A note on steady vortex flows in two dimensions

Daomin Caoa,b, Guodong Wangc

aSchool of Mathematics and Information Science, Guangzhou University, Guangzhou 510405, China
bInstitute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100190, China
cInstitute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, China

Abstract

In this note, we give a general criterion for steady vortex flows in a planar bounded domain. More specifically, we show that if the stream function satisfies “locally” a semilinear elliptic equation with monotone or Lipschitz nonlinearity, then the flow must be steady.

Keywords: Euler equations, steady vortex flow, semilinear elliptic equation, stream function

1. Introduction and Main Result

Let $D \subset \mathbb{R}^2$ be a simply connected and bounded domain with a smooth boundary ∂D. The motion of an incompressible nonviscous fluid of unit density in D is governed by the following Euler dynamical equations:

\[
\begin{aligned}
\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} &= -\nabla P, \quad (x, t) \in D \times \mathbb{R}^+, \\
\nabla \cdot \mathbf{v} &= 0, \\
\mathbf{v}(x, 0) &= \mathbf{v}_0(x), \quad x \in D, \\
\mathbf{v} \cdot n &= 0, \quad (x, t) \in \partial D \times \mathbb{R}^+,
\end{aligned}
\]

(1.1)

where $\mathbf{v} = (v_1, v_2)$ is the velocity field, P is the scalar pressure and \mathbf{n} denotes the outward unit normal of ∂D. Here we impose the impermeability condition on the boundary.

Define the vorticity of the fluid as $\omega := \partial_1 v_2 - \partial_2 v_1$. Since \mathbf{v} is divergence-free, there is a function ψ, called the stream function, such that $\mathbf{v} = J \nabla \psi := (\partial_2 \psi, -\partial_1 \psi)$, where $J(a, b) = (b, -a)$ denotes clockwise rotation through $\frac{\pi}{2}$ for any planar vector (a, b). It is easy to see that ω and ψ satisfy the following Poisson’s equation:

\[-\Delta \psi = \omega.
\]

By the impermeability boundary condition, we deduce that ψ is a constant on ∂D. Without loss of generality, by adding a suitable constant we assume that ψ vanishes on the boundary.
A note on steady vortex flows

Thus ψ can be determined by ω in the following way

$$\psi(x,t) = G\omega(x,t) := \int_D G(x,y)\omega(y,t)dy, \ x \in D,$$

where G is the Green function for $-\Delta$ in D with zero Dirichlet boundary condition.

Taking the curl on both sides of the first equation in (1.1), we obtain

$$\partial_t \omega + J \nabla G \omega \cdot \nabla \omega = 0,$$

which is a nonlinear transport equation for ω and is usually called the vorticity equation.

In this paper, we are concerned with the steady vorticity equation, that is,

$$J \nabla G \omega \cdot \nabla \omega = 0.$$ \hspace{1cm} (1.3)

To motivate the definition of weak solutions to the steady vorticity equation, we multiply any $\phi \in C^\infty_0(D)$ on both sides of (1.3) and integrate by parts formally to obtain

$$\int_D \omega J \nabla G \omega \cdot \nabla \phi dx = 0.$$ \hspace{1cm} (1.4)

It is not difficult to check that the integral in (1.4) makes sense if $\omega \in L^{4/3}(D)$. In fact, for $\omega \in L^2(D)$, by L^p estimate we have $G\omega \in W^{2,\frac{4}{3}}(D)$, thus $G\omega \in W^{1,4}(D)$ by Sobolev embedding, therefore the integral in (1.4) makes sense by Hölder’s inequality.

