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§I. Motivations
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Hardy SpacesHp(Rn) / §I

◮ Let p ∈ (0, 1]. The Hardy space Hp(Rn) is defined to be the
collection of all Schwartz distributions f ∈ S ′(Rn) such that
their quasi-norms

‖f‖Hp(Rn) := ‖f∗‖Lp(Rn) :=

∥
∥
∥
∥
∥

sup
t∈(0,∞)

(ϕt ∗ f)

∥
∥
∥
∥
∥
Lp(Rn)

<∞,

where ϕt ∗ f(x) := 〈f, 1
tnϕ(

x−·
t )〉 with ϕ ∈ S(Rn) and

∫

Rn ϕ 6= 0.

◮ It is known that Hp(Rn) is independent of the choice of ϕ.
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Campanato SpacesCα,q,s(Rn) / §I

◮ Let α ∈ [0, ∞), q ∈ [1, ∞] and s ∈ Z+ such that s ≥ ⌊nα⌋.
The Campanato space Cα,q,s(Rn) is defined to be the set of all
locally integrable functions g such that

‖g‖Cα,q,s(Rn)

:= sup
B⊂Rn

1

|B|α

{
1

|B|

∫

B

|g(x)− PB,s(g)(x)|
q dx

}1/q

<∞,

where PB,sg denotes the minimizing polynomial of g on B with
degree ≤ s.

◮ PB,sg is minimizing : for any polynomial Q with degree ≤ s,
∫

B

[g − PB,sg]Q = 0.
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Hardy Spaces and Their Dual Spaces / §I

◮ It is well known:

• For any p ∈ (0, 1], q ∈ [1, ∞) and
s ∈ Z+ ∩ [⌊n(1p − 1)⌋, ∞),

(Hp(Rn))∗ = C1/p−1,q,s(R
n) =: C1/p−1(R

n).

• If α = 0, then C0(Rn) = BMO(Rn).

• If α ∈ (0, 1n), then Cα(Rn) = Λ̇nα(Rn) with the
homogeneous Lipschitz norm

‖g‖Λ̇nα(Rn) := sup
x, y∈Rn, x6=y

|g(x)− g(y)|

|x− y|nα
.
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Questions / §I

For any p ∈ (0, 1] and α = 1/p− 1, find the smallest linear
vector space Y so that Hp(Rn)× Cα(Rn) has the
following bilinear decomposition :

Hp(Rn)× Cα(Rn) ⊂ L1(Rn) + Y ,

namely, ∃ S : Hp(Rn)× Cα(Rn) → L1(Rn) and
∃ T : Hp(Rn)× Cα(Rn) → Y, which are bilinear and
bounded , such that

f × g = S(f, g) + T (f, g),∀ (f, g) ∈ Hp(Rn)× Cα(Rn).

It is well known that

H1(Rn)× BMO(Rn) 6⊂L1
loc (R

n).

What can we do? Why are they important?
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Jacobian / §I
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Commutators / §I

◮ L. D. Ky , Bilinear decompositions and commutators of
singular integral operators, Trans. Amer. Math. Soc. 365
(2013), 2931-2958.

◮ . . . . . .
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Div-Curl Lemma (1) / §I

◮ Div-Curl lemma . Let F := (F1, . . . , Fn) ∈ X with curlF ≡ 0
and G := (G1, . . . , Gn) ∈ Y with divG ≡ 0.
Here, for any i, j ∈ {1, . . . , n},

curlF :=

(
∂Fj

∂xi
−
∂Fi

∂xj

)

i, j

= (DF)T − (DF)

and divG :=

n∑

j=1

∂Gj

∂xj
.

Find suitable function space Z such that
∥
∥
∥
∥
∥
∥

F ·G:=

n∑

j=1

Fj ×Gj

∥
∥
∥
∥
∥
∥
Z

. ‖F‖X‖G‖Y.
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Div-Curl Lemma (2) / §I

◮ If p, q ∈ ( n
n+1 , ∞) with 1

p +
1
q = 1

r <
n+1
n , then

‖F ·G‖Hr(Rn) . ‖F‖Hp(Rn)‖G‖Hq(Rn).

R. R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes ,
Compensated compactness and Hardy spaces, J.
Math. Pures Appl. (9) 72 (1993), 247-286 .
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Div-Curl Lemma (3) / §I

◮ The endpoint case r = n
n+1 : If p, q ∈ (1, ∞) with

1
p +

1
q = 1

r = n+1
n , then

‖F ·G‖Hr,∞(Rn) . ‖F‖Hp(Rn)‖G‖Hq(Rn),

where Hr,∞(Rn) denotes the weak Hardy space .

