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Abstract. We consider the interior Hölder regularity of spatial gradient of viscosity

solution to the parabolic normalized p(x, t)-Laplace equation

ut =

(
δij + (p(x, t)− 2)

uiuj

|Du|2

)
uij

with some suitable assumptions on p(x, t), which arises naturally from a two-player zero-

sum stochastic differential game with probabilities depending on space and time.

1. Introduction

Let p(x, t) ∈ C1
loc(Rn+1) and 1 < p− := inf p(x, t) ≤ sup p(x, t) =: p+ < ∞. In this

work, we investigate the higher regularity properties of viscosity solutions to the following
parabolic normalized p(x, t)-Laplacian

ut(x, t) = ∆N
p(x,t)u(x, t), (1.1)

where ∆N
p(x,t) is the normalized p(x, t)-Laplace operator defined as

∆N
p(x,t)u := ∆u+ (p(x, t)− 2)

〈
D2u

Du

|Du|
,
Du

|Du|

〉
=

(
δij + (p(x, t)− 2)

uiuj
|Du|2

)
uij .

Here the summation convention is utilized and the vector Du is the gradient with respect
to the spatial variable x. In the rest of this paper, Dx,tu = (∂tu, ∂x1u, · · · , ∂xnu)T .

Over the last decade, equation (1.1) and related normalized equations in non-divergence
form have received considerable attention, partly due to the stochastic zero-sum tug-of-war
games defined by Peres-Schramm-Sheffield-Wilson [31], Peres-Sheffield [32] and Manfredi-
Parviainen-Rossi [28]. When p(x) is constant, Luiro-Parviainen-Saksman [27] proved the
Harnack’s inequality for the homogeneous normalized p-Laplace equation −∆N

p u = 0. Ru-
osteenoja [35] studied the local Lipschitz continuity and Harnack’s inequality for the in-
homogeneous version −∆N

p u = f . The first contribution on the C1,α estimates for such
equations is due to Jin-Silvestre [20], in which they established the local Hölder gradient
estimates for the parabolic normalized p-Laplacian

∂tu = ∆N
p u. (1.2)

This result was generalized to the inhomogeneous case by Attouchi-Parviainen in [2]. Addi-
tionally for the inhomogeneous elliptic analogue, Attouchi-Parviainen-Ruosteenoja in [3] ver-
ified that the solutions are locally of class C1,α, see also [9]. Later, Imbert-Jin-Silvestre [18]
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proved the interior C1,α regularity for a more general equation

∂tu = |Du|γ
(
δij + (p− 2)

uiuj
|Du|2

)
uij , (1.3)

where p ∈ (1,+∞) and γ > −1. When γ = 0, it is nothing but (1.2); when γ = p− 2, it is
the usual parabolic p-Laplace equation

ut = div(|Du|p−2Du). (1.4)

It was well-known that viscosity solutions and weak solutions to (1.4) coincide (see [22]).
Based on this equivalence and the C1,α regularity of weak solutions to (1.4) in [13, 39], we
know that the viscosity solutions are of class C1,α. For the inhomogeneous counterpart of
(1.3)

∂tu− |Du|γ
(
δij + (p− 2)

uiuj
|Du|2

)
uij = f (1.5)

with −1 < γ <∞ and 1 < p <∞, the local higher regularity properties of solutions to (1.5)
have been investigated in [1, 5], provided that f is bounded and continuous. One can find
more related results in [6–8,14,16,21,24,26,29,33,34].

On the other hand, when it comes to the nonstandard growth case, Siltakoski [36] con-
sidered the normalized p(x)-Laplacian

∆N
p(x)u :=

(
δij + (p(x)− 2)

uiuj
|Du|2

)
uij = 0 (1.6)

and showed that the viscosity solution is locally C1,α regular by means of the equivalence
between viscosity solutions to (1.6) and weak solutions to strong p(x)-Laplace equation

∆S
p(x)u = |Du|p(x)−2∆N

p(x)u.

And the local C1,α regularity of weak solutions of strong p(x)-Laplace equation has been
obtained by Zhang-Zhou [40]. For more results in the elliptic situation, see for instance
[4, 10,11,19,37] and references therein.

As interpreted in [15,30], parabolic equations of the type considered in (1.1) arise naturally
from a two-player zero-sum stochastic differential game (SDG) with probabilities depending
on space and time. It is defined in terms of an n-dimensional state process, and is driven
by a 2n-dimensional Brownian motion for n ≥ 2. It is worth remarking that around “2n-
dimensional Brownian motion” that the simplest versions use (n+ 1)-dimensional Brownian
motion or even random walk. As far as we know, the present setting is less studied and
it exhibits interesting features both from the tug-of-war games and from the mathemati-
cal viewpoint. In particular, Parviainen-Ruosteenoja [30] proved the Hölder and Harnack
estimates for a more general game that was called p(x, t)-game without using the PDE tech-
niques and showed that the value functions of the game converge to the unique viscosity
solution of the Dirichlet problem to the normalized p(x, t)-parabolic equation

(n+ p(x, t))ut(x, t) = ∆N
p(x,t)u(x, t).

In addition, Heino [15] formulated a stochastic differential game in continuous time and
obtained that the viscosity solution to a terminal value problem involving the parabolic
normalized p(x, t)-Laplace operator is unique under suitable assumptions. However, whether
or not the spatial gradient Du of (1.1) is Hölder continuous was still unknown. In this paper
we answer this question and prove the interior Hölder continuity for the spatial gradient of
viscosity solutions to (1.1).
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Let Qr := Br×(−r2, 0] ⊂ Rn+1 be a parabolic cylinder, where Br is a ball in Rn centered
at the origin with the radius r > 0. Our main result is stated as follows.

