 for any 1 ≤ p < +∞. Then
by Lp estimates we have ∥ψn−ψ0∥W 2,p → 0 for any 1 < p < +∞. Choosing p large enough,
by the Sobolev embedding W 2,p(D) ↪→ C1,α(D) for some α ∈ (0, 1), we obtain

∥ψn − ψ0∥C1 → 0. (3.4)
By (C2) we can take δ0 > 0 small, such that the set {µ − δ0 < ψ0 < µ + δ0} is an

annulus-like domain and ∂ψ0

∂n⃗
< 0 on each closed curve {ψ0 = a}, µ− δ0 ≤ a ≤ µ+ δ0. This

is true by the continuity of ψ0 and ∇ψ0. Since ∥ψn−ψ0∥C1 → 0, we have ∂ψn

∂n⃗
< 0 on each

curve {ψ0 = a}, µ− δ0 ≤ a < µ+ δ0 if n is large enough. Thus ∇ψn ̸= 0 in the annulus-like
domain {µ− δ0 ≤ ψ0 ≤ µ+ δ0}.

Now choose ε < δ0 small and define M := max{ψ0=µ−ε} ψn,m := min{ψ0=µ+ε} ψn. By
the implicit function theorem, {ψn = M} and {ψn = m} are both C1 curves locally. By
the properties that ψn strictly increases along the direction ∇ψ0 in the annulus-domain
{µ− δ0 ≤ ψ0 ≤ µ+ δ0}, the curve {ψn =M} can not go outside {ψ0 ≥ µ− ε} .

In fact, suppose that there exists x0 ∈ {ψ0 < µ − ε} ∩ {µ − δ0 < ψ0 < µ + δ0} and
ψn(x0) =M , we can find x1 ∈ {ψ0 = µ− ε} by solving the following ODE:{

dx(t)
dt

= −∇ψ0(x),

x(0) = x0.
(3.5)

Since ∂ψn

∂n⃗
< 0, we have ψn(x1) > ψn(x0). But by the definition of M , ψn(x1) ≤ M =

ψn(x0), which is a contradiction.
On the other hand, by taking n large enough the curve {ψn =M} can not enter {ψ0 > µ}.

In fact, suppose that there exists x0 such that x0 ∈ {ψ0 = µ} and x0 ∈ {ψn = M}, then
we have ψn(x0) = M . But by (3.4) ψn(x0) → µ and M → µ− ε as n → +∞, from which
we deduce that ψn(x0) > M if n is large enough, which is a contradiction.

Therefore, {ψn =M} ∩ {µ− δ0 < ψ0 < µ+ δ0} must be a C1 closed curve and
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{ψ0 > µ} ⊂ {ψn > M} ∩ {µ− δ0 < ψ0 < µ+ δ0} ⊂ {ψ0 > µ− ε}. (3.6)
Similarly {ψn = m} ∩ {µ− δ0 < ψ0 < µ+ δ0} must be a C1 closed curve and

{ψ0 > µ+ ε} ⊂ {ψn > m} ∩ {µ− δ0 < ψ0 < µ+ δ0} ⊂ {ψ0 > µ}. (3.7)
Hence

|{ψn > m} ∩ {µ− δ0 < ψ0 < µ+ δ0}| ≤ |{ψ0 > µ}|
≤ |{ψn > M} ∩ {µ− δ0 < ψ0 < µ+ δ0}|.

(3.8)

By the continuity of ψn we can choose νn ∈ [m,M ] such that
|{ψn > νn} ∩ {µ− δ0 < ψ0 < µ+ δ0}| = |{ψ0 > µ}|,

and
{ψn = νn} ∩ {µ− δ0 < ψ0 < µ+ δ0} ⊂ {µ− ε < ψ0 < µ+ ε}.

Note that such νn must be unique because ∂ψn(x)
∂n⃗

< 0 on the curve {ψn = νn}. By (3.4)
sup{ψ0<µ−δ0} ψn < νn if n is large enough and by strong maximum principle inf{ψ0>µ+δ0} ψn >
νn, so {ψn > νn} ∩ {µ− δ0 < ψ0 < µ+ δ0} = {ψn > νn} if n is large enough.