T. Miyakawa , Hardy spaces of solenoidal vector fields,
with applications to the Navier-Stokes equations,
Kyushu J. Math. 50 (1996), 1-64 .
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Div-Curl Lemma (4): Endpoint Case q = ∞ (1) / §I

◮ If p = 1 and q = ∞, then

‖F ·G‖H log(Rn) . ‖F‖H1(Rn)‖G‖BMO(Rn),

where H log(Rn) denotes the Musielak-Orlicz-Hardy space
related to

θ(x, t) :=
t

log(e+ t) + log(e+ |x|)

(see [K14] ).

◮ Theorem ([Bgk12] ). The product space
H1(Rn)× BMO(Rn) has the following sharp bilinear
decomposition :

H1(Rn)× BMO(Rn) ⊂ L1(Rn) +H log(Rn).
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Div-Curl Lemma (4): Endpoint Case q = ∞ (2) / §I

[K14] L. D. Ky , New Hardy spaces of Musielak-Orlicz type and
boundedness of subilinear operators, Integral Equations
Operator Theory 78 (2014), 115-150 .

[Bgk12] A. Bonami, S. Grellier and L. D. Ky , Paraproducts and
products of functions in BMO(Rn) and H1(Rn) through
wavelets, J. Math. Pures Appl. (9) 97 (2012), 230-241 .

How about the case p ∈ (0, 1)?

[Bck17] A. Bonami, J. Cao, L. D. Ky, L. Liu, D. Yang and W. Yuan , A
complete solution to bilinear decompositions of
products of Hardy and Campanato spaces, In Progress .
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Difficulties / §I

◮ Restriction from the method of wavelets ;

◮ There exist more complicated structures of the space
Cα(Rn).

◮ Theorem ([Bck17] ) Let α ∈ (0, ∞). Then, for any g ∈ Cα(Rn)
& ball B := B(cB, rB) of Rn, with cB ∈ Rn and rB ∈ (0,∞),

sup
x∈B

[
|g(x)|+

∣
∣PB,sg(x)

∣
∣
]

.

{

[1 + |cB|+ rB]
nα‖g‖C+

α (Rn) if nα /∈ N,
[1 + |cB|+ rB]

nαlog(e+ |cB|+ rB)‖g‖C+
α (Rn) if nα ∈ N,

where

‖g‖
C
+
α (Rn) := ‖g‖Cα(Rn) +

1

|B(~0n, 1)|

∫

B(~0n,1)

|g(x)| dx.
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§II. Bilinear Decompositions of
Products of Hardy and Campanato

Spaces
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Definition of Products: Casep = 1 / §II

◮ Let f ∈ H1(Rn) and g ∈ BMO(Rn). The product f × g is
defined to be a Schwartz distribution in S ′(Rn) such that,
for any Schwartz function φ ∈ S(Rn),

〈f × g, φ〉 := 〈φg, f〉,

where the last bracket denotes the dual pair between
BMO(Rn) and H1(Rn). [Recall (H1(Rn))∗ = BMO(Rn).]

[Bijz07] Bonami, Iwaniec, Jones and Zinsmeister,
2007.

Theorem ([Ny85] ) Every φ ∈ S(Rn) is a pointwise multiplier of
BMO(Rn).

The above product can be extended as a distribution on
the class of all pointwise multipliers of BMO(Rn).
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Pointwise Multipliers on BMO(Rn) / §II

Theorem ([Ny85] ) A locally integrable function g is a pointwise
multiplier of BMO(Rn) iff g ∈ BMOlog(Rn) ∩ L∞(Rn), where
f ∈ BMOlog(Rn) iff

‖f‖BMOlog(Rn)

:= sup
B(a,r)

| log r|+ log(e+ |a|)

|B(a, r)|

∫

B(a,r)

|f(x)− fB(a,r)| dx <∞

with fB(a,r) :=
1

|B(a,r)|

∫

B(a,r) f , here a ∈ Rn and r ∈ (0,∞).

[Ny85] E. Nakai and K. Yabuta , Pointwise multipliers for functions
of bounded mean oscillation, J. Math. Soc. Japan 37 (1985),
207-218.
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Duality BetweenH log(Rn) & BMOlog(Rn) / §II

Theorem ([K14] ) (H log(Rn))∗ = BMOlog(Rn).

