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Abstract. This paper is concerned with a semi-linear elliptic problem with Robin boundary
condition: {

ε∆w − λw1+χ = 0, in Ω

∇w · n⃗+ γw = 0, on ∂Ω
(∗)

where Ω ∈ RN (N ≥ 1) is bounded domain with smooth boundary. The problem (∗) is
derived from the well-known singular Keller-Segel system. When γ > 0, we show there is
only trivial solution w = 0. When γ < 0 and Ω = BR(0) is a ball, we show that problem (∗)
has a non-constant solution which converges to zero uniformly as ε tends to zero. The main
idea of this paper is to transform the Robin problem (∗) to a nonlocal Dirichelt problem by
a Cole-Hopf type transformation and then use the shooting method to obtain the existence
of the transformed nonlocal Dirichlet problem. With the results for (∗), we get the existence
of non-constant stationary solutions to the singular Keller-Segel system.
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1. Introduction

To describe the propagation of traveling bands of chemotactic bacteria observed in the cel-
ebrated experiment of Adler [1], Keller and Segel proposed the following singular chemotaxis
system in the seminal work [14] ut = ∆u− χ∇ · (u∇ lnw), in Ω

wt = ε∆w − uwm, in Ω
(1.1)

where u(x, t) denotes the bacterial density and w(x, t) the oxygen/nutrient concentration at
position x ∈ RN and at time t > 0, respectively. ε ≥ 0 is the chemical diffusion coefficient,
χ > 0 denotes the chemotactic coefficient and m ≥ 0 the oxygen consumption rate. The
system (1.1) has been well-known as the singular Keller-Segel model/system nowadays as
a cornerstone for the modeling of chemotactic movement of bacteria attracted by nutrien-
t/oxygen.

The prominent feature of the Keller-Segel system (1.1) is the use of a logarithmic sensitivity
function lnw, which was experimentally verified later in [12]. This logarithm results in a
mathematically unfavorable singularity which, however, has been proved to be necessary to
generate traveling wave solutions (cf. [22]) that were the first type analytical results developed
for the Keller-Segel system (1.1). When 0 ≤ m < 1, Keller and Segel [14] have shown that
the model (1.1) with ε = 0 can generate traveling bands qualitatively in agreement with the
experiment findings of [1], and later the existence results of traveling wave solutions were
extended to any ε ≥ 0 and 0 ≤ m ≤ 1 (cf. [13, 22, 24, 28]), where the wave profile of (u,w)
is of (pulse, front) for 0 ≤ m < 1 and of (front, front) for m = 1. When m > 1, it was proved
that the system (1.1) did not admit any type of traveling wave solutions (e.g., see [28, 30]).
Though the Keller-Segel model (1.1) with m = 1 can not reproduce the pulsating wave profile
to interpret the experiment of [1], it was later employed to describe the boundary movement
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of bacterial chemotaxis [25] and migration of endothelial cells toward the signaling molecule
vascular endothelial growth factor (VEGF) during the initiation of angiogenesis (cf. [15]).

Aside from the existence of traveling wave solutions, the logarithmic singularity become
a source of difficulty in studying the Keller-Segel system (1.1), such as stability of traveling
waves, global well-posedness and so on. When m = 1, a Cole-Hopf type transformation
was cleverly used to remove the singularity, which consequently led to a lot of interesting
analytical works, for instance the stability of traveling waves (cf. [2, 3, 5, 11, 18, 20, 21]),
global well-posedness and/or asymptotic behavior of solutions (see [4, 16, 17, 19, 23, 29, 32]
in one dimensional bounded or unbounded space and [6, 7, 19, 26, 27, 31] in multidimensional
spaces) and boundary layer solutions [8–10]. Even for the case m = 1, the model in multi-
dimensional space still remains poorly understand and in particular no results on the large-
data solutions have even been obtained. The paper will continue to consider the Keller-Segel
system with m = 1 in a bounded smooth domain Ω ⊂ RN with the following boundary
conditions {