That is, for any ε > 0, if n is large, we can choose a unique νn, such that ∂{ψn > νn} =
{ψn = νn} is a C1 closed curve, moreover, |{ψn > νn}| = |{ψ0 > µ}| and {ψn = νn} ⊂
{µ− ε < ψ0 < µ+ ε}. Hence the claim is proved.

Now we continue our proof of Lemma 3.1. Define ω̄n = λI{ψn>νn}, where νn is the one
chosen in the above Claim. It is obvious that ω̄n ∈ Rω0 . Now we compare E(ω̄n) and
E(ωn) as follows:

E(ω̄n)− E(ωn) =
1

2

∫
D

ω̄nψ̄ndx−
1

2

∫
D

ωnψndx

=

∫
D

ψn(ω̄n − ωn)dx+
1

2

∫
D

(ψ̄n − ψn)(ω̄n − ωn)dx,

(3.9)

where we used
∫
D
ψnω̄ndx =

∫
D
ψ̄nωndx by the symmetry of the Green function. By

integration by parts we have
1

2

∫
D

(ψ̄n − ψn)(ω̄n − ωn)dx =
1

2

∫
D

|∇(ψ̄n − ψn)|2dx,

therefore we get

E(ω̄n)− E(ωn) ≥
∫
D

ψn(ω̄n − ωn)dx+
1

2

∫
D

|∇(ψ̄n − ψn)|2dx.

Since |{ψn > νn}| = |{ψ0 > µ}| and ω̄n = λI{ψn>νn}, the integral
∫
D
ψnωndx attains its

maximum if and only if ωn = ω̄n, thus we obtain∫
D

ψn(ω̄n − ωn)dx ≥ 0. (3.10)



NONLINEAR STABILITY OF PLANAR VORTEX PATCHES 11

Combining (3.9) and (3.10), we get
E(ω̄n) ≥ E(ωn), (3.11)

and the equality holds if and only if ωn ≡ ω̄n. By (3.2) and (3.11) we have
E(ω̄n) ≥ E(ω0).

On the other hand, by (iii) in the above Claim we can take n large enough such that
γω̄n ⊂ γω0,δ, then by (C3) we have

ω̄n ≡ ω0,

which implies that
E(ω̄n) = E(ω0) = E(ωn),

hence ωn ≡ ω̄n ≡ ω0. This leads to a contradiction since |ωn − ω0|L1 > 0 for each n.
Therefore Lemma 3.1 is proved.

□
Lemma 3.1 is a general stability criterion which does not require the vortex patch to be

concentrated. However, (C1) − (C3) are not easy to be verified in general. To continue,
we need the following result from [14].

Lemma 3.2 ([14]). Let ωλ be the steady vortex patch in Theorem 1.3. Then {Gωλ > µλ} is
a simply-connected domain with a C1 boundary, and ∂Gωλ

∂n⃗
< 0 on this boundary, provided

that λ is large enough.

Having made the above preparations, now we are ready to prove Theorem 1.3.
Proof of Theorem 1.3 (general case). By Lemma 3.1, it suffices to show that ωλ satisfies
(C1)-(C3) in Lemma 3.1. By Lemma 3.2, (C1) and (C2) holds true. We need only to
verify (C3).

By Theorem 2.7, the steady vortex patch in Theorem 1.3 is the same as the one in
Theorem 2.3 when λ is large enough, so we need just to verify (C3) for the ωλ in Theorem
2.3.

Suppose that there exists another vortex patch ω̄λ enclosed by a C1 closed curve γω̄λ
,

γω̄λ
⊂ γωλ,δ and E(ωλ) = E(ω̄λ). To finish the proof, it suffices to show that ωλ ≡ ω̄λ.

Without loss of generality, we assume that δ is sufficiently small such that ω̄λ ∈ Nλ,
then it is obvious that ω̄λ is a maximizer of E on Nλ. By Theorem 2.3, ω̄λ must satisfy
ω̄λ = λI{ψ̄λ>µ̄λ} for some µ̄λ ∈ R and the support of ω̄λ shrinks to x1 as λ → +∞. Taking
into account Theorem 2.7, we deduce that ωλ ≡ ω̄λ if λ is large enough, which is the desired
result. □

4. Proof of Theorem 2.3

In this section, we give the proof of Theorem 2.3 for completeness. The idea is basically
from [29].