H1(Rn)× BMO(Rn) ⊂ L1(Rn) +H log(Rn) ([Bck17] )

(L1(Rn) +H log(Rn))∗ = L∞(Rn) ∩ BMOlog(Rn) (Sharp ).

〈f × g, φ〉 := 〈φg, f〉

Sharp : Assume that H1(Rn)× BMO(Rn) ⊂ L1(Rn) + Y
and Y is smallest. Then

L∞(Rn) ∩ BMOlog(Rn)

= (L1(Rn) +H log(Rn))∗

⊂ (L1(Rn) + Y)∗

= all pointwise multipliers of BMO(Rn)

= L∞(Rn) ∩ BMOlog(Rn). ([Ny85] )
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Bake to Casep ∈ (0, 1) / §II

Let α := 1/p− 1. Find a suitable function space X such that

Hp(Rn)× Cα(Rn) ⊂ L1(Rn) +X.

(L1(Rn) +X)∗ = L∞(Rn) ∩ (X)∗ characterizes the class of
all pointwise multipliers of Cα(Rn).

The space X turns out to be the Musielak-Orlicz Hardy space

HΦp(Rn) associated with the Musielak-Orlicz growth function
Φp defined by setting, for any x ∈ Rn and t ∈ [0, ∞),

Φp(x, t):=







t

log(e+ t) + [t(1 + |x|)n]1−p
if nα /∈ Z+,

t

log(e+ t) + [t(1 + |x|)n]1−p[log(e+ |x|)]p
if nα ∈ Z+.

Φ1(x, t) = θ(x, t).
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M-O Lebesgue & Hardy Spaces Associated withΦp / §II

Let p ∈ (0, 1]. The Musielak-Orlicz Lebesgue space LΦp(Rn)
consists of all measurable functions f on Rn such that

‖f‖LΦp(Rn) := inf

{

λ ∈ (0,∞) :

∫

Rn

Φp(x, |f(x)|/λ) dx ≤ 1

}

<∞.

The Musielak-Orlicz Hardy space HΦp(Rn) consists of all
f ∈ S ′(Rn) such that f∗ belongs to LΦp(Rn) and is
equipped with the quasi-norm

‖f‖HΦp(Rn) := ‖f∗‖LΦp(Rn) ,

where f∗(x) := supt∈(0,∞) |〈f,
1
tnϕ(

x−·
t )〉| for any x ∈ Rn

with ϕ ∈ S(Rn) and
∫

Rn ϕ 6= 0.
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M-O Campanato Spaces Associated withΦp / §II

Let p ∈ (0, 1] and s ∈ Z+ ∩ [⌊n(1/p− 1)⌋, ∞). The
Musielak-Orlicz Campanato space CΦp

(Rn) consists of all
measurable functions g on Rn such that

‖g‖CΦp(Rn) := sup
B⊂Rn

1

‖χB‖LΦp (Rn)

∫

B

∣
∣g(x)− PB,s(g)(x)

∣
∣ dx

< ∞,

where PB,sg denotes the minimizing polynomial of g on B
with degree ≤ s.
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Pointwise Multipliers of Cα(Rn)/ §I

Theorem ([Bck17] ) Let p ∈ (0, 1] and α := 1/p− 1. A function g
is a pointwise multiplier of Cα(Rn) iff g ∈ L∞(Rn) ∩ CΦp

(Rn).

Proof: need to show that g ∈ L∞(Rn) ∩ CΦp
(Rn) iff for any

f ∈ Cα(Rn), it holds true that fg ∈ Cα(Rn).

Sufficiency:
∣
∣f(x)g(x)− PB,sf(x)PB,sg(x)

∣
∣

≤
∣
∣f(x)− PB,sf(x)

∣
∣ |g(x)|+

∣
∣PB,sf(x)

∣
∣
∣
∣g(x)− PB,sg(x)

∣
∣ .

Necessity: find some subtle examples of functions in
Cα(Rn). (Difficult)
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Facts on Pointwise Multipliers ofCα(Rn)/ §II

L∞(Rn) ∩ CΦp
(Rn) characterizes the class of all pointwise

multipliers of C1/p−1(Rn).

(L1(Rn) +HΦp(Rn))∗ = L∞(Rn) ∩ (HΦp(Rn))∗ =
L∞(Rn) ∩ CΦp

(Rn).