(∇u− χu∇ lnw) · n⃗ = 0, on ∂Ω

α∇w · n⃗+ γw = 0, on ∂Ω
(1.2)

where n⃗ denotes the unit outward normal vector to ∂Ω, γ ∈ R/{0} and α > 0. The zero-flux
boundary condition for u means that no cells can crosses the boundary of the habitat, and
w is prescribed by Robin boundary condition which become Neumann boundary condition
if γ = 0 and Dirichlet boundary condition if α = 0. When γ = 0, namely the Neumann
boundary condition prescribed for w, there are some well-posedness results available (cf.
[27, 29, 32, 33]). However as γ ̸= 0, as we know, no results have been developed for the
problem (1.1)-(1.2). In general, Robin boundary condition is harder than the Neumann or
Dirichlet boundary condition due to the loss of Maximum principle and the integrability. In
this paper, we shall consider the stationary problem of (1.1)-(1.2) which reads

0 = ∆u− χ∇ · (u∇ lnw), in Ω

0 = ε∆w − uw, in Ω

(∇u− χu∇ lnw) · n⃗ = 0, on ∂Ω

∇w · n⃗+ γw = 0, on ∂Ω,

(1.3)

where we have assumed α = 1 without loss of generality. With the zero-flux boundary
condition on u, we can solve from the first equation of (1.3) that

u = λwχ (1.4)

where λ > 0 is a constant of integration. Then substituting (1.4) into the second equation of
(1.3), we reduce the stationary problem to a scalar semi-linear elliptic equation with Robin
boundary condition: {

ε∆w − λw1+χ = 0, in Ω

∇w · n⃗+ γw = 0, on ∂Ω.
(1.5)

The reduction from a system to a scalar equation in the above procedure is a key step to
attack the stationary problem. Clearly w = 0 is naturally a solution of (1.5). What we are
concerned with is whether the semi-linear Robin problem (1.5) admits non-constant solutions.
This is a nontrivial problem in general due to homogeneous Robin boundary conditions for
which the available methods are very limited. First, we show that the problem (1.5) has
only trivial solution w = 0 if γ > 0 by the maximum principle directly. The conclusion for
the case γ < 0 becomes elusive due to the loss of maximum principle. In this case, we shall
consider the radially symmetric solution in a ball Ω = BR(0) with radius R > 0. The key
finding of this paper is that with radially symmetric case, a Cole-Hopf type transformation
can be used to relegate the homogeneous Robin boundary condition to a non-homogeneous
Dirichlet boundary condition and also reduce the second-order equation into a first-order one
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for which shooting method becomes available for analysis. We shall demonstrate this idea in
details later and state our main results of this paper as follows.

Theorem 1.1. Let ε > 0 and 0 ̸= γ ∈ R. Then the following results hold.

(i) If γ > 0, the system (1.3) has only a trivial solution w = 0.
(ii) If γ > 0 and Ω = BR(0) = {x ∈ RN | r = |x| < R} with R > 0, then (1.3) admits

an analytic radial solution (u(r), w(r) with u(r) = λw(r), which is unique up to the
constant λ > 0 through (1.4). Moreover, the solution w(r) converges uniformly to 0
as ε → 0 with the following convergence rate

∥u(r)∥C[0,R] ≤ Cε, ∥w(r)∥C[0,R] ≤ Cε
1
χ (1.6)

where C > 0 is a constant independent of ε.

Sketch of main ideas. Assume the solution of (1.5) is analytic and radially symmetric:

w(x) = w(|x|) = w(r), r ∈ (0, R). (1.7)

Substituting the ansatz (1.7) into (1.5), we get the following boundary value problem εwrr + εN−1
r wr = λw1+χ, r ∈ (0, R)

w(0) = w0, wr(0) = 0,
wr + γw = 0, r = R

(1.8)

where we have imposed the boundary condition w(0) = w0 which will be determined af-
terwards, and the condition wr(0) = 0 follows from the analyticity of w(r) at r = 0. In
order to treat the Robin boundary condition, we introduce the following Cole-Hopf type
transformation

v =
wr

w
(1.9)

and transform (1.8) into a boundary value problem of a first-order ODE:
εvr + εN−1

r v + εv2 = wχ, r ∈ (0, R)

v(0) = 0,

v = −γ, r = R.