Lemma 4.1. There exists ωλ ∈ Nλ such that E(ωλ) = supω∈Nλ
E(ω). Moreover, ωλ =

λI{ψλ>µλ}∩Br(x1) for some µλ > 0 depending on ωλ, where ψλ = Gωλ.
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Proof. First we show the existence of a maximizer, that is, there exists ωλ ∈ Nλ such that
E(ωλ) = supω∈Nλ

E(ω). Since G(x, y) ∈ L1(D ×D), we have for any ω ∈ Nλ

E(ω) =
1

2

∫
D

∫
D

G(x, y)ω(x)ω(y)dxdy ≤ 1

2
λ2

∫
D

∫
D

|G(x, y)|dxdy ≤ Cλ2,

which implies that E is bounded from above over Nλ. Let {ωn} ⊂ Nλ be a sequence
satisfying

lim
n→+∞

E(ωn) = sup
ω∈Nλ

E(ω).

Since Nλ is a bounded set in L∞(D), thus is sequentially compact in the weak star
topology in L∞(D). Without loss of generality, we assume that ωn → ωλ weakly star in
L∞(D) for some ωλ ∈ L∞(D) as n → +∞. We claim that ωλ ∈ Nλ. In fact, ωn → ωλ
weakly star in L∞(D) means

lim
n→+∞

∫
D

ωnφdx =

∫
D

ωλφdx, ∀φ ∈ L1(D). (4.1)

For any φ ∈ C∞
0 (D \Br(x1)), by the definition of Nλ we have

lim
n→+∞

∫
D

ωnφdx =

∫
D

ωλφdx = 0,

which implies supp(ωλ) ⊂ Br(x1). By choosing φ ≡ 1 in (4.1), we have∫
D

ωλdx = lim
n→+∞

∫
D

ωndx = 1.

Now we prove that 0 ≤ ωλ ≤ λ a.e. in D. We prove ωλ ≤ λ first. Suppose that
|{ωλ > λ}| > 0, then there exist ε0, ε1 > 0 such that |{ωλ > λ + ε0}| > ε1. Denote
B∗ = {ωλ > λ+ ε0} ⊂ D, then for φ = IB∗ by weak star convergence we have

lim
n→+∞

∫
D

(ωλ − ωn)φdx = lim
n→+∞

∫
B∗
(ωλ − ωn)dx = 0.

On the other hand, ∫
B∗
(ωλ − ωn)dx ≥ ε0ε1,

which is a contradiction. So we have ωλ ≤ λ a.e. in D. Repeating this procedure, we
obtain ωλ ≥ 0 a.e. in D. Therefore we have proved ωλ ∈ Nλ.

Finally, by the property of weak star convergence, we have

lim
n→+∞

1

2

∫
D

∫
D

G(x, y)ωn(x)ωn(y)dxdy = lim
n→+∞

1

2

∫
D

∫
D

G(x, y)ωλ(x)ωλ(y)dxdy,

which gives E(ωλ) = supω∈Nλ
E(ω). So E attains its maximum over Nλ.

Now we show that for any maximizer ωλ, there exists µλ > 0 such that ωλ = λI{ψλ>µλ}∩Br(x1).
To this end, we define a family of test functions ωs(x) = ωλ + s (z0(x)− z1(x)), s > 0,
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where z0, z1 satisfies 

z0, z1 ∈ L∞(D),∫
D
z0dx =

∫
D
z1dx,

z0, z1 ≥ 0,

supp(z0), supp(z1) ⊂ Br(x1),

z0 = 0 in D\{ωλ ≤ λ− δ},
z1 = 0 in D\{ωλ ≥ δ}.

(4.2)

Here δ is a positive parameter. Note that for fixed z0, z1 and δ, if s is sufficiently small,
then ωs ∈ Nλ. So we have

0 ≥ dE(ωs)

ds
|s=0+ =

∫
D

z0ψλdx−
∫
D

z1ψλdx,

where ψλ = Gωλ. This gives
sup

{ωλ<λ}∩Br(x1)

ψλ ≤ inf
{ωλ>0}∩Br(x1)

ψλ.