Definition 1.1. We call $\omega \in L^{4/3}(D)$ a weak solution to the steady vorticity equation (1.3) if it satisfies

$$\int_D \omega J \nabla G \omega \cdot \nabla \phi dx = 0, \ \forall \phi \in C^\infty_0(D).$$ \hspace{1cm} (1.5)

In the past several decades, various methods have been proposed to construct steady vortex flows. The most commonly used method is to investigate the following semilinear elliptic problem

$$\begin{cases}
-\Delta \psi = f(\psi), & x \in D, \\
\psi = 0, & x \in \partial D,
\end{cases}$$ \hspace{1cm} (1.6)

where $f : \mathbb{R} \to \mathbb{R}$ is a Lipschitz function. It is obvious that

$$J \nabla \psi \cdot \nabla f(\psi) = J \nabla \psi \cdot (f'(\psi) \nabla \psi) = 0 \text{ a.e. in } D,$$

which means that any solution to (1.6) corresponds to a steady vortex flow in classical sense with ψ as the stream function. See [6][8][15][14] and the references listed therein. Another efficient way to construct steady vortex flows is called the vorticity method, which was first established by Arnold [1][2]. See also [3][4][9][10][11][12][16]. Roughly speaking, the vorticity method states that any steady vortex flow is equivalent to a critical point of the kinetic energy subject to
A note on steady vortex flows

some appropriate constraints for the vorticity. For example, Turkington in [16] considered the maximization of the kinetic energy

\[E(\omega) := \frac{1}{2} \int_D \int_D G(x, y) \omega(x) \omega(y) dx \, dy \]

in the admissible class

\[K_\lambda(D) := \{ \omega \in L^\infty(D) \mid 0 \leq \omega \leq \lambda \text{ a.e. in } D, \int_D \omega(x) dx = 1 \} . \]

(1.7)

Turkington proved the existence of a maximizer and showed that any maximizer \(\omega^\lambda \) must be of the form

\[\omega^\lambda = \lambda I_{A^\lambda}, \quad A^\lambda = \{ x \in D \mid G\omega^\lambda(x) > \mu^\lambda \}, \]

(1.8)

where \(I_{A^\lambda} \) denotes the characteristic function of \(A^\lambda \), and \(\mu^\lambda \) is a Lagrange multiplier depending on \(\lambda \). To show that \(\omega^\lambda \) is a steady solution to the vorticity equation (1.3), one can not use the form (1.8) anymore, since the nonlinearity here is a Heaviside function with discontinuity at \(\mu^\lambda \) and the regularity of \(\partial A^\lambda \) is unknown (still an open question). To show that \(\omega^\lambda \) satisfies (1.5), Turkington used the fact that \(\omega^\lambda \) is an energy maximizer in \(K_\lambda(D) \). See [16] for the detailed proof.

In [5], Burton proved that if \(\omega \) belongs to \(L^{4/3}(D) \) and satisfies \(\omega = f(G\omega) \) a.e. in \(D \), where \(f : \mathbb{R} \to \mathbb{R} \cup \{ \pm \infty \} \) is a monotone function, then \(\omega \) is a weak solution to (1.3). By Burton’s result, in order to obtain a steady vortex flow from (1.8), we do not need additional information about the energy of \(\omega^\lambda \).

Another example of steady vortex flows with vorticity concentrated in multiple separated regions is given in [7]. Therein the authors studied the following elliptic problem

\[
\begin{aligned}
-\Delta \psi &= \lambda \sum_{i=1}^k I_{A_i}, \quad x \in D, \\
A_i &= B_\delta(x_{0,i}) \cap \{ x \in D \mid \psi(x) > \kappa_i \},
\end{aligned}
\]

(1.9)

where \(I_{A_i} \) denotes the characteristic function of \(A_i \), \(\lambda \) is a given positive number, \(\kappa_i \) is a real number depending on \(\lambda \), \(x_{0,i} \) is a given point in \(D \), \(\delta \) is a very small positive number such that \(B_\delta(x_{0,i}) \subset D \) and \(B_\delta(x_{0,i}) \cap B_\delta(x_{0,j}) = \emptyset \) if \(i \neq j \). The authors constructed a solution to (1.9) for sufficiently large \(\lambda \), such that each \(A_i \) is a simply connected domain bounded by a \(C^1 \) closed curve and is strictly contained in \(B_\delta(x_{0,i}) \) (or equivalently, \(\text{dist}(A_i, \partial B_\delta(x_{0,i})) > 0 \)). To show that \(\psi \) satisfies (1.5), one can integrate by parts directly since each \(\partial A_i \) is \(C^1 \) and \(\psi \) is continuous across \(\partial A_i \).