(1.10)

From (1.9), one can solve w in terms of v as

w(r) = w0e
∫ r
0 v(s)ds

which turns (1.10) into a boundary value problem for a nonlocal ODE
εvr + εN−1

r v + εv2 = u0e
χ
∫ r
0 v(s)ds, r ∈ (0, R)

v(0) = 0,

v = −γ, r = R.

(1.11)

where

u0 = λwχ
0 . (1.12)

Hence by the Cole-Hopf transformation (1.9), we not only relegate the Robin problem to
a Dirichlet problem but also reduce the order of the equation. However this is not gotten
for free. The price that we paid is the generation of a nonlocal term with an exponential
nonlinearity, which brings new obstacles to analysis. However we find that the classical
shooting method (phase-plane analysis) may be applicable to the first-order ODE problem
(1.11) though additional efforts are needed to handle the nonlocal term and exponential
nonlinearity.

To employ the shooting method, we treat (1.11) as an initial value problem starting from
r = 0. Since the solution v(r) of (1.11) is analytic at a neighbourhood of r = 0, we insert its
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Taylor expansion v(r) =
∑∞

k=0 akr
k into (1.11) and deduce that the coefficients a2k = 0 and

that a2k+1 with k ∈ N are determined by u0
εN . In particular, a0 = 0, a1 =

u0
εN and thus

v(r) =
u0
εN

r +O(r2), vr(r) =
u0
εN

+O(r), (1.13)

for r sufficiently close to 0. Hence the initial value problem relevant to (1.11) reads:{
εvr + εN−1

r v = −εv2 + u0e
χ
∫ r
0 v(s) ds, r ∈ (0,∞),

v(0) = 0, vr(0) =
u0
εN .

(1.14)

Now for given u0, we shall show that the solution of (1.14) will blow up at a finite r = R∗.
Then we trace back to find the condition for u0 such that the solution of (1.11) exists for
given R > 0. With the existence for v(r), we get the solution of (1.8) and hence the radial
solution of (1.5).

The rest of this paper is organized as follows. In section 2, we shall focus on the auxiliary
problem (1.14) and prove the existence and uniqueness of (1.14). In section 3, we shall use
the Cole-Hopf transformation (1.9) to prove Theorem 1.1.

2. Blowup solutions of (1.14)

In this section, we shall exploit the nonlocal problem (1.14) and prove the following results.

Theorem 2.1. Suppose u0 > 0 and ε > 0. Let ṽ(r) be the solution of (1.14) with ε = 1 and

u0 = 1. Then ṽ(r) blows up at a finite number R̃ > 0 and there exists R∗ = R̃
√

ε
u0

> 0 such

that (1.14) admits an unique solution v(r) in (0, R∗) which is analytic at r = 0 and can be
explicitly expressed as

v(r) =

√
u0
ε
ṽ

(√
u0
ε

r

)
, r ∈ (0, R∗). (2.1)

Moreover vr(r) > 0 on [0, R∗) and blows up at R∗ < ∞.

Remark 2.1. The upper and lower bounds of R̃ are given in Proposition 2.1.

Before proceeding, we introduce the main difficulties encountered and ideas employed to

overcome them in the proof of Theorem 2.1. Indeed, with u0 > 0 the term u0e
χ
∫ r
0 v(s) ds on

the right-hand side of (1.14) will enhance the blow-up process as v increases, while −εv2 is a
damping term preventing the blow-up. Hence which of them will dominate the dynamics as v
is large is crucial to determine whether the blow-up radius R∗ is finite or not. For our problem,
we first heuristically employ a formal analysis (see Remark 2.2) to (1.14) to investigate the

asymptotic behavior of the term u0e
χ
∫ r
0 v(s) ds as v → ∞ to see whether it grows fast enough

to dominates or cancel out the damping effect of −εv2. Then by a delicate (formal) analysis,

we find that u0e
χ
∫ r
0 v(s) ds = χ

2 v
2 + εv2 + o(v2) (for large v), which substituted into (1.14)

indeed cancels out −εv2 and gives a χ
2 v

2-growth rate to v, i.e. vr ∼ χ
2 v

2. Then the blow-

up radius R∗ < ∞ follows immediately from this χ
2 v

2-growth of v. This procedure will be
elaborated in Remark 2.2. Motivated by this formal analysis, we first justify our speculation
for a special case ε = 1 and u0 = 1 in Proposition 2.1. Then with a scaling-invariant property
of (1.14), we prove the similar results for the general case ε > 0 and u0 > 0. We start by
presenting some preliminary results on (1.14).