This predicts the following sharp bilinear decomposition : for
any p ∈ (0, 1),

Hp(Rn)× C1/p−1(R
n) ⊂ L1(Rn) +HΦp(Rn).
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Wavelet Representation of Functions / §II

Let E := {0, 1}n \ {(

n times
︷ ︸︸ ︷

0, . . . , 0)} and D be the set of all dyadic
cubes. For any I ∈ D and λ ∈ E, let φI and ψλ

I be,
respectively, the father and the mother wavelets satisfying

Support condition: supp φI ⊂ mI, supp ψλ
I ⊂ mI with m

being a positive constant.

Cancelation condition:
∫

Rn φI(x) dx = (2π)−1/2 and there
exists s ∈ Z+ such that, for any multi-index α satisfying
|α| ≤ s,

∫

Rn x
αψλ

I (x) dx = 0.

Then, for any f ∈ L2(Rn),
f =

∑

I∈D

∑

λ∈E〈f, ψ
λ
I 〉ψ

λ
I .
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Dobyinsky’s Renormalizatoin (1) / §II

Let f × g ∈ L2(Rn)× L2(Rn). Then
f × g = Π1(f, g) + Π2(f, g) + Π3(f, g) + Π4(f, g), where

Π1(f, g) :=
∑

I, I′∈D
|I|=|I′|

∑

λ∈E

〈f, φI〉〈g, ψ
λ
I ′〉φIψ

λ
I ′,

Π2(f, g) :=
∑

I, I′∈D
|I|=|I′|

∑

λ∈E

〈f, ψλ
I 〉〈g, φI ′〉ψ

λ
I φI ′,

Π3(f, g) :=
∑

I, I′∈D
|I|=|I′|

∑

λ, λ′∈E

(I, λ) 6=(I′, λ′)

〈f, ψλ
I 〉〈g, ψ

λ′

I ′ 〉ψ
λ
Iψ

λ′

I ′ ,

Π4(f, g) :=
∑

I∈D

∑

λ∈E

〈f, ψλ
I 〉〈g, ψ

λ
I 〉
(
ψλ
I

)2
.
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Dobyinsky’s Renormalizatoin (2) / §II

S. Dobyinsky , La “version ondelettes" du théoréme du
Jacobien, Rev. Mat. Iberoam. 11 (1995), 309-333 .
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Boundedness of Operators{Πi}
4
i=1 / §II

f × g = Π1(f, g) + Π2(f, g) + Π3(f, g) + Π4(f, g) .
Let p ∈ (0, 1) and α := 1/p− 1.

Π1 and Π3 can be extended to bilinear operators
bounded from Hp(Rn)× Cα(Rn) to H1(Rn).

Π4 can be extended to a bilinear operator bounded from
Hp(Rn)× Cα(Rn) to L1(Rn).

Atomic decomposition of Hp(Rn);

Simple Hardy and Lebesgue estimates for Πi;

Wavelet characterization of Hp(Rn) and Cα(Rn);

Π2 can be extended to a bilinear operator bounded from
Hp(Rn)× Cα(Rn) to HΦp(Rn).
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Bilinear Decomposition / §II

Let p ∈ (0, 1). For any f ∈ Hp(Rn) and g ∈ C1/p−1(Rn), it
holds true that f × g = S(f, g) + T (f, g) with

S(f, g) := Π4(f, g) ∈ L1(Rn).

T (f, g) := Π1(f, g) + Π2(f, g) + Π3(f, g) ∈ HΦp(Rn).

Theorem ([Bck17] ) Let p ∈ (0, 1]. Then the space
Hp(Rn)× C1/p−1(Rn) has the following sharp bilinear
decomposition :

Hp(Rn)× C1/p−1(R
n) ⊂ L1(Rn) +HΦp(Rn).
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An Observation / §II

Indeed, Π2 : H
p(Rn)× Cα(Rn) → H1(Rn) +Hp

Wp
(Rn)

and H1(Rn) +Hp
Wp

(Rn) ⊂ HΦp(Rn), where Hp
Wp

(Rn) is
the weighted Hardy space associated with the weight Wp

defined by setting, for any x ∈ Rn,

Wp(x) :=







1

(1 + |x|)n(1−p)
if n[1/p− 1] /∈ Z+,

1

(1 + |x|)n(1−p) [log(e+ |x|)]p
if n[1/p− 1] ∈ Z+.