Since Br(x1) is connected and {ωλ < λ} ∩Br(x1) ∪ {ωλ > 0} ∩Br(x1) = Br(x1), we have
{ωλ < λ} ∩Br(x1) ∩ {ωλ > 0} ∩Br(x1) ̸= ∅, then by the continuity of ψλ we deduce that

sup
{ωλ<λ}∩Br(x1)

ψλ = inf
{ωλ>0}∩Br(x1)

ψλ.

Define
µλ := sup

{ωλ<λ}∩Br(x1)

ψλ = inf
{ωλ>0}∩Br(x1)

ψλ,

then it is easy to check that{
ωλ = 0 a.e. in {ψλ < µλ} ∩Br(x1),

ωλ = λ a.e. in {ψλ > µλ} ∩Br(x1).
(4.3)

On the level set {ψλ = µλ} ∩ Br(x1), we have ∇ψλ = 0 a.e. by the property of Sobolev
functions, thus ωλ = −∆ψλ = 0 a.e.. To summarize, we have obtained{

ωλ = 0 a.e. {ψλ ≤ µλ} ∩Br(x1),

ωλ = λ a.e. {ψλ > µλ} ∩Br(x1),
(4.4)

or equivalently, ωλ = λI{ψλ>µλ} ∩Br(x1).
Finally, by taking r small and λ large we have µλ > 0. □
Now we estimate the size and location of supp(ωλ) as λ → +∞. This is somewhat

different from [29]. Define ζλ := ψλ − µλ, Ω := {ψλ > µλ} ∩ Br(x1) which is called the
vortex core, and

T (ωλ) :=
1

2

∫
D

ζλωλdx,

which represents the kinetic energy of ωλ on {ψλ > µλ}. Note that {ζλ > 0} ⊂⊂ D since
µλ > 0.
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Obviously we have the identity E(ωλ) = T (ωλ) +
1
2
µλ. Moreover, integration by parts

gives

T (ωλ) =
1

2

∫
{ζλ>0}

ζλωλdx

=
1

2

∫
{ζλ>0}

ζλ(−∆ζλ)dx

=
1

2

∫
{ζλ>0}

|∇ζλ|2dx

=
1

2

∫
D

|∇ζ+λ |
2dx.

Here we used {ζλ > 0} ⊂⊂ D.

Lemma 4.2. T (ωλ) ≤ C, where C is a positive number not depending on λ.

Proof. First we apply Hölder inequality to obtain

T (ωλ) =
1

2

∫
D

ζλωλdx =
1

2
λ

∫
Ω

ζλdx ≤ 1

2
λ|Ω|

1
2

(∫
Ω

|ζλ|2dx
) 1

2

=
1

2
λ|Ω|

1
2

(∫
Br(x1)

|ζ+λ |
2dx

) 1
2

.

On the other hand, by Sobolev embedding W 1,1(Br(x1)) ↪→ L2(Br(x1)), we have(∫
Br(x1)

|ζ+λ |
2dx

) 1
2

≤C
(∫

Br(x1)

ζ+λ dx+

∫
Br(x1)

|∇ζ+λ |dx
)

=C

(∫
Ω

ζ+λ dx+

∫
Ω

|∇ζ+λ |dx
)
.

Here and in the sequel we use C to denote various positive numbers independent of λ.
Therefore

T (ωλ) ≤
1

2
Cλ|Ω|

1
2

∫
Ω

ζλdx+
1

2
Cλ|Ω|

1
2

∫
Ω

|∇ζλ|dx

≤CT (ωλ)|Ω|
1
2 +

1

2
Cλ|Ω|

(∫
Ω

|∇ζλ|2dx
) 1

2

≤CT (ωλ)λ−
1
2 +

1

2
C (T (ωλ))

1
2 ,

where we used λ|Ω| =
∫
D
ωλ = 1. By choosing λ large enough such that Cλ−1/2 < 1

2
, we

deduce that T (ωλ) ≤ C, which is the desired result.
□

Lemma 4.3. E(ωλ) ≥ − 1
4π

ln ε− C, where ε = 1/
√
λπ.