2.1. Some preliminary results.

Lemma 2.1. Suppose u0 > 0 and ε > 0. Then (1.14) admits a unique solution v(r), which
can be extended to a maximal interval [0, R∗) such that either R∗ = ∞ or |v(r)| → ∞ as
r → R∗.

The proof of Lemma 2.1 follows from the classical ordinary differential equation theory.
We thus omit its proof.
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Lemma 2.2. Assume u0 > 0 and ε > 0. If v(r) is the unique solution of (1.14) in the
maximal interval [0, R∗), then vr(r) > 0 for r ∈ [0, R∗) and v(r) > 0 for r ∈ (0, R∗).

Proof. We first prove that vr(r) > 0 for all r ∈ [0, R∗). Indeed, it follows from (1.14) that
vr(r) > 0 for r small enough by continuity of vr. We claim that

vr(r) > 0 for r ∈ [0, R∗). (2.2)

If this is false, we denote by r1 the smallest value of r > 0 such that vr(r) = 0. Then one
derives

vr(r) > 0, for r ∈ (0, r1); vr(r1) = 0, vrr(r1) ≤ 0. (2.3)

However, differentiating (1.14) with respect to r leads to

εvrr(r1) =− ε
N − 1

r1
vr(r1) + ε

N − 1

r21
v(r1)− 2εv(r1)vr(r1) + χu0v(r1)e

χ
∫ r1
0 v(s) ds

=ε
N − 1

r21
v(r1) + χu0v(r1)e

χ
∫ r1
0 v(s) ds > 0.

The above result contradicts with the last inequality in (2.3). Hence (2.2) holds true. v(r) > 0
for r ∈ (0, R∗) follows directly from (2.2) and the initial condition v(0) = 0 in (1.14). The
proof is finished.

�

Another property of (1.14) is its invariance under some appropriate scalings. Precisely,
suppose that v(r) is a solution of (1.14) with data u0 > 0 and ε > 0. Then it is easy to
verify for any β > 0 that g(r) :=

√
βv(

√
βr) is still a solution of (1.14) by replacing u0 with

βu0. This property is crucial to prove Theorem 2.1. Indeed, we shall first study the solution
ṽ(r) of (1.14) with fixed data ε = 1 and u0 = 1 (see Proposition 2.1), of which the results
on blow-up property and blow-up radius will be converted to the solutions v(r) with general
data u0 > 0 and ε > 0, which equals to

√
u0
ε ṽ(

√
u0
ε r) thanks to the above scaling-invariant

property. Details are given in the proof of Theorem 2.1.

2.2. Blowup solutions of (1.14) with ε = 1 and u0 = 1. To prove Theorem 2.1, we
first study the solution (denoted by ṽ(r) ) of (1.14) corresponding to data ε = 1 and u0 = 1,
which reads: {

ṽr +
N−1
r ṽ = −ṽ2 + eχ

∫ r
0 ṽ(s) ds, r ∈ R+,

ṽ(0) = 0, ṽr(0) = N .
(2.4)

Before establishing the result on (2.4), we write out some variants of (2.4) for later use.
Differentiating (2.4) with respect to r, one derives

χeχ
∫ r
0 ṽ(s) dsṽ = ṽrr +

N − 1

r
ṽr −

N − 1

r2
ṽ + 2ṽṽr,

which, along with (2.4) leads to

ṽrr +
N − 1

r
ṽr −

N − 1

r2
ṽ = (χ− 2)ṽṽr + χṽ3 +

χ(N − 1)

r
ṽ2. (2.5)

Denoting ũ(r) = eχ
∫ r
0 ṽ(s) ds, then we get another variant of (2.4) as follows ṽr +

N−1
r ṽ + ṽ2 = ũ, r ∈ R+,

ũr = χũṽ,
ũ(0) = 1, ṽ(0) = 0, ṽr(0) = N .