What is the relationship between
Hp
Wp
(Rn) and HΦp(Rn)?
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Intrinsic Structure of HΦp(Rn) (1) / §II

Let α := 1
p − 1. Musielak-Orlicz growth function : for any

(x, t) ∈ Rn × [0,∞),

Φp(x, t) :=







t

log(e+ t) + [t(1 + |x|)n]1−p
if nα /∈ Z+,

t

log(e+ t) + [t(1 + |x|)n]1−p[log(e+ |x|)]p
if nα ∈ Z+,

Weight function : for any x ∈ Rn,

Wp(x) :=







1

(1 + |x|)n(1−p)
if nα /∈ Z+,

1

(1 + |x|)n(1−p) [log(e+ |x|)]p
if nα ∈ Z+.

Sharp Bilinear Decompositions of Products of Hardy Spaces and Their Dual Spaces – p. 31/45



Intrinsic Structure of HΦp(Rn) (2) / §II

Orlicz function : φ0(t) := t
log(e+t) , ∀ t ∈ [0,∞).

(Φp(x, t))
−1 = (φ0(t))

−1 + (tpWp(x))
−1 , ∀x ∈ Rn, ∀ t ∈

(0,∞).

Theorem ([clyy] )

for p ∈ (0, 1], HΦp(Rn) = Hφ0(Rn) +Hp
Wp

(Rn);

for p ∈ (0, 1), HΦp(Rn) = H1(Rn) +Hp
Wp

(Rn).

Hp
Wp

(Rn)$HΦp(Rn) with
[

Hp
Wp

(Rn)
]∗

=
[
HΦp(Rn)

]∗

when p ∈ (0, 1).
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Intrinsic Structure of HΦp(Rn) (3) / §II

Lemma ([clyy] ) Let B be a ball in Rn. Then

for p = 1, ‖χB‖−1
LΦ1(Rn)

∼ ‖χB‖
−1
Lφ0(Rn)

+ ‖χB‖
−1
L1

W1
(Rn)

;

for p ∈ (0, 1), ‖χB‖−1
LΦp (Rn)

∼ ‖χB‖
−1
Lp

Wp
(Rn)

.

[clyy] J. Cao, L. Liu, D. Yang and W. Yuan , Intrinsic structures of
certain Musielak-Orlicz-Hardy spaces, J. Geom. Anal. (to
appear).
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§III. Bilinear Decompositions of
Products of Local Hardy and
Lipschitz or BMO Spaces
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Local Hardy Spaceshp(Rn) / §III

The local Hardy space hp(Rn) for p ∈ (0, 1] is defined to
be the set of all f ∈ S ′(Rn) such that their quasi-norms

‖f‖hp(Rn) := ‖f∗loc ‖Lp(Rn) :=

∥
∥
∥
∥
∥

sup
t∈(0, 1)

(ϕt ∗ f)

∥
∥
∥
∥
∥
Lp(Rn)

<∞,

where ϕt ∗ f(x) := 〈f, 1
tnϕ(

x−·
t )〉 with ϕ ∈ S(Rn).
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Local BMO Spaces / §II

The local BMO space bmo(Rn) is defined via the norm

‖g‖bmo(Rn) := sup
|B|<1

{
1

|B|

∫

B

|g(x)− gB| dx

}

+ sup
|B|≥1

{
1

|B|

∫

B

|f(x)| dx

}

,

where gB := 1
|B|

∫

B g.
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Local Hardy Spaces and Their Dual Spaces / §III

The inhomogeneous Lipschitz space Λα(Rn) with α ∈ (0, 1)
is defined via the norm

‖g‖Λα(Rn) := sup
x, y∈Rn

x6=y

|g(x)− g(y)|

|x− y|α
+ ‖g‖L∞(Rn).

It is well known that

[hp(Rn)]∗ =

{

bmo(Rn) when p = 1,

Λα(Rn) when p ∈ ( n
n+1 , 1)

with α := n(1p − 1).
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An variant of local Orlicz space/ §III

Let Q be an cube with side length 1. For any measurable
function g on Q, define the Orlicz space Lφ0(Q) on Q by

‖g‖Lφ0(Q) := inf

{

λ ∈ (0, ∞) :

∫

Q
φ0

(
|g(x)|

λ

)

dx ≤ 1

}

with

φ0(t) :=
t

log(e+ t)
, ∀ t ∈ [0,∞).

