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Every smooth convex solution of

det∇2u = 1 in Rn

must be a 2nd order polynomial.

I Jörgens (1954): n = 2 using complex analysis;

I Calabi (1958): 3 ≤ n ≤ 5;

I Pogorelov (1972): n ≥ 6;

I Cheng-Yau: a proof arising from affine geometry;

I Caffarelli: viscosity solutions.
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Some generalizations:

I Trudinger-Wang(’00): the only convex open subset Ω of Rn

which admits a convex C 2 solution of det∇2u = 1 in Ω with

lim
x→∂Ω

u(x) =∞

is Ω = Rn;



Some generalizations:

I Caffarelli-Li (’03): if

det∇2u = 1 in Rn \ Ω,

then there exist c ∈ R, b ∈ Rn,A ∈Mn×n s.t.

u(x)− (
1

2
xTAx + b · x + c) = O(|x |2−n).

I Ferrer-Mart́ınez-Milán (’00) for n = 2 (with an extra
log
√
xTAX term).
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where f is periodic Hölder continuous, then there exist
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I D. Li-Z.Li-Yuan (’17), D. Li-Z. Li(’18), for special Lagrangian
equations, half space, etc.
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where f is periodic Hölder continuous, then there exist
b ∈ Rn,A ∈Mn×n s.t.

u(x)− (
1

2
xTAx + b · x) is periodic (same as f ).

I D. Li-Z.Li-Yuan (’17), D. Li-Z. Li(’18), for special Lagrangian
equations, half space, etc.



Jörgens (1955) showed that every smooth locally convex solution of

det∇2u = 1 in R2 \ {0}

has to be

uc =

∫ |x |
0

(τ2 + c)
1
2 dτ, c ≥ 0.

(modulo the unimodular affine equivalence.)

0 is non-removable singular point of uc if and only if c > 0.
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We extended this to higher dimensions:

Theorem (J-Xiong ’12)

Let u be a generalized solution of
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0
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1
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Theorem (J-Xiong ’12)

Let Γ ⊂⊂ Ω be either a point or a straight line segment. If a
convex u ∈ C 2(Ω \ Γ) satisfies

det∇2u = 1 in Ω \ Γ,

then

|∇2u(x)| ≤ C

dist(x , Γ)
.

Remark: The rate is optimal (the isolated singularity case):

I

∫ |x |
0

(τn + 1)
1
n dτ is of this rate.

I If |∇2u(x)| = O(dist(x , Γ)−α) for α ∈ (0, 1), then by
Schulz-Wang, the singularity is removable.
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Regularity:

Theorem
Let Ω be a bounded convex domain, 0 < λ ≤ Λ <∞ and Γ ⊂⊂ Ω.
Let u ∈ C (Ω) be a generalized convex solution of

λ ≤ det∇2u ≤ Λ in Ω \ Γ,

u = 0 on ∂Ω.

Then u is locally strictly convex in Ω \ C(Γ), where C(Γ) is the
convex hull of Γ.



An open question: regularity for two isolated singularities.

Let u be a convex generalized solution of

λ ≤ det∇2u ≤ Λ in Ω \ {P1,P2},
u = 0 on ∂Ω.

We know u is strictly convex in Ω \ P1P2.

Question:
Is u strictly convex in Ω \ {P1,P2}?



An open question: regularity for two isolated singularities.

Let u be a convex generalized solution of

λ ≤ det∇2u ≤ Λ in Ω \ {P1,P2},
u = 0 on ∂Ω.

We know u is strictly convex in Ω \ P1P2.

Question:
Is u strictly convex in Ω \ {P1,P2}?



An open question: regularity for two isolated singularities.

Let u be a convex generalized solution of

λ ≤ det∇2u ≤ Λ in Ω \ {P1,P2},
u = 0 on ∂Ω.

We know u is strictly convex in Ω \ P1P2.

Question:
Is u strictly convex in Ω \ {P1,P2}?



Existence and uniqueness:

Theorem (J-Xiong ’12)

Let µ be a locally finite Borel measure s.t. the support of (µ− 1)
is bounded. Then for every c ∈ R, b ∈ Rn,A ∈Mn×n s.t.
A > 0, detA = 1, there exists a unique convex solution of

det∇2u = µ in Rn

lim
|x |→+∞

|u(x)− (
1

2
xTAx + b · x + c)| = 0.

Remark: If dµ = f (x)dx for some f ∈ C (Rn) satisfying supp(f −1)
is bounded and infRn f > 0, then this was proved in Caffarelli-Li.
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Brandolini, Nitsch, Salani and Trombetti extended Serrin’s over
derterminate result to σk(∇2u): whenever Ω is a bounded smooth
domain, and ν is the outer normal of ∂Ω, if u ∈ C 2(Ω) is a
solution of 

σk(∇2u) =

(
n

k

)
in Ω,

u = 0 on ∂Ω,

∂u/∂ν = 1 on ∂Ω

with k = 1, 2, · · · , n, then after some translation Ω has to the unit

ball and u = |x |2−1
2 .