(2.6)

For (2.4) we have the following result.
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Proposition 2.1. The unique solution ṽ(r) of (2.4) blows up at a finite R̃ < ∞, that is

lim
r→R̃

ṽ(r) = ∞. The solution ṽ(r) is strictly positive and vr(r) > 0 for any r ∈ (0, R̃).

Moreover, the blow-up radius R̃ satisfies

R̃ ≥
√

2

χ
. (2.7)

If we further assume that χ ≥ 2, then R̃ also satisfies:

R̃ ≤ π

√
2N

χ
. (2.8)

Remark 2.2. Before giving the proof for Proposition 2.1, we briefly discuss the main ideas
motivated in the proof of Proposition 2.1. Let [0, R̃) with R̃ ≤ ∞ be the maximal interval

of existence for ṽ(r). Then from Lemma 2.1, we have R̃ = ∞ or limr→R̃ ṽ(r) = ∞, Hence

to prove Proposition 2.1, we just need to rule out the case R̃ = ∞ and prove the blowup
radius R̃ is finite, which is the main difficulty encountered. Indeed, the two terms −ṽ2 and

eχ
∫ r
0 ṽ(s) ds on the right-hand side of (2.4) have opposite effects on the blow-up process of

ṽ. Thus the asymptotic behavior of the term eχ
∫ r
0 ṽ(s) ds as ṽ → ∞ would be very helpful

to determine whether the blow-up radius R̃ is finite or not. If eχ
∫ r
0 ṽ(s) ds dominates over

−ṽ2 then R̃ < ∞, otherwise R̃ = ∞. Hence in the following we shall study the asymptotic

behavior of eχ
∫ r
0 ṽ(s) ds by applying a formal analysis to the equations in (2.6) to gain some

insights into the proof of Proposition 2.1 and shall formally derive

ṽr(r) =
χ

2
ṽ2(r) + o(ṽ2), r ∈ (R1, R̃) (2.9)

for some large R1. Once (2.9) is justified, the conclusion R̃ < ∞ immediately follows thanks
to this χ

2 ṽ
2-growth rate of ṽ (see the proof of Proposition 2.1). Actually, instead of (2.9), we

shall strictly prove in the proof of Proposition 2.1 the following sharper result

ṽr(r) >
χ

2
ṽ2(r), r ∈ [0, R̃). (2.10)

We next briefly introduce the formal analysis to derive the key estimate (2.9). Indeed,
by Lemma 2.2 we know the solutions ṽ(r) and ũ(r) of (2.6) are strictly increasing in r > 0.
Hence we can define the inverse function of ṽ(r) as r = f(ṽ). We further denote g(ṽ) :=
ũ(r) = ũ(f(ṽ)). Then from (2.6) one deduces that (f, g)(ṽ) satisfies:{

f + (N − 1)fṽṽ = −ṽ2ffṽ + gffṽ,

gṽ = χfṽgṽ,
(2.11)

where fṽ := df
dṽ , gṽ := dg

dṽ . We assume that the blow-up radius R̃ of ṽ(r) is finite. Then

lim
r→R̃

ṽ(r) = ∞ and lim
ṽ→∞

f(ṽ) = R̃ < ∞. Hence f(ṽ) has the following asymptotic expansion

when ṽ is large:

f(ṽ) = R̃+
b1
ṽ

+ o
(1
ṽ

)
, fṽ(ṽ) =

(−b1)

ṽ2
+ o

( 1

ṽ2

)
, (2.12)

where b1 is a constant to be determined. Substituting (2.12) into the first equation of (2.11)
gives

0 = gR̃ · (−b1)

ṽ2︸ ︷︷ ︸
S1

+ · · ·+ R̃b1︸︷︷︸
S2

+ · · ·+ (N − 1) · b1
ṽ︸ ︷︷ ︸

S3

+ · · · − R̃︸︷︷︸
S4

+ · · · ,
(2.13)

where S1, S2, S3 and S4 are respectively the lowest order terms with respect to 1
ṽ among the

expansions corresponding to each part of the first equation in (2.11) and we have omitted the
higher order terms converging to 0 faster than the terms S1, S2, S3 and S4 as ṽ → ∞. We
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proceed to derive the value of constant b1 by finding a valid balance among terms S1, S2, S3

and S4 to make (2.13) hold as 1
ṽ → 0 with fixed 0 < R̃ < ∞. Noting that S3 is of order