Proof. Define ω̄λ = λIBε(x1). It is easy to see that ω̄λ ∈ Nλ, so we have E(ωλ) ≥ E(ω̄λ).
Now we calculate E(ω̄λ):



NONLINEAR STABILITY OF PLANAR VORTEX PATCHES 15

E(ω̄λ) =
1

2

∫
D

∫
D

G(x, y)ω̄λ(x)ω̄λ(y)dxdy

=− 1

4π

∫
D

∫
D

ln |x− y|ω̄λ(x)ω̄λ(y)dxdy −
1

2

∫
D

∫
D

h(x, y)ω̄λ(x)ω̄λ(y)dxdy

=− λ2

4π

∫
Bε(x1)

∫
Bε(x1)

ln |x− y|dxdy − 1

2

∫
Bε(x1)

∫
Bε(x1)

h(x, y)dxdy.

(4.5)

Since |x− y| ≤ 2ε for x, y ∈ Bε(x1), we have

−λ2

4π

∫
Bε(x1)

∫
Bε(x1)

ln |x− y|dxdy ≥− λ2

4π

∫
Bε(x1)

∫
Bε(x1)

ln |2ε|dxdy

=− 1

4π
ln ε− 1

4π
ln 2.

(4.6)

On the other hand, the integral
∫
Bε(x1)

∫
Bε(x1)

h(x, y)dxdy converges to h(x1, x1) as λ →
+∞, therefore is bounded, or equivalently∣∣ ∫

Bε(x1)

∫
Bε(x1)

h(x, y)dxdy
∣∣ ≤ C. (4.7)

Taking into account (4.5) (4.6) and (4.7) we get

E(ωλ) ≥ − 1

4π
ln ε− C.

□
From Lemma 4.2, Lemma 4.3 and the identity E(ωλ) = T (ωλ) + µλ/2, we immediately

obtain

Lemma 4.4. µλ ≥ − 1
2π

ln ε− C.

Now we show that the size of supp(ωλ) is of order ε.

Lemma 4.5. There exists some R0 > 0 such that diam(supp(ωλ)) < R0ε when λ is large
enough.

Proof. For any x ∈ supp(ωλ), we have by definition ψλ(x) ≥ µλ, that is,∫
D

G(x, y)wλ(y)dy ≥ − 1

2π
ln ε− C. (4.8)

On the other hand, since h(x, y) is bounded from below in D ×D, we have∫
D

G(x, y)wλ(y)dy ≤ − 1

2π

∫
D

ln |x− y|ωλ(y)dy + C. (4.9)

Combining (4.8) and (4.9) and by simple calculation, we can easily get∫
D

ln
ε

|x− y|
ωλ(y)dy ≥ C. (4.10)
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Let R > 1 be a number to be determined. we divide the integral on the left side of (4.10)
into two parts ∫

BRε(x)

ln
ε

|x− y|
ωλ(y)dy +

∫
D\BRε(x)

ln
ε

|x− y|
ωλ(y)dy ≥ C. (4.11)

The first integral in (4.11) can be estimated by the rearrangement inequality as follows∫
BRε(x)

ln
ε

|x− y|
ωλ(y)dy ≤ λ

∫
Bε(x)

ln
ε

|x− y|
dy =

1

2
.

So we obtain ∫
D\BRε(x)

ln
ε

|x− y|
ωλ(y)dy ≥ C. (4.12)

Notice that |x− y| ≥ Rε for any y ∈ BRε(x), so we obtain from (4.12)∫
D\BRε(x)

ln
ε

|x− y|
ωλ(y)dy ≤

∫
D\BRε(x)

ln
1

R
ωλ(y)dy,

or equivalently, ∫
D\BRε(x)

ωλ(y)dy ≤ C

lnR
.

Taking into account the fact
∫
D
ωλdx = 1, we get∫
BRε(x)

ωλ(y)dy ≥ 1− C

lnR
.