We show that

Theorem (J-Xiong ’12)

Let Ω be a bounded smooth domain in Rn with n ≥ 2. If there
exists a locally convex function u ∈ C 1(Rn \ Ω) ∩ C 2(Rn \ Ω)
satisfying 

det∇2u = 1 in Rn \ Ω,

u = 0 on ∂Ω,

∂u/∂ν = 0 on ∂Ω,

where ν is the unit outer normal of ∂Ω, then Ω has to be an
ellipsoid.

Remark: Not much is know for Serrin’s problem in exterior
domains (even assuming quadratic growth at infinity).
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Degenerated Monge-Ampère equation

det∇2u(x1, x2) = |x1|α in R2.



The equation
det∇2u(x1, x2) = |x1|α in R2

appears, for instance, as a blowup limiting equation of

det∇2u(x1, x2) = (x2
1 + x2

2 )α/2 in B1 (1)

in Daskalopoulos-Savin in the study of the Weyl problem with
nonnegative Gauss curvature.

They showed that the solution of (1) near 0 is either

I radial (∼ |x |2+α
2 ), or

I nonradial (∼ c1|x1|2+α + c2|x2|2 + h.o.t.).
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Theorem (J-Xiong ’12)

Let u be a convex generalized solution of

det∇2u(x1, x2) = |x1|α in R2

with α > −1. Then there exist some constants a > 0, b and a
linear function `(x1, x2) such that

u(x1, x2) =
a

(α + 2)(α + 1)
|x1|2+α+

ab2

2
x2

1 +bx1x2+
1

2a
x2

2 +`(x1, x2).



Regularity:

We needed to show that every solution of

det∇2u(x1, x2) = |x1|α in R2

is strictly convex, so that u ∈ C 1,δ
loc (R2) and is smooth away from

{x1 = 0}.

However, we have examples showing that it is not the case for
local equations with α > 0:

det∇2u(x1, x2) = |x1|α in B1.

(Write u(x) = |x1|
2+α

2 w(x2) and solve for w).
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Define T : R2 → R2 by

T (x1, x2) = (x1,∇x2u(x)) =: (p1, p2).

T is injective. The partial Legendre transform u∗(p) is

u∗(p) = x2∇x2u(x)− u(x).

Then

I u∗ is concave w.r.t. p1 and convex w.r.t. p2;

I (u∗)∗ = u;

I u∗11 + |p1|αu∗22 = 0 in T (R2).
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Step 1: Prove
T (R2) = R2.

Hence
u∗11 + |p1|αu∗22 = 0 in R2.

Let v = u∗22 ≥ 0. Then

v11 + |p1|αv22 = 0 in R2.
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Step 2: The equation

v11 + |p1|αv22 = 0 in R2

satisfies the Harnack inequality, and thus v = u∗22 has to be a
constant.

So

u∗22 ≡ a, u∗11 ≡ −a|p1|α, u∗112 = u∗122 = 0, u∗12 = b.
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Proof of Harnack for

v11 + |p1|αv22 = 0, α > −1.

Let
φ(x1, x2) = |x1|2+α + x2

2 in R2.

Then

(∇2φ)1/2 =

( √
(2 + α)(1 + α)|x1|α/2 0

0
√

2

)
,

det∇2φ = 2(α + 2)(α + 1)|x1|α.

Note: |x1|α is A∞ if α > −1.
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Let

A(x1, x2) =

(
|x1|−α 0

0 1

)
.

Then

B := (∇2φ)1/2 · A · (∇2φ)1/2 =

(
(2 + α)(1 + α) 0

0 2

)
> 0

if α > −1.

Therefore, we can apply Caffarelli-Gutiérrez’s Harnack
inequality for linearized Monge-Ampère equations to

v11 + |p1|αv22 = Tr(A∇2v) = 0, α > −1.
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Proof of T (R2) = R2 (recall T (x1, x2) = (x1,∇x2u(x))).

We prove it by contradiction. Suppose that there exists x̄1 s.t.

lim
x2→∞

u2(x̄1, x2) := β <∞.

Then
lim

x2→∞
u2(x1, x2) = β for every x1 ∈ R.

We assume β = 1. Therefore,

T (R2) = (−∞,∞)× (β0, 1) for some −∞ ≤ β0 < 1.
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T (x1, x2) = (x1,∇x2u(x)) =: (p1, p2).

T (R2) = (−∞,∞)× (β0, 1) for some −∞ ≤ β0 < 1.

Since T is one-to-one and u∗2(p1, p2) = x2, we have

lim
p2→1−

u∗2(p1, p2) =∞.

Use continuity and monotonicity of u∗2 , we have

lim
(p1,p2)→(p̄1,1)

u∗2(p1, p2) = +∞ ∀ p̄1 ∈ R.

Use comparison principle and the equation of u∗2 to show that this
is impossible.
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