O( 1ṽ ) and that S2, S4 are of order O(1) with respect to 1
ṽ , we only need to find a balance

among terms S1, S2 and S4 since S3 is a higher order term comparing with S2 and S4. Hence
as 1

ṽ → 0 there are the following two possible balancing to make (2.13) hold :

(i) S2 ∼ S4 and S1 is higher-order term. Then we get b1 = 1, which substituted into
(2.12) indicates that fṽ < 0 when ṽ is large. On the other hand, from Lemma 2.2 and
fṽ = 1

ṽr
we deduce that fṽ > 0 for all ṽ ∈ [0,∞). Combining the above arguments,

we arrive at a contradiction and thus this balancing is impossible.

(ii) S1 ∼ S2 ∼ S4. In this case, one deduces g · (−b1)
ṽ2

+ b1 − 1 = 0.

Hence only the balancing in (ii) is possible, which leads to

g(ṽ) = ṽ2
(
1− 1

b1

)
+ o(ṽ2). (2.14)

Then inserting (2.14) and (2.12) into the second equation of (2.11) we deduce that

gṽ(ṽ) = χ(1− b1)ṽ + o(ṽ), (2.15)

which, along with (2.14) and the L’Höpital’s rule leads to

1− 1

b1
= lim

ṽ→∞

g(ṽ)

ṽ2
= lim

ṽ→∞

gṽ(ṽ)

2ṽ
=

χ(1− b1)

2
.

Then we solve from the above equality and get b1 = − 2
χ or b1 = 1. Since b1 = 1 contradicts

the fact fṽ > 0, we conclude that b1 = − 2
χ . Hence

ũ = g(ṽ) = ṽ2
(
1 +

χ

2

)
,

which substituted into the first equation of (2.6) entails that

ṽr(r) =
χ

2
ṽ2 + o(ṽ2), for ṽ large enough.

Hence we derive (2.9) from the above equality.

With the formal analysis of Remark 2.2 in hand, we next rigorously justify (2.10) and thus
prove Proposition 2.1.

Proof of Proposition 2.1. The proof is divided into three steps.
Step 1 (blowup). Let [0, R̃) with R̃ ≤ ∞ be the maximal interval of existence for ṽ(r).

From Lemma 2.2 we know that ṽ(r) is monotonically increasing in r. Hence if we let

l = lim
r→R̃

ṽ(r),

it follows from the fact ṽ(r) > 0 (see Lemma 2.2) that l ≥ 0. Now we prove that

l = ∞. (2.16)

Indeed if (2.16) is false and then < ∞, it follows from Lemma 2.1 that R̃ = ∞. Thus

l = lim
r→∞

ṽ(r) < ∞. (2.17)

By (2.17), we claim that one can choose a number sequence {rk}k∈N such that

rk+1 ≥ rk + 1, ṽr(rk) <
1

k
. (2.18)

Indeed if (2.18) is false, then there exists some k0 ∈ N such that

ṽr(r) ≥
1

k0
for all r ≥ rk0 .
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This indicates that

lim
r→∞

ṽ(r) ≥ lim
r→∞

[
ṽ(rk0) +

1

k0
· (r − rk0)

]
= ∞,

which contradicts (2.17). Hence (2.18) holds true under (2.17). Then from (2.18) we deduce
that

lim
k→∞

rk = ∞, lim
k→∞

ṽr(rk) = 0,

which, along with (2.4) and (2.17), raises the following contradiction:

0 = lim
k→∞

(
ṽr +

N − 1

r
ṽ

)
(rk) = lim

k→∞
(−ṽ2 + eχ

∫ rk
0 ṽ(s) ds)(rk) = ∞.

Hence our assumption (2.17) is false and we have proved (2.16) which gives

lim
r→R̃

ṽ(r) = ∞. (2.19)

Step 2 (finiteness of blowup radius R̃). Let R̃ be the blow-up radius of ṽ(r) as in
(2.19). Define the function

F (r) = ṽr(r)−
χ

2
ṽ2(r), r ∈ [0, R̃).