Theorem 1.1. Assume that u is a viscosity solution to (1.1) in Q1. If 1 < p− ≤ p+ < ∞
and p(x, t) ∈ C1(Q1), then there exist two constants α ∈ (0, 1) and C, both depending on
n, p−, p+ and ‖Dx,tp‖L∞(Q1), such that

‖Du‖Cα(Q1/2) ≤ C‖u‖L∞(Q1)

and

sup
Q1/2

|u(x, t)− u(x, s)|
|t− s| 1+α2

≤ C‖u‖L∞(Q1).

We would like to mention that our proof is much influenced by the ideas developed in [20].
To avoid the problem of vanishing gradient, we first approximate (1.1) with a regularized
problem (3.1) below. Then we try to derive uniform a priori estimates regarding (3.1), so
that we could pass to the limit through compactness argument eventually. Specifically, we
verify that the oscillation of the spatial gradient decreases in a sequence of the shrinking
parabolic cylinders. The iteration process is divided into two scenarios: either the gradient
Du is close to a fixed vector e in a large portion of Qτk , or it does not. We then have
to combine these two alternatives to get the final result. In fact, by virtue of the similar
structure between (1.1) and (1.2), we focus mainly on showing the improvement of oscillation
for |Du| (Lemmas 3.1 and 3.3 below) and demonstrate the higher Hölder regularity of
solutions to the original equation (1.1) via approximation. It is worth pointing out that the
comparison principle and stability of viscosity solutions play an important role in the proof
of Theorem 3.12 (the approximation step). Although we basically follow the ideas in [20],
there exist several noticeable differences and difficulties. First, to derive the improvement of
oscillation of |Du|, there will be an additional term involving Dp(x, t) when we differentiate
the regularized equation (3.1) below with respect to the spatial variables x. Consequently,
in comparison to the proof of [20, Lemma 4.1], we require more elaborate analysis and
construct different auxiliary functions. Second, the comparison principle (Theorem 4.1)
cannot directly follow from the well-known results owing to the variable coefficient p(x, t).
We have to make use of the information from the maximum principle of semicontinuous
functions carefully, as well as the features such as the local Lipschitz continuity regarding
the matrix square root. To the best of our knowledge, the comparison principle of (1.1) is
new, which is also of independent interest.

This paper is organized as follows. In Section 2, we give the definition of viscosity solutions
to (1.1) and state some known results that will be used later. Section 3 is devoted to showing
firstly the Hölder gradient regularity of (1.1) under the assumption that ‖Dx,tp‖L∞(Q1) is

small, then consummating the conclusion for all p(x, t) ∈ C1(Q1). In Section 4, we prove the
comparison principle and stability of viscosity solutions to (1.1), which are the indispensable
ingredients for the proof of Theorem 3.12.

2. Preliminaries

Because equation (1.1) is not in divergence form, the concept of weak solutions with test
functions under the integral sign is problematic. Thus, in this section we first recall the
definition of viscosity solution to (1.1).

Definition 2.1 (viscosity solution). A lower (upper, resp.) semicontinuous function u in
Q1 is a viscosity supersolution (subsolution, resp.) to (1.1), if for any ϕ ∈ C2(Q1), u − ϕ



4 Y. FANG AND C. ZHANG

reaches a local minimum (maximum, resp.) at (x0, t0) ∈ Q1, then when Dϕ(x0, t0) 6= 0, it
holds that

ϕt ≥ (≤, resp.)∆ϕ+ (p(x, t)− 2)

〈
D2ϕ

Dϕ

|Dϕ|
,
Dϕ

|Dϕ|

〉
at (x0, t0); when Dϕ(x0, t0) = 0, it holds that

ϕt ≥ (≤, resp.)∆ϕ+ (p(x, t)− 2)〈D2ϕq, q〉

at (x0, t0) for some q ∈ B1(0) ⊂ Rn. A function u is a viscosity solution to (1.1) if and only
if it is both viscosity super- and subsolution.

Next, we state some known results about solutions of linear uniformly parabolic equations,
which will be used later. Consider the equation

ut − aij(x, t)uij = 0 in Q1, (2.1)

where the coefficient aij is uniformly parabolic, i.e., there exist two constants 0 < λ ≤ Λ <∞
such that

λI ≤ aij(x, t) ≤ ΛI for all (x, t) ∈ Q1. (2.2)

We begin with the following two lemmas (see [20]).

Lemma 2.2. Let u ∈ C(Q1) be a solution to (2.1) satisfying (2.2) and A be a positive
constant. If

oscB1
u(·, t) ≤ A

for any t ∈ [−1, 0], then we have

oscQ1u(x, t) ≤ CA,

where C > 0 depends only on n,Λ.

Lemma 2.3. Let η, u be a positive constant and a smooth solution to (2.1) satisfying (2.2)
respectively. Suppose |Du| ≤ 1 in Q1 and

|{(x, t) ∈ Q1 : |Du− e| > ε0}| ≤ ε1

for some e ∈ Sn−1 (i.e., |e| = 1) and two positive constants ε0, ε1. Then there is a constant
a ∈ R such that

|u(x, t)− a− e · x| ≤ η
for any (x, t) ∈ Q1/2, provided that ε0, ε1 are small enough. Here ε0, ε1 depend on n, λ,Λ
and η.

Subsequently, we present an important conclusion about improvement of oscillation for
solution to (2.1).

Lemma 2.4 ( [20]). Assume u ∈ C(Q1) is a nonnegative supersolution to (2.1) satisfying
(2.2). For any 0 < µ < 1, there is τ ∈ (0, 1) depending only on n, µ and γ > 0 depending on
n, µ, λ,Λ such that if

|{(x, t) ∈ Q1 : u ≥ 1}| > µ|Q1|,
then it holds that

u ≥ γ in Qτ .