A generalized Hölder’s inequality:

‖fg‖Lφ0(Q) . ‖f‖L1(Q)‖g‖bmo(Rn).
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A Variant of Local Orlicz-Hardy Space / §III

Let φ0(t) := t
log(e+t) for any t ∈ [0,∞). For any

measurable function g, let

‖g‖
L

φ0
∗ (Rn)

:=
∑

j∈Zn

‖g‖Lφ0(Qj)

with j := (j1, . . . , jn), Qj := [j1, j1 +1)× · · · × [jn, jn+1).

The local Orlicz-Hardy space hφ0
∗ (Rn) is defined by setting

hφ0
∗ (Rn) := {f ∈ S ′(Rn) : ‖f‖

h
φ0
∗ (Rn)

:= ‖f∗loc ‖Lφ0
∗ (Rn)

<∞}.
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Bilinear Decompositions (1) / §III

For any f ∈ h1(Rn) and g ∈ bmo(Rn),
f × g = S(f, g) + T (f, g) with

S(f, g) := Π4(f, g) ∈ L1(Rn).

T (f, g) := Π1(f, g) + Π2(f, g) + Π3(f, g) ∈ hφ0
∗ (Rn).

[cky17] J. Cao, L. D. Ky & D. Yang , Bilinear decompositions of
products of local Hardy and Lipschitz or BMO spaces
through wavelets, Commun. Contemp. Math. (to appear).

Theorem ([cky17] ). h1(Rn)× bmo(Rn) has the following
bilinear decomposition :

h1(Rn)× bmo(Rn) ⊂ L1(Rn) + hφ0
∗ (Rn).

The sharpness of this decomposition is still unknown.
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Bilinear Decompositions (2) / §III

Theorem ([cky17] ) For any p ∈ ( n
n+1 , 1) and α = 1

p − 1,
hp(Rn)× Λα(Rn) has the following sharp bilinear
decomposition :

hp(Rn)× Λα(Rn) ⊂ L1(Rn) + hp(Rn).

Theorem ([cky17] ) Let F ∈ h1(Rn; Rn) with curlF ≡ 0 and
G ∈ bmo(Rn; Rn) with divG ≡ 0. Then F ·G ∈ hΦ∗ (R

n) with

‖F ·G‖
h
φ0
∗ (Rn)

. ‖F‖h1(Rn)‖G‖bmo(Rn).

The last theorem when p ∈ ( n
n+1 , 1) is still unknown.
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§IV. Further Remarks
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Spaces of Homogeneous Type

A quasi-metric space (X , d) equipped with a nonnegative
measure µ is called a space of homogeneous type if µ
satisfies the following measure doubling condition : ∃
C(X ) ∈ [1,∞) such that, for any ball
B(x, r) := {y ∈ X : d(x, y) < r} with x ∈ X and
r ∈ (0,∞),

µ(B(x, 2r)) ≤ C(X )µ(B(x, r)).

R. R. Coifman & G. Weiss , Analyse Harmonique
Non-Commutative sur Certains Espaces Homogènes,
Lecture Notes in Math. 242, Springer-Verlag, Berlin-New Yo rk,
1971.

R. R. Coifman & G. Weiss , Extensions of Hardy spaces and
their use in analysis, Bull. Amer. Math. Soc. 83 (1977),
569-645.
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Spaces of Homogeneous Type

X. Fu & D. Yang , Wavelet characterizations of the atomic
Hardy space H1 on spaces of homogeneous type, Appl.
Comput. Harmon. Anal. 44 (2018), 1-37 .

X. Fu, D. Yang & Y. Liang , Products of functions in BMO(X )

and H1
at(X ) via wavelets over spaces of homogeneous

type, J. Fourier Anal. Appl. 23 (2017), 919-990 .

L. Liu, D.-C. Chang, X. Fu & D. Yang , Endpoint boundedness
of commutators on spaces of homogeneous type, Appl.
Anal. 96 (2017), 2408-2433 .

L. Liu, D. Yang & W. Yuan , Bilinear decompositions for
products of Hardy and Lipschitz spaces on spaces of
homogeneous type, Submitted .

X. Fu & D. Yang , Products of functions in H1
ρ(X ) and

BMOρ(X ) over RD-spaces and applications to
Schrödinger operators, J. Geom. Anal. 27 (2017), 2938-2976 .
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Thank you for your attention.
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