Then it follows from the data ṽr(0) = N , ṽ(0) = 0 and the continuity of F (r) that F (r) > 0
for r close to 0 enough. We claim that

F (r) > 0, for r ∈ [0, R̃), (2.20)

which will be proved by the argument of contradiction. Indeed, assume that (2.20) is false
and denote r1 the smallest value of r satisfying F (r) = 0. Then we have

F (r) > 0, for r ∈ (0, r1); F (r1) = [ṽr −
χ

2
ṽ2](r1) = 0, Fr(r1) ≤ 0. (2.21)

Thus it follows from (2.5) and (2.21) that

Fr(r1) =ṽrr(r1)− χṽṽr(r1)

=− N − 1

r1
ṽr +

N − 1

r21
ṽ + (χ− 2)ṽṽr + χṽ3 +

χ(N − 1)

r1
ṽ2

=− χ(N − 1)

r1

ṽ2

2
+

N − 1

r21
ṽ + (χ− 2)ṽ

χṽ2

2
+ χṽ3 +

χ(N − 1)

r1
ṽ2

=
χ(N − 1)

2r1
ṽ2 +

N − 1

r21
ṽ +

χ2

2
ṽ3

>0,

(2.22)

which contradicts the last inequality of (2.21). Hence (2.20) holds true. That is

ṽr(r) >
χ

2
ṽ2(r), r ∈ [0, R̃). (2.23)

Let R2 ∈ (0, R̃). Then solving (2.23) immediately yields that

ṽ(r) >
1

1
ṽ(R2)

− χ(r−R2)
2

, r > R2.

Noting that the function on the right-hand side of the above inequality blows up at 2
χṽ(R2)

+R2,

we conclude that

R̃ ≤ 2

χṽ(R2)
+R2 < ∞.
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Step 3 (bounds of blowup radius). We first prove (2.7). Define h(r) =
∫ r
0 ṽ(s) ds.

Then it follows from (2.4) that

hrr < eχh,

which multiplied with hr and then upon integration over (0, r) gives rise to

h2r(r)

2
−

χ
eχh(r) < −

χ
< 0, (2.24)

where hr(0) = ṽ(0) = 0 has been used. Noting that hr(r) = ṽ(r) > 0, from (2.24) we deduce

that hr(r) <
√

2
χ e

χ
2
h and thus

h(r) <
2

χ
ln

(
1−

√
χ

2
r
)−1

.

From this one concludes that R̃ ≥
√

2
χ and derives (2.7). We proceed to prove (2.8). Since

χ ≥ 2, it follows from (2.5) that(
ṽr +

N − 1

r
ṽ
)
r
= ṽrr +

N − 1

r
ṽr −

N − 1

r2
ṽ > 0, (2.25)

which upon integration over (0, r), along with (1.13) leads to

(rN−1ṽ)r
rN−1

= ṽr +
N − 1

r
ṽ > .

Then integrating the above inequality over (0, r), we have ṽ(r) > N r. This along with (2.25)
yields

(rN−1ṽr)r
rN−1

= ṽrr +
N − 1

r
ṽr >

N − 1

r2
ṽ >

(N − 1)

Nr
.

Integrating this inequality over (0, r) one has

ṽr(r) >
N

. (2.26)

Combining (2.26) and (2.23), we have that

ṽr(r) >
χ

4
ṽ2(r) +

2N
,

which gives rise to

ṽ(r) >

√
2

Nχ
tan

(√ χ

8N
r
)
, r > 0. (2.27)

where the function on the right-hand side of (2.27) is strictly increasing in r and blows up

at π
√

2N
χ . Noting that ṽ(r) is also monotonically increasing in r (see Lemma 2.2), thus from

(2.27) we conclude that ṽ(r) blows up at some finite R̃ and the blow-up radius R̃ satisfies

R̃ ≤ π

√
2N

χ
.

The proof of Proposition 2.1 is completed.
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2.3. Proof of Theorem 2.1. We are now in a position to prove Theorem 2.1 by the results
of Proposition 2.1. Let ṽ(r) be the solution of (1.14) with ε = u0 = 1. Then from Proposition

2.1, we know that ṽ(r) blows up at R̃ < ∞. Define g(r) =
√

u0
ε ṽ(

√
u0
ε r). Then it follows

from (2.4) that
εgr(r) + ε

N − 1

r
g(r) = −εg2(r) + u0e

χ
∫ r
0 g(s) ds, r ∈

(
0, R̃

√
ε

u0

)
,

g(0) = 0, gr(0) =
u0
εN

.