We end this section by the following boundary estimates of solutions to (2.1) utilized in
the proof of Theorem 3.12.
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Lemma 2.5 ( [20]). Suppose that u ∈ C(Q1) is a solution to (2.1) satisfying (2.2) and that
ρ is a modulus of continuity of boundary value ϕ := u |∂pQ1 . Then there is another modulus
of continuity ρ∗ that depends on n, λ,Λ, ρ, ‖ϕ‖L∞(∂pQ1) such that

|u(x, t)− u(y, s)| ≤ ρ∗(|x− y| ∨
√
|t− s|)

for any (x, t), (y, s) ∈ Q1. Here a ∨ b denotes max{a, b}.

3. Hölder regularity of spatial gradients

To avoid the lack of smoothness of viscosity solutions to (1.1), we first consider the
following regularized equation

ut =

(
δij + (p(x, t)− 2)

uiuj
|Du|2 + ε2

)
uij (3.1)

with ε > 0 in Q1. We will focus on deriving the uniform estimates with respect to ε so that
we can pass to the limit by letting ε→ 0 in the end. For later convenience, we denote

aεij := aεij(x, t,Du) = δij + (p(x, t)− 2)
uiuj

|Du|2 + ε2

with ui being the i-th component of Du.
Now we present the interior Lipschitz estimates independent of ε on the viscosity solutions

of (3.1). This result is stated as follows.

Lemma 3.1. Let u be a viscosity solution to (3.1) in Q4 with ε ∈ (0, 1). Let p(x, t) be
uniformly Lipschitz continuous in the spatial variables, that is, there is a number Clip > 0,
independent of time variable, such that |p(x, t) − p(y, t)| ≤ Clip|x − y|. Then there is a
constant C > 0, which depends on n, p−, p+, Clip and ‖u‖L∞(Q4), such that

|u(x, t)− u(y, t)| ≤ C|x− y|

for each (x, t), (y, t) ∈ Q3 and |x− y| < 1.

Proof. As the proof of Lipschitz estimates in Section 2 in [18], this conclusion holds as well.
It is enough to notice that the matrix

I + (p(x, t)− 2)
q ⊗ q
|q|2 + ε2

(q ∈ Rn)

is uniformly elliptic. �

Remark 3.2. If p(x, t) is assumed to be of class C1(Q4) in the above lemma, then the
constant Clip > 0 could be substituted with ‖Dx,tp(x, t)‖L∞(Q4).

It follows from Lemma 3.1 that the spatial gradient Du is bounded (which is independent
of ε). By normalization we may assume that |Du| ≤ 1 below. In the sequel, we are ready to
prove the Hölder continuity of Du at the origin (0, 0), and conclude directly the local Hölder
regularity for Du via standard translation arguments. To this end, we first verify that the
solutions of equation (1.1) are locally of class C1,α under the condition that ‖Dx,tp‖L∞(Q1)

is small. Next, through doing a scaling work, we finally infer that the solutions are locally
C1,α-regular under the assumption that ‖Dx,tp‖L∞(Q1) is finite, i.e., |Dx,tp(x, t)| ≤ M in
Q1 (M is a large number).
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3.1. Hölder regularity of gradient for the case that ‖Dx,tp‖L∞(Q1) is small enough.

We shall prove that if the projection of Du onto the unit vector e ∈ Sn−1 is away from 1
in a large part of Q1, then the inner product Du · e has improved oscillation in a smaller
cylinder.

Lemma 3.3. Suppose that u is a smooth solution to (3.1) in Q1. For every 0 < l < 1, µ > 0,
if p(x, t) ∈ C1(Q1) and ‖Dp‖L∞(Q1) ≤ β, where β is a small enough constant depending on
n, p−, p+, µ and l, then we can conclude that there are two positive constants τ and δ, the
former depending only on n, µ and the latter depending on n, p−, p+, µ and l, such that for
arbitrary e ∈ Sn−1, if

|{(x, t) ∈ Q1 : Du · e ≤ l}| > µ|Q1|,
we have

Du · e < 1− δ in Qτ .

Proof. Let

aεij,m :=
∂aεij(x, t,Du)

∂um
= (p(x, t)− 2)

(
δimuj + δjmui
|Du|2 + ε2

− 2uiujum
(|Du|2 + ε2)2

)
.

Differentiating equation (3.1) in xk derives

(uk)t = aεij(uk)ij + aεij,muij(uk)m + pk
uiuj

|Du|2 + ε2
uij ,

where pk := ∂p(x,t)
∂xk

. Define

w = (Du · e− l + ρ|Du|2)+

with ρ = l
4 . Here (f)+ := max{f, 0}. Then for the function Du · e− l we have

(Du · e− l)t = aεij(Du · e− l)ij + aεij,muij(Du · e− l)m +Dp · e uiujuij
|Du|2 + ε2

,

and for |Du|2 derive

(|Du|2)t = aεij(|Du|2)ij + aεij,muij(|Du|2)m + 2Dp ·Du uiujuij
|Du|2 + ε2

− 2aεijukiukj ,

where Dp denotes the spatial gradient of p(x, t).
Merging the previous two identities arrives at in the region Ω+ := {(x, t) ∈ Q1 : w > 0}

wt = aεijwij + aεij,muijwm +Dp · (e+ 2ρDu)
uiujuij
|Du|2 + ε2

− 2ρaεijukiukj .

Noting that |Du| > l
2 in Ω+, we have

|aεij,m| ≤
4|p(x, t)− 2|

l
≤ 4

l
max{|p+ − 2|, |p− − 2|} =:

4

l
b. (3.2)

By Cauchy-Schwarz inequality and (3.2), we obtain

wt ≤ aεijwij +
4

l
b|Dw|

n∑
i,j

|uij |+ (1 + 2ρ)|Dp| |〈D
2u ·Du,Du〉|
|Du|2 + ε2

− 2ρaεijukiukj

≤ aεijwij + ε|D2u|2 +
4n2b2

εl2
|Dw|2 + (1 + 2ρ)|Dp||D2u|

− 2ρ

(
|D2u|2 + (p(x, t)− 2)

|D2u ·Du|2

|Du|2 + ε2

)



REGULARITY FOR PARABOLIC NORMALIZED p(x, t)-LAPLACE EQUATION 7

≤ aεijwij + 2ε|D2u|2 +
4n2b2

εl2
|Dw|2 +

(1 + 2ρ)2

4ε
|Dp|2

− 2ρ

(
|D2u|2 + (p(x, t)− 2)

|D2u ·Du|2

|Du|2 + ε2

)
.