Notice that in (1.9) the vorticity \(\omega = -\Delta \psi \) is no longer a function of the stream function \(\psi \), since the \(k \) Lagrange multipliers \(\kappa_i, \ldots, \kappa_k \) may be different numbers. However, the vorticity is a function of the stream function “locally”.

Our aim in this note is to give a general criterion for solutions of the steady vorticity equation (1.3), that is, if the stream function satisfies “locally” a semilinear elliptic equation with monotone or Lipschitz nonlinearity, then the corresponding flow must be steady.
Before stating the theorem, we give some notations for clarity. We will use $\text{supp}(f)$ to denote the support of some function f, and the distance between two planar sets A and B is defined by

$$\text{dist}(A, B) := \inf_{x \in A, y \in B} |x - y|.$$

Let $\delta > 0$ be a positive number, the notation A_δ denotes the δ-neighbourhood in D of some planar set A, or equivalently,

$$A_\delta := \{x \in D \mid \text{dist}(x, A) < \delta\}.$$

Theorem 1.2. Let k be a positive integer. Suppose that $\omega \in L^{4/3}(D)$ satisfies

$$\omega = \sum_{i=1}^{k} \omega_i, \quad \min_{1 \leq i < j \leq k} \{\text{dist}(\text{supp}(\omega_i), \text{supp}(\omega_j))\} > 0, \quad \omega_i = f^i(G\omega), \ a.e. \ in \ \text{supp}(\omega_i)_\delta \quad (1.10)$$

for some $\delta > 0$, where each f^i is either monotone from \mathbb{R} to $\mathbb{R} \cup \{\pm \infty\}$ or Lipschitz continuous from \mathbb{R} to \mathbb{R}, then ω is a weak solution to the steady vorticity equation (1.3).

Remark 1.3. In the above theorem, if f_i is Lipschitz continuous from \mathbb{R} to \mathbb{R}, then ω_i must be bounded since $G\omega \in L^\infty(D)$ by L^p estimate and Sobolev embedding.

Remark 1.4. Examples of steady vortex flows satisfying (1.10) can also be found in [12], where each $f^i : \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ is an unknown nondecreasing function.

2. Proof of the Main Result

In this section, we give the proof of Theorem 1.2. The basic idea is to approximate each f^i by a sequence of bounded Lipschitz functions.

For a function $f : \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$, we shall use the following notation in the rest of this paper for convenience:

$$C_f := \{s \in \mathbb{R} \mid f \text{ is continuous at } s\},$$

$$D_f := \{s \in \mathbb{R} \mid f \text{ is not continuous at } s\}.$$

Lemma 2.1. Suppose that $f : \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ is a monotone function, then there exists a sequence of bounded and smooth functions $\{f_n\}$ such that

$$|f_n(s)| \leq |f(s)|, \ \forall s \in \mathbb{R},$$

$$\lim_{n \to +\infty} f_n(s) = f(s), \ \forall s \in C_f.$$

Proof. Without loss of generality we assume that f is nondecreasing and bounded (we can use truncation if f is unbounded).
First we consider the case f is nonnegative. Let ρ be the standard mollifier of one dimension, that is,
\[
\rho(s) = \begin{cases}
 c_0e^{-\frac{1}{1-s^2}}, & |s| < 1, \\
 0, & |s| \geq 1,
\end{cases}
\]
where c_0 is a positive number such that $\int_\mathbb{R} \rho(s)ds = 1$. Note that $\rho \in C^\infty_c(\mathbb{R})$. Define
\[
f^\varepsilon(s) = \int_{-\infty}^{+\infty} \rho_\varepsilon(s - \varepsilon - r)f(r)dr = \int_{s-2\varepsilon}^{s} \rho_\varepsilon(s - \varepsilon - r)f(r)dr,
\]
where $\rho_\varepsilon(s) := \varepsilon^{-1}\rho(s\varepsilon^{-1})$ with $\varepsilon > 0$ as a parameter. It is easy to check that $f^\varepsilon \in C^\infty(\mathbb{R})$.