Choosing R large such that 1− C
lnR

> 1
2
, we obtain∫

BRε(x)

ωλ(y)dy >
1

2
. (4.13)

Since
∫
D
ωλ = 1dx and (4.13) holds true for arbitrary x ∈ supp(ωλ), we deduce that

diam(suppωλ) < 2Rε.

Thus the lemma is proved by choosing R0 = 2R.
□

Now we estimate the location of supp(ωλ).

Lemma 4.6. limλ→+∞
∫
D
xωλ(x)dx = x1.

Proof. Denote xλ :=
∫
D
xωλ(x)dx, then obviously xλ ∈ Br(x1). For any sequence {xλj}, λj →

+∞, there exists a subsequence {xλjk} such that xλjk → z1 ∈ Br(x1). For simplicity, we
still denote the subsequence by {xλk}. It suffices to show that z1 = x1.
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Define ω̄λ := λIBε(x1). Since E(ω̄λ) ≤ E(ωλ), we obtain∫
D

∫
D

− 1

2π
ln |x− y|ω̄λk(x)ω̄λk(y)dxdy −

∫
D

∫
D

h(x, y)ω̄λk(x)ω̄λk(y)dxdy

≤
∫
D

∫
D

− 1

2π
ln |x− y|ωλk(x)ωλk(y)dxdy −

∫
D

∫
D

h(x, y)ωλk(x)ωλk(y)dxdy.

(4.14)

By Riesz’s rearrangement inequality (see [23], 3.7),∫
D

∫
D

− 1

2π
ln |x− y|ω̄λk(x)ω̄λk(y)dxdy ≥

∫
D

∫
D

− 1

2π
ln |x− y|ωλk(x)ωλk(y)dxdy. (4.15)

Combining (4.14) and (4.15) we get∫
D

∫
D

h(x, y)ω̄λk(x)ω̄λk(y)dxdy ≥
∫
D

∫
D

h(x, y)ωλk(x)ωλk(y)dxdy. (4.16)

Passing k → +∞ in (4.16), we have h(z1, z1) ≤ h(x1, x1), that is, H(z1) ≤ H(x1). Since x1
is the unique minimum point of H(x) in Br(x1), we obtain z1 = x1, which is the desired
result. □

Lemma 4.7. ωλ is a steady solution of the vorticity equation, that is, satisfies (1.9),
provided that λ is large enough.

Proof. For any ξ ∈ C∞
c (D), we define a family of C1 transformations Φt(x), t ∈ (−∞,+∞),

from D to D by solving the following ODE,{
dΦt(x)
dt

= J∇ξ(Φt(x)), t ∈ R,
Φ0(x) = x,

(4.17)

where J denotes clockwise rotation through π/2 as before. Note that (4.17) is solvable
for all t since J∇ξ is a smooth vector field with compact support in D. It is easy to see
that J∇ξ is divergence-free, so by Liouville theorem(see [25], Appendix 1.1), Φt(x) is an
area-preserving transformation for any fixed t, that is,

Φt(A) = A, ∀A ⊂ D.

Now we define a family of test functions

ωt(x) := ωλ(Φt(x)). (4.18)

It is easy to check that ωt ∈ Rωλ
. Since supp(ωλ) shrinks to x1 as λ → +∞, so

dist(supp(ωλ, ∂Br(x1))) > 0 if λ is large enough. Therefore we have ωt ∈ Nλ if |t| is
small, from which we obtain

dE(ωt)

dt

∣∣∣∣
t=0

= 0. (4.19)
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For |t| << 1, we expand E(ωt) at t = 0 as follows

E(ωt) =
1

2

∫
D

∫
D

G(x, y)ωλ(Φt(x))ωλ(Φt(y))dxdy

=
1

2

∫
D

∫
D

G(Φ−t(x),Φ−t(y))ωλ(x)ωλ(y)dxdy

=E(ωλ) + t

∫
D

ωλ∇Gωλ · J∇ξdx+ o(t).

(4.20)

Combining (4.19) and (4.20) together we immediately get∫
D

ωλ∇Gωλ · J∇ξdx = 0,

which completes the proof Lemma 4.6. □

Proof of Theorem 2.3. It follows from Lemma 4.1, Lemma 4.4, Lemma 4.5 and Lemma
4.6. □
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