Denote

Ω1 := {p(x, t) ≥ 2} ∩ Ω+ and Ω2 := {p(x, t) < 2} ∩ Ω+.

In Ω1, we get

wt ≤ aεijwij + 2ε|D2u|2 +
4n2b2

εl2
|Dw|2 +

(1 + 2ρ)2

4ε
|Dp|2 − 2ρ|D2u|2.

In Ω2, we have

wt ≤ aεijwij + 2ε|D2u|2 +
4n2b2

εl2
|Dw|2 +

(1 + 2ρ)2

4ε
|Dp|2 + 2ρ(1− p(x, t))|D2u|2

≤ aεijwij + 2ε|D2u|2 +
4n2b2

εl2
|Dw|2 +

(1 + 2ρ)2

4ε
|Dp|2 + 2ρ(1− p−)|D2u|2.

Case 1. If p− ≥ 2, then we obtain by choosing ε = ρ

wt ≤ aεijwij +
4n2b2

ρl2
|Dw|2 +

(1 + 2ρ)2

4ρ
|Dp|2

≤ aεijwij +
4n2b2

ρl2
|Dw|2 +

(1 + 2ρ)2

4ρ
M2

in Ω+, where b = p+ − 2 and M = ‖Dp‖L∞(Q1). Let

c =
(1 + 2ρ)2

4ρ
M2.

Thereby it satisfies in the viscosity sense that

wt ≤ aεijwij +
4n2b2

ρl2
|Dw|2 + c in Q1.

Set w = 1− l + ρ+ c and ν = c1
ρl2 , where c1 will be chosen later. Define

U =
1

ν
(1− eν(w−ct−w)).

Observe that

aεijwij + νaεijwiwj ≥ aεijwij + ν|Dw|2.
Hence we can take c1 = 4n2(p+ − 2)2 such that

Ut ≥ aεijUij in Q1

in the viscosity sense. Obviously, U ≥ 0 in Q1.
If Du · e ≤ l, then it follows that

|{(x, t) ∈ Q1 : U ≥ ν−1(1− eν(l−1))}| > µ|Q1|.
Thus we can conclude from Lemma 2.4 that there exist two constants τ, γ0 > 0 such that

U ≥ ν−1(1− eν(l−1))γ0 in Qτ ,

where τ and γ0 depend on µ, n and n, p−, p+, µ separately. Since w ≤ w + ct, we derive

U ≤ w − w + ct.
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Therefore in Qτ we get

Du · e+ ρ|Du|2 ≤ 1 + ρ− ν−1(1− eν(l−1))γ0 + c+ ct.

By |Du · e| ≤ |Du|, the above inequality becomes

Du · e+ ρ(Du · e)2 ≤ 1 + ρ− ν−1(1− eν(l−1))γ0 + c in Qτ .

Furthermore,

Du · e ≤ −1 +
√

1 + 4ρ(1 + ρ− ν−1(1− eν(l−1))γ0 + c)

2ρ
in Qτ .

Here we need
−1 +

√
1 + 4ρ(1 + ρ− ν−1(1− eν(l−1))γ0 + c)

2ρ
< 1.

Namely,

c < ν−1(1− eν(l−1))γ0

⇐⇒ (1 + 2ρ)2

4ρ
M2 < ν−1(1− eν(l−1))γ0

⇐⇒M2 <
4ργ0

ν(1 + 2ρ)2
(1− eν(l−1)),

where ν = 4n2

ρl2 (p+−2)2. In other words, when M := ‖Dp‖L∞(Q1) is small enough depending

on n, p−, p+, l and µ, we get

Du · e ≤ 1− δ in Qτ ,

where δ > 0 depends on n, p−, p+, l and µ.
Case 2. If 1 < p− < 2, we obtain

wt ≤ aεijwij +
4n2b2

ρl2(p− − 1)
|Dw|2 +

(1 + 2ρ)2

4ρ(p− − 1)
|Dp|2 in Ω+,

where b = max{|p+ − 2|, |p− − 2|}. Let

ĉ =
(1 + 2ρ)2

4ρ(p− − 1)
M2.

It follows that

wt ≤ aεijwij +
4b2

ρl2(p− − 1)
|Dw|2 + ĉ in Q1

in the viscosity sense.
Notice that

aεijwij + νaεijwiwj ≥ aεijwij + ν(p− − 1)|Dw|2

with ν = c2
ρl2(p−−1) > 0, where c2 is a constant determined later. Denote ŵ = 1− l + ρ + ĉ

and V = 1
ν (1− eν(w−ĉt−ŵ)). We take c2 = 4n2b2

p−−1 such that

Vt ≥ aεijVij in Q1

in the viscosity sense. Apparently, V ≥ 0 in Q1.
For Du · e ≤ l, by the assumption we have

|{(x, t) ∈ Q1 : V ≥ ν−1(1− eν(l−1))}| > µ|Q1|.
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Using again Lemma 2.4 deduces that there are two positive constants τ and γ0, depending
respectively on µ, n and n, p−, p+, µ, such that

V ≥ ν−1(1− eν(l−1))γ0 in Qτ .

We further obtain

Du · e+ ρ(Du · e)2 ≤ 1 + ρ− ν−1(1− eν(l−1))γ0 + ĉ in Qτ .

Thus

Du · e ≤ −1 +
√

1 + 4ρ(1 + ρ− ν−1(1− eν(l−1))γ0 + ĉ)

2ρ
in Qτ .

Analogous to Case 1, for M = ‖Dp‖L∞(Q1) sufficiently small and depending on n, p−, p+, l
and µ, we arrive at

Du · e ≤ 1− δ in Qτ ,

where δ > 0 depends on n, p−, p+, l and µ. We now complete the proof. �

Remark 3.4. For the case that p− ≥ 2, we note that

I ≤ (p− − 1)I ≤ (aεij(x, t, q))n×n ≤ (p+ − 1)I

for all ε ∈ (0, 1), q ∈ Rn and (x, t) ∈ Q1, so the constant γ0 appearing in Case 1 may not
depend on p−.

If Lemma 3.3 holds in all directions e ∈ Sn−1, we then get the decay of oscillation of |Du|
in a smaller cylinder. This content is formulated by the following lemma.

Lemma 3.5. Let u be a smooth solution of (3.1) in Q1. For any 0 < l < 1, µ > 0, when
‖Dp‖L∞(Q1) ≤ β with β being a sufficiently small constant depending on n, p−, p+, l, µ, there
is τ (small) depending on n, µ, and δ > 0 depending on n, p−, p+, l and µ, such that for any
nonnegative integer k, if

|{(x, t) ∈ Qτ i : Du · e ≤ l(1− δ)i}| > µ|Qτ i | for all e ∈ Sn−1, (3.3)

and i = 0, 1, · · · , k, then
|Du| < (1− δ)i+1 in Qτ i+1

for all i = 0, 1, · · · , k.

Proof. We prove this lemma by induction. For k = 0, the conclusion holds obviously by
Lemma 3.3. Suppose the conclusion is true for i = 0, 1, · · · , k − 1. We are going to verify it
for i = k. Set

v(x, t) :=
1

τk(1− δ)k
u(τkx, τ2kt).

Then v satisfies

vt = ∆v + (hk(x, t)− 2)
vivj

|Dv|2 + ε2(1− δ)−2k
vij in Q1,

where hk(x, t) = p(τkx, τ2kt). We can see from the induction assumptions that |Dv| < 1 in
Q1, and

|{(x, t) ∈ Q1 : Dv · e ≤ l}| > µ|Q1| for all e ∈ Sn−1.

Furthermore, we observe that

1 < p− ≤ hk(x, t) ≤ p+ <∞
and

|Dhk(x, t)| = |τkDp(y, s)| ≤ τk‖Dp‖L∞(Q1),
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where (y, s) = (τkx, τ2kt) and (x, t) ∈ Q1. Hence from Lemma 3.3 we get

Dv · e ≤ 1− δ in Qτ

for all e ∈ Sn−1. Namely, |Dv| ≤ 1− δ in Qτ . Rescaling back, we arrive at

|Du| < (1− δ)k+1 in Qτk+1 .

We finish the proof. �

Remark 3.6. Noting that 0 < τ < 1, when Dp(x, t) is bounded, we can see that

|Dhk(x, t)| → 0 uniformly in Q1,

by sending k →∞. That is to say, for k large enough, we could remove the restriction that
‖Dp‖L∞(Q1) is sufficiently small.

Remark 3.7. To obtain the reduction of oscillation of |Du|, ‖Dp‖L∞(Q1) ≤ β (small
enough) is required from Lemmas 3.3 and 3.5 above. Hence we could assume initially that
sup(x,t)∈Q1

|Dx,tp| =: ‖Dx,tp‖L∞(Q1) ≤ β. Naturally, sup(x,t)∈Q1
|Dp| =: ‖Dp‖L∞(Q1) ≤

‖Dx,tp‖L∞(Q1) ≤ β. Consequently, these two lemmas still hold true, when we replace
‖Dp‖L∞(Q1) by ‖Dx,tp‖L∞(Q1) in Lemmas 3.3 and 3.5.

If the previous iteration process could be carried out infinitely, we then easily infer the
Hölder regularity for Du at the origin (0, 0). Nonetheless, unless Du(0, 0) = 0, the iteration
will terminate at some step, that is, the condition (3.3) will fail to be fulfilled in some
direction e ∈ Sn−1. In this scenario, it follows from Lemmas 2.2 and 2.3 that the solution,
u, is close to some linear function. Then we could employ the conclusion on the regularity
of small perturbation solution in [38] to verify the Hölder continuity of Du.

Lemma 3.8. Let u be a smooth solution to (3.1) in Q1. For γ = 1
2 , there are two positive

constants η (small) and C (large), both depending on n, p−, p+ and ‖Dx,tp‖L∞(Q1) such that

if a linear function L(x) with 1
2 ≤ |DL| ≤ 2 satisfies

‖u(x, t)− L(x)‖L∞(Q1) ≤ η,
then

‖u(x, t)− L(x)‖C2,1/2(Q1/2) ≤ C.

Proof. We can reach this conclusion from Corollary 1.2 in [38], because L(x) is a solution
to (3.1) as well. �

Remark 3.9. From Remark 3.7, we have known that ‖Dx,tp‖L∞(Q1) is small enough, so
in Lemma 3.8 we may assume that ‖Dx,tp‖L∞(Q1) is smaller than some sufficiently large
constant determined so that we can substitute ‖Dx,tp‖L∞(Q1) by that constant.

In the following, we will give a uniformly a priori estimate for the solution to (3.1).

Theorem 3.10. Let u be a smooth solution to (3.1) in Q1. Suppose that p(x, t) ∈ C1(Q1)
and ‖Dx,tp‖L∞(Q1) ≤ β, where β is a small constant depending only on n, p−, p+. Then
there are two positive constants α and C, both of which depend on n, p−, p+, such that

‖Du‖Cα(Q1/2) ≤ C(‖u‖L∞(Q1) + ε)

and

sup
Q1/2

|u(x, t)− u(x, s)|
|t− s| 1+α2

≤ C(‖u‖L∞(Q1) + ε).
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Proof. As the proof of Theorem 4.5 in [20], we can first deduce Du ∈ Cα(Q1/2) by combining
Lemma 3.5 and Lemmas 2.3, 3.8. To this end, we choose η as the one in Lemma 3.8 with
‖Dx,tp‖L∞(Q1) replaced by some large constant fixed. And then we take ε0, ε1 > 0 such
small constants that Lemma 2.3 holds. Next, we determine the constants l and µ to be
1− ε2

0/2 and ε1/|Q1| respectively.

Terminally, by Du ∈ Cα(Q1/2) and using Lemma 2.2, we show that u is C
1+α
2 (Q1/2)-

regular in the t-variable. �

Lemma 3.11. Let g ∈ C(∂pQ1). For ε > 0, there is a unique solution uε ∈ C(Q1)∩C∞(Q1)
of equation (3.1) satisfying uε = g on ∂pQ1.

For this lemma, we observe that equation (3.1) is uniformly parabolic and the coefficients
aεij(x, t,Du) are smooth with bounded derivatives for every ε > 0. So it can be concluded
from the classical quasilinear equation theory (see Theorem 4.4 of [25], page 560) and the
Schauder estimates.

Combining the previous conclusions, we now could establish an important intermediate
result as follows.

Theorem 3.12. Let u be a viscosity solution of (1.1) in Q1. Assume that p(x, t) ∈ C1(Q1)
and ‖Dx,tp‖L∞(Q1) ≤ β with β being a small enough constant that depends on n, p−, p+.
Then there are two positive constants α ∈ (0, 1) and C, both depending on n, p− and p+,
such that

‖Du‖Cα(Q1/2) ≤ C‖u‖L∞(Q1)

and

sup
Q1/2

|u(x, t)− u(x, s)|
|t− s| 1+α2

≤ C‖u‖L∞(Q1).

Proof. Without loss of generality, we can suppose u ∈ C(Q1). It follows from Lemma 3.11
that there is a unique viscosity solution uε ∈ C(Q1)∩C∞(Q1) to (3.1) such that uε = u on
∂pQ1. Based on the proof of Theorem 1.1 in [20], we note that it suffices to show that uε

converges to u uniformly in Q1 as ε→ 0 (up to a subsequence). To this end, we shall make
use of comparison principle and stability property for viscosity solution to (1.1), which are
two counterparts to Theorems 2.9 and 2.10 in [20]. Fortunately, these two conclusions hold
true, whose proof will be presented in Section 4. �

3.2. Hölder regularity of gradient for the case that ‖Dx,tp‖L∞(Q1) is finite. In this
subsection, we shall establish the Hölder estimates for the gradients of solutions to (1.1),
under the condition that |Dx,tp(x, t)| possesses a more general bound.

Set

ũ(x, t) := u(εx, ε2t), p̃(x, t) := p(εx, ε2t)

with 0 < ε < 1. By a scaling argument for equation (1.1), it follows that ũ satisfies (in the
viscosity sense) that

ũt =

(
δij + (p̃(x, t)− 2)

ũiũj
|Dũ|2

)
ũij in Qε−1 . (3.4)

When |Dx,tp| ≤M in Q1 with M being a large quantity, by the following equalities

Dp̃(x, t) = εDp(y, s),

∂tp̃(x, t) = ε2∂sp(y, s),
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where (y, s) := (εx, ε2t), then we have

‖Dx,tp̃‖L∞(Qε−1 ) ≤ ε‖Dx,tp‖L∞(Q1) ≤ εM < β

by choosing ε so small that

ε ≤ β

M + 1
.

According to Theorem 3.12, we know that ε will only depend on n, p−, p+ and ‖Dx,tp‖L∞(Q1).
Observe that the structure of (3.4) is similar to that of (1.1). Therefore this permits us to
employ the previous results in subsection 3.1 to show the local C1,α-regularity of the solution
ũ to (3.4). In turn, by rescaling back, we can deduce that the solution u to (1.1) is of class

C1,α
loc provided that ‖Dx,tp‖L∞(Q1) is finite. As a consequence, we reach the conclusion that

if function p(x, t) ∈ C1(Q1), then the viscosity solution to (1.1) is locally C1,α-regular.
As has been stated above, we now complete the proof of Theorem 1.1.

4. Comparison principle and stability for viscosity solution

In this section, we are going to prove the comparison principle and stability properties for
viscosity solutions of (1.1). We shall make use of Ishii-Lions’ method to show the comparison
principle and we remark that the comparison principle is new. Some ideas of the proof are
inspired by that of comparison principle in [23], in which the p(x)-Laplace equation was
considered. Here we investigate these two properties in a more general domain. Let Ω be a
bounded domain of Rn. We denote a general parabolic cylinder by ΩT := Ω × [0, T ), and
∂pΩT denotes its parabolic boundary.

Theorem 4.1 (comparison principle). Suppose that the function p(x, t) in equation (1.1) is
Lipschitz continuous in ΩT . Let u be a viscosity subsolution and v be a continuous viscosity
supersolution to (1.1). If u ≤ v on ∂pΩT , then we can conclude

u ≤ v in ΩT . (4.1)

Proof. For convenience, we can assume v is a strict supersolution, i.e.,

vt −
(

∆v + (p(x, t)− 2)

〈
D2v

Dv

|Dv|
,
Dv

|Dv|

〉)
> 0

in the viscosity sense by considering w := v + ε
T−t instead, and w → ∞ as t → T . Indeed,

we suppose ϕ ∈ C2(ΩT ) such that w−ϕ has a local minimum at (x0, t0) ∈ ΩT , then so does
v − φ by letting φ(x, t) := ϕ(x, t)− ε

T−t . Notice that

Dφ(x0, t0) = Dϕ(x0, t0),

∂tφ(x0, t0) = ∂tϕ(x0, t0)− ε

(T − t0)2
,

and
D2φ(x0, t0) = D2ϕ(x0, t0).

Because v is a viscosity supersolution, we obtain

0 ≤ ∂tφ(x0, t0)−
(

trD2φ(x0, t0) + (p(x0, t0)− 2)

〈
D2φ(x0, t0)

φ(x0, t0)

|φ(x0, t0)|
,
φ(x0, t0)

|φ(x0, t0)|

〉)
= ∂tϕ(x0, t0)− ε

(T − t0)2

−
(

trD2ϕ(x0, t0) + (p(x0, t0)− 2)

〈
D2ϕ(x0, t0)

ϕ(x0, t0)

|ϕ(x0, t0)|
,
ϕ(x0, t0)

|ϕ(x0, t0)|

〉)
,
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when Dϕ(x0, t0) 6= 0. Here we denote by trM the trace of matrix M . Furthermore,

0 <
ε

(T − t0)2

≤ ∂tϕ(x0, t0)−
(

trD2ϕ(x0, t0) + (p(x0, t0)− 2)

〈
D2ϕ(x0, t0)

ϕ(x0, t0)

|ϕ(x0, t0)|
,
ϕ(x0, t0)

|ϕ(x0, t0)|

〉)
.

When Dϕ(x0, t0) = 0, for some |η| ≤ 1 (i.e., η ∈ B1(0)) we get

0 ≤ ∂tφ(x0, t0)− (trD2φ(x0, t0) + (p(x0, t0)− 2)〈D2φ(x0, t0) · η, η〉).
Namely,

0 <
ε

(T − t0)2
≤ ∂tϕ(x0, t0)− (trD2ϕ(x0, t0) + (p(x0, t0)− 2)〈D2ϕ(x0, t0) · η, η〉).

In conclusion, we have verified that w := v + ε
T−t is a strict supersolution.

To demonstrate this conclusion, we argue by contradiction. Suppose (4.1) is not valid.

Then it holds that for some (x̂, t̂) ∈ Ω× (0, T ), we have

θ := u(x̂, t̂)− v(x̂, t̂) = sup
ΩT

(u− v) > 0.

Set
Ψj(x, y, t, s) = u(x, t)− v(y, s)− Φj(x, y, t, s),

where Φj(x, y, t, s) = j
q |x− y|

q + j
2 (t− s)2 with q > 2.

Without loss of generality, in what follows, we take a special value of q, i.e., q = 4. Let
(xj , yj , tj , sj) be the maximum point of Ψj in Ω × Ω × [0, T ) × [0, T ). We can prove that

(xj , yj , tj , sj) ∈ Ω × Ω × (0, T ) × (0, T ) and (xj , yj , tj , sj) → (x̂, x̂, t̂, t̂) as j → ∞ by the
Lemma 7.2 in [12].

Case 1. If xj = yj , then

0 = DxΦj(xj , yj , tj , sj) = DyΦj(xj , yj , tj , sj),

0 = D2
xΦj(xj , yj , tj , sj) = D2

yΦj(xj , yj , tj , sj).

Observe that

u(xj , tj)− v(yj , sj)− Φj(xj , yj , tj , sj) ≥ u(xj , tj)− v(y, s)− Φj(xj , y, tj , s).

Denote
Θ(y, s) := −Φj(xj , y, tj , s) + Φj(xj , yj , tj , sj) + v(yj , sj).

Obviously, v(y, s) − Θ(y, s) reaches the local minimum at (yj , sj). Due to v a strict super-
solution, we arrive at

0 < ∂sΘ(yj , sj)− (trD2Θ(yj , sj) + (p(yj , sj)− 2)〈D2Θ(yj , sj) · η, η〉)
= j(tj − sj)

for some |η| ≤ 1. Analogously, letting

β(x, t) := Φj(x, yj , t, sj)− Φj(xj , yj , tj , sj) + u(xj , tj),

we can obtain
0 ≥ ∂tβ(xj , tj) = j(tj − sj).

From the previous two inequalities, we get

0 < j(tj − sj)− j(tj − sj) = 0.

This is a contradiction.
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Case 2. If xj 6= yj , we have the following results.
By theorem of sums (see [12]), for every µ > 0, there are Xj , Yj ∈ Sn (Sn denotes the set

of all symmetric n× n matrices) such that

(∂tΦj , DxΦj , Xj) ∈ P
2,+
u(xj , tj), (−∂sΦj ,−DyΦj , Yj) ∈ P

2,−
v(yj , sj)

and (
Xj

−Yj

)
≤ D2Φj +

1

µ
(D2Φj)

2,

where all the derivatives are computed at (xj , yj , tj , sj) and

D2Φj =

(
B −B
−B B

)
with B := j|xj − yj |2I + 2j(xj − yj)⊗ (xj − yj). Furthermore, taking µ = j gets(

Xj

−Yj

)
≤ j(|xj − yj |2 + 2|xj − yj |4)

(
I −I
−I I

)
+ 2j(1 + 8|xj − yj |2)

(
G −G
−G G

)
,

(4.2)

where G := (xj − yj)⊗ (xj − yj). Note that (4.2) implies for any ξ, ζ ∈ Rn

〈Xjξ, ξ〉 − 〈Yjζ, ζ〉 ≤ (3j|xj − yj |2 + 18j|xj − yj |4)|ξ − ζ|2. (4.3)

By virtue of the equivalent definition of viscosity solution emphasized by terminology of
semi jets, we obtain

− ∂sΦj −
(

trYj + (p(yj , sj)− 2)

〈
Yj
−DyΦj
|DyΦj |

,
−DyΦj
|DyΦj |

〉)
> 0 (4.4)

and

∂tΦj −
(

trXj + (p(xj , tj)− 2)

〈
Xj

DxΦj
|DxΦj |

,
DxΦj
|DxΦj |

〉)
≤ 0. (4.5)

Here we observe that
∂tΦj = j(tj − sj) = −∂sΦj

and
ηj := DxΦj = −DyΦj = j|xj − yj |2(xj − yj).