Since f is nonnegative and nondecreasing, we have
\[
|f^\varepsilon(s)| = \int_{s-2\varepsilon}^{s} \rho_\varepsilon(s - \varepsilon - r)f(r)dr \leq \int_{s-2\varepsilon}^{s} \rho_\varepsilon(s - \varepsilon - r)f(s)dr = |f(s)|, \ \forall s \in \mathbb{R}.
\]
Moreover, for any $s \in C_f$,
\[
|f^\varepsilon(s) - f(s)| = \int_{s-2\varepsilon}^{s} \rho_\varepsilon(s - \varepsilon - r)f(r)dr - f(s) \\
= \int_{s-2\varepsilon}^{s} \rho_\varepsilon(s - \varepsilon - r)(f(r) - f(s))dr \\
\leq \sup_{r \in [s-2\varepsilon,s]} |f(r) - f(s)|
\]
which goes to 0 as $\varepsilon \to 0^+$. Thus we have proved the lemma for nonnegative f.

For the case f is non-positive, we can define
\[
f^\varepsilon(s) = \int_{-\infty}^{+\infty} \rho_\varepsilon(s + \varepsilon - r)f(r)dr = \int_{s}^{s+2\varepsilon} \rho_\varepsilon(s + \varepsilon - r)f(r)dr,
\]
then by repeating the above argument we can prove the lemma for non-positive f.

When f is a general nondecreasing function, we write $f = f^+ - f^-$, where $f^+(s) := \max\{f(s), 0\}$ and $f^-(s) := -\min\{f(s), 0\}$. According to the above discussion, we can choose two sequences of smooth functions $\{f^+_n\}$ and $\{f^-_n\}$ such that
\[
|f^+_n(s)| \leq |f^+(s)|, \ |f^-_n(s)| \leq |f^-(s)|, \ \forall s \in \mathbb{R},
\]
\[
\lim_{n \to +\infty} f^+_n(s) = f^+(s), \ \lim_{n \to +\infty} f^-_n(s) = f^-(s), \ \forall s \in C_f.
\]
Here we used the fact that f^+ and f^- are both continuous on C_f. The lemma is proved by choosing $f_n = f^+_n - f^-_n$.

\[\square \]
Proof of Theorem 1.2: For \(i = 1, \cdots, k \), if \(f^i \) is a monotone function, by Lemma 2.1 we can choose a sequence of bounded and smooth functions \(\{ f^i_n \} \) such that

\[
|f^i_n(s)| \leq |f^i(s)|, \quad \forall s \in \mathbb{R}, \tag{2.1}
\]

\[
\lim_{n \to +\infty} f^i_n(s) = f^i(s), \quad \forall s \in C_f. \tag{2.2}
\]

If \(f^i \) is Lipschitz continuous, we can also choose a sequence of bounded Lipschitz functions \(\{ f^i_n \} \) satisfying (2.1)(2.2) by using truncation.

Since \(\omega \in L^{4/3}(D) \), by \(L^p \) estimate we have \(G\omega \in W^{2,4/3}(D) \), then by Sobolev embedding we obtain \(G\omega \in W^{1,4}(D) \). By the chain rule for Sobolev functions (see [13], 4.22), it is easy to verify that

\[
J\nabla G\omega \cdot \nabla (f^i_n(G\omega)) = (f^i_n)'(G\omega)J\nabla G\omega \cdot \nabla G\omega = 0 \quad \text{for a.e. } x \in \text{supp}(\omega_i)_\delta, \tag{2.3}
\]

where we used the fact \(J\nabla G\omega \cdot \nabla G\omega \equiv 0 \). Since \(|f^i_n(s)| \leq |f^i(s)| \) for each \(s \in \mathbb{R} \) and \(n = 1, 2, \cdots \), we deduce that

\[
\text{supp}(f^i_n(G\omega)) \cap \text{supp}(\omega_i)_\delta \subset \text{supp}(\omega_i).
\]

Define \(\omega_n = \sum_{i=1}^{k} f^i_n(G\omega)I_{\text{supp}(\omega_i)_\delta} \). Taking into account (1.10) and (2.3), we can easily check that \(\omega_n \) belongs to \(W^{1,4}(D) \) and satisfies

\[
|\omega_n| \leq \sum_{i=1}^{k} |f^i_n(G\omega)I_{\text{supp}(\omega_i)_\delta}| \leq \sum_{i=1}^{k} |f^i(G\omega)I_{\text{supp}(\omega_i)_\delta}| = |\omega| \quad \text{a.e. } x \in D, \tag{2.4}
\]

\[
J\nabla G\omega \cdot \nabla \omega_n = 0 \quad \text{a.e. in } D. \tag{2.5}
\]

Therefore we obtain

\[
\int_D \omega_n J\nabla G\omega \cdot \nabla \phi dx = 0, \quad \forall \phi \in C_c^\infty(D). \tag{2.6}
\]

Now we claim that

\[
\lim_{n \to +\infty} \omega_n = \omega \quad \text{a.e. in } D. \tag{2.7}
\]

In fact, it suffices to show that for each \(i \)

\[
\lim_{n \to +\infty} f^i_n(G\omega(x)) = f^i(G\omega(x)) \quad \text{for a.e. } x \in \text{supp}(\omega_i)_\delta.
\]

For \(x \in (G\omega)^{-1}(C_f) \), by (2.2) we have \(f^i_n(G\omega(x)) \to f^i(G\omega(x)) \). So we need just consider the case \(x \in (G\omega)^{-1}(D_f) \). Since each \(f^i \) is either monotone or Lipschitz continuous, the set \(D_f \) is countable, thus it suffices to show that for each \(s \in D_f \), there holds

\[
\lim_{n \to +\infty} f^i_n(G\omega(x)) = f^i(G\omega(x)) \quad \text{for a.e. } x \in (G\omega)^{-1}(s).
\]

To show this, first we use the property of Sobolev functions (see [13], 4.22) to obtain

\[
\omega = -\Delta G\omega = 0 \quad \text{a.e. on } (G\omega)^{-1}(s),
\]
A note on steady vortex flows

then by (2.4) we have

$$\omega_n = 0 \text{ a.e. on } (G\omega)^{-1}(s),$$

therefore

$$\lim_{n \to +\infty} \omega_n = \omega \text{ a.e. on } (G\omega)^{-1}(s).$$

Combining (2.4), (2.6) and (2.7), we are able to apply the dominated convergence theorem to obtain

$$\int_D \omega J \nabla G \omega \cdot \nabla \phi dx = 0,$$

which is the desired result.

Remark 2.2. According to the proof of Theorem 1.2, we need only impose the following two abstract conditions on f^i:

1. D_{f^i} is a countable set;

2. there exist a sequence of bounded Lipschitz functions $\{f^i_n\}$ and a constant $C > 0$ such that

$$|f^i_n(s)| \leq C|f^i(s)|, \quad \forall s \in \mathbb{R},$$

$$\lim_{n \to +\infty} f^i_n(s) = f^i(s), \quad \forall s \in C_f.$$

Acknowledgments: Daomin Cao was supported by NNSF of China Grant (No. 11831009) and Chinese Academy of Sciences by Grant QYZDJ-SSW-SYS021. Guodong Wang was supported by NNSF of China Grant (No.11771469).

References