(2.28)

It is easy to check that systems (1.14) and (2.28) are the same, and hence by the uniqueness
of solutions it follows that v(r) = g(r) =

√
u0
ε ṽ(

√
u0
ε r) and the blow-up radius of v(r) is

R∗ = R̃
√

ε
u0
. The proof is completed.

�

3. Proof of Theorem 1.1

We first prove the following results.

Proposition 3.1. Assume R > 0 and ε > 0. Let ṽ(r) be the solution of (1.14) with ε =
u0 = 1. Then for any γ < 0, there exists a u0 uniquely determined by γ and ε through the
identity √

u0
ε
ṽ

(√
u0
ε

R

)
= −γ (3.1)

such that the problem (1.11) admits a unique solution v(r) given in (2.1).

Proof. From Theorem 2.1 we know that the solutions v(r) of (1.14) is strictly positive when
r > 0 and in particular v(R) > 0. Hence for γ > 0, (1.11) does not admit a solution. We
next consider the case of γ < 0. With the fixed R > 0 in (1.11), we define

f(z) = zṽ(zR) for z > 0,

where ṽ(r) is defined in Theorem 2.1. Then from Proposition 2.1 we deduce that f(z) is
monotonically increasing in z, that is

fz(z) = ṽ(zR) +Rṽr(zR) > 0. (3.2)

By Proposition 2.1 and the continuity of ṽ(r), we further get

lim
z→0

f(z) = lim
z→0

[zṽ(zR)] = 0, lim
z→∞

f(z) = lim
z→∞

[zṽ(zR)] = ∞,

which, along with (3.2) and the continuity of ṽ(r) implies that there exists a unique zγ
depending on γ < 0, such that

f(zγ) = zγ ṽ(zγR) = −γ. (3.3)

For fixed γ < 0 and ε > 0, we take u0 such that√
u0
ε

= zγ , (3.4)

Then (3.1) follows from (3.3) and (3.4). By Theorem 2.1, (3.3) and (3.4) we further deduce
that the solution v(r) =

√
u0
ε ṽ

(√
u0
ε r

)
solved from (1.14) with u0 defined in (3.4) is the

unique solution of (1.11). The proof is completed.
�

Proof of Theorem 1.1. If γ > 0, by the maximum principle, it can be easily verified that
the problem (1.5) only admits the trivial solution u = w = 0. Next we consider the case
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γ < 0. By Proposition 3.1 and transformation (1.9), it follows that the boundary problem
(1.3) admits a unique radial solution (u,w)(r) explicitly expressed as

w(r) = w0e
∫ r
0

√
u0
ε
ṽ
(√

u0
ε
s
)
ds

=
(u0
λ

) 1
χ
e
∫√u0

ε r

0 ṽ(τ)dτ ,

u(r) = λwχ(r) = u0e
χ
∫√u0

ε r

0 ṽ(τ)dτ ,

(3.5)

where (1.12) and the change of variable τ =
√

u0
ε s have been used and u0 is the value of u(r)

at r = 0. We proceed to prove (1.6). In fact, it follows from (3.4) and (3.5) that

w(r) = ε
1
χλ

− 1
χ z

2
χ
γ e

∫ zγr
0 ṽ(τ)dτ ,

u(r) = εz2γe
χ
∫ zγr
0 ṽ(τ)dτ .

(3.6)

Note that the function ṽ(r) (defined in Theorem 2.1) in (3.6) is continuous in r and indepen-
dent of ε. One can find a constant C > 0 independent of ε, such that

∥w(r)∥C[0,R] ≤ Cε
1
χ , ∥u(r)∥C[0,R] ≤ Cε,

where the constant C depends on χ, λ, γ and R. Hence

lim
ε→0

∥w(r)∥C[0,R] = lim
ε→0

∥u(r)∥C[0,R] = 0.

This completes the proof of Theorem 1.1.
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