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Jorgens (1954): n = 2 using complex analysis;
Calabi (1958): 3 < n <5;
Pogorelov (1972): n > 6;

Cheng-Yau: a proof arising from affine geometry;
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Caffarelli: viscosity solutions.



Some generalizations:
» Trudinger-Wang('00): the only convex open subset Q of R”

which admits a convex C2 solution of det V2u =1 in Q with

li =
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is 2 =R";
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> Caffarelli-Li ('03): if
detVZu=1 inR"\Q,

then there exist c e R, b € R", A € M« s.t.

u(x) — (%XTAX +b-x+c) = O(lx]>").

» Ferrer-Martinez-Milan ('00) for n = 2 (with an extra

log VxTAX term).
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Some generalizations:

» Caffarelli-Li ('04): if
detV2u=1f inR"

where f is periodic Holder continuous, then there exist
beR" Aec Mpxp s.t.

1
u(x) — (EXTAX + b - x) is periodic (same as f).

» D. Li-Z.Li-Yuan ('17), D. Li-Z. Li('18), for special Lagrangian
equations, half space, etc.
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Jorgens (1955) showed that every smooth locally convex solution of
detV2u=1 inR?\ {0}

has to be
|x| ) 1
uc—/ (t°+c¢)2dr, c>0.
0

(modulo the unimodular affine equivalence.)

0 is non-removable singular point of u. if and only if ¢ > 0.
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We extended this to higher dimensions:
Theorem (J-Xiong '12)

Let u be a generalized solution of
detV2u=1 inR"\ {0}.
Then u must be

Ix|
/ (7" + C)% dr
0

for some ¢ > 0 (modulo the unimodular affine equivalence).
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Next, local solutions to

det V2u = 1in By \ {0}.

Describe the asymptotic behavior of u near the non-removable
singularity {0}.
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Theorem (J-Xiong '12)

Let T CC Q be either a point or a straight line segment. If a
convex u € C2(Q\ T) satisfies

detVZu=1in Q\T,
then

C
2

< —
VUl s G

Remark: The rate is optimal (the isolated singularity case):

Ix|
> / (7" + 1)% dr is of this rate.
0

» If |V2u(x)| = O(dist(x,)~?) for a € (0,1), then by
Schulz-Wang, the singularity is removable.



Regularity:

Theorem
Let 2 be a bounded convex domain, 0 < A <A < oo and I CC Q.
Let u € C(Q) be a generalized convex solution of

A<detVZu<A  inQ\T,
u=0 on 9Q.

Then u is locally strictly convex in Q\ C(I'), where C(T') is the
convex hull of .
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An open question: regularity for two isolated singularities.

Let u be a convex generalized solution of

A< detV2u<A  inQ\{P1, P},
u=20 on 89

We know u is strictly convex in Q\ Py Px.

Question:
Is u strictly convex in Q\ {P1, P>}?



Existence and uniqueness:

Theorem (J-Xiong '12)

Let 11 be a locally finite Borel measure s.t. the support of (i — 1)
is bounded. Then for every c ¢ R,b € R", A € M, «, s.t.

A > 0,det A =1, there exists a unique convex solution of
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