ηj is nonzero, which is crucial. Denote

A(x, t, η) := I + (p(x, t)− 2)
η

|η|
⊗ η

|η|
,

which is positive definite so that it possesses matrix square root denoted by A
1
2 (x, t, η). We

denote the k-th column of A
1
2 (x, t, η) as A

1
2

k (x, t, η). Subtracting (4.5) from (4.4), we derive

0 < tr(A(xj , tj , ηj)Xj)− tr(A(yj , sj , ηj)Yj)

=

n∑
k=1

XjA
1
2

k (xj , tj , ηj) ·A
1
2

k (xj , tj , ηj)−
n∑
k=1

YjA
1
2

k (yj , sj , ηj) ·A
1
2

k (yj , sj , ηj)

≤ Cj|xj − yj |2‖A
1
2 (xj , tj , ηj)−A

1
2 (yj , sj , ηj)‖22

≤ Cj|xj − yj |2

(λmin(A
1
2 (xj , tj , ηj)) + λmin(A

1
2 (yj , sj , ηj)))2

‖A(xj , tj , ηj)−A(yj , sj , ηj)‖22, (4.6)
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where the penultimate inequality is obtained by (4.3) and the last inequality is derived from

the local Lipschitz continuity of A 7→ A
1
2 (see [17], page 410). Here λmin(M) denotes the

smallest eigenvalue of a symmetric n× n matrix M .
Now we estimate

‖A(xj , tj , ηj)−A(yj , sj , ηj)‖22 =

∥∥∥∥(p(xj , tj)− p(yj , sj))
ηj
|ηj |
⊗ ηj
|ηj |

∥∥∥∥2

2

= |(p(xj , tj)− p(yj , sj))|2

≤ C(|xj − yj |2 + |tj − sj |2),

where in the last inequality we employ the condition that p(x, t) is Lipschitz continuous, i.e.,
|p(x, t)− p(y, s)| ≤ C|(x− y, t− s)|. Moreover,

λmin(A
1
2 (x, t, η)) = (λmin(A(x, t, η))

1
2 = min{1,

√
p− − 1}.

Hence (4.6) turns into

0 <
Cj|xj − yj |2

4 min{1, p− − 1}
(|xj − yj |2 + |tj − sj |2)

= Cj|xj − yj |4 + Cj|tj − sj |2|xj − yj |2.
On the other hand, we note that

u(xj , tj)− v(xj , tj) ≤ max
Ω×[0,T )

{u(x, t)− v(x, t)}

≤ u(xj , tj)− v(yj , sj)−
j

4
|xj − yj |4 −

j

2
(tj − sj)2.

So we further get

j

4
|xj − yj |4 +

j

2
(tj − sj)2 ≤ v(xj , tj)− v(yj , sj)

→ v(x̂, t̂)− v(x̂, t̂) = 0,

by sending j →∞, where we have assumed v is continuous in ΩT .
Consequently, we reach a contradiction that

0 < Cj|xj − yj |4 + Cj|tj − sj |2|xj − yj |2 → 0

as j →∞, observing that both xj and yj converge to the point x̂. �

We now end this section by stability properties of viscosity solutions.

Theorem 4.2 (stability). Let {ui} be a sequence of viscosity solutions to (3.1) in ΩT with
εi ≥ 0 such that εi → 0, and ui → u locally uniformly in ΩT . Then u is a viscosity solution
to (1.1) in ΩT .

Proof. We only show that u is a viscosity supersolution of (1.1). The proof of u being a
subsolution is similar to that. Suppose ϕ ∈ C2(ΩT ) such that u−ϕ attains a local minimum
at (x0, t0) ∈ ΩT . We know, from ui converging to u locally uniformly, that there is a
sequence {(xi, ti)} ⊂ ΩT with (xi, ti)→ (x0, t0) as i→∞, such that

ui − ϕ has a local minimum at (xi, ti).

If Dϕ(x0, t0) 6= 0, then by ui viscosity supersolution, we obtain

∂tϕ(xi, ti) ≥ trD2ϕ(xi, ti) + (p(xi, ti)− 2)
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·

〈
D2ϕ(xi, ti)

Dϕ(xi, ti)

(|Dϕ(xi, ti)|2 + ε2
i )

1
2

,
Dϕ(xi, ti)

(|Dϕ(xi, ti)|2 + ε2
i )

1
2

〉
.

Letting i→∞, the above inequality becomes

∂tϕ(x0, t0) ≥ F (x0, t0, Dϕ(x0, t0), D2ϕ(x0, t0)),

where F (x, t, η,X) := trX + (p(x, t)− 2)〈X η
|η| ,

η
|η| 〉.

If Dϕ(x0, t0) = 0, we divide the proof into two cases. When Dϕ(xi, ti) 6= 0 for i large
enough, it follows that

∂tϕ(xi, ti) ≥ trD2ϕ(xi, ti) + (p(xi, ti)− 2)

·

〈
D2ϕ(xi, ti)

Dϕ(xi, ti)

(|Dϕ(xi, ti)|2 + ε2
i )

1
2

,
Dϕ(xi, ti)

(|Dϕ(xi, ti)|2 + ε2
i )

1
2

〉
.

For some vector ξ ∈ Rn with |ξ| ≤ 1, we deduce by sending i→∞

∂tϕ(x0, t0) ≥ trD2ϕ(x0, t0) + (p(x0, t0)− 2)〈D2ϕ(x0, t0)ξ, ξ〉.

When Dϕ(xi, ti) ≡ 0 for i sufficiently large, by the definition of supersolution, we have

∂tϕ(xi, ti) ≥ trD2ϕ(xi, ti) + (p(xi, ti)− 2)〈D2ϕ(xi, ti)ξi, ξi〉,

where ξi ∈ Rn satisfies |ξi| ≤ 1. Thus it follows that for some vector |ξ| ≤ 1

∂tϕ(x0, t0) ≥ trD2ϕ(x0, t0) + (p(x0, t0)− 2)〈D2ϕ(x0, t0)ξ, ξ〉,

as i→∞. Therefore, we prove that u is a viscosity supersolution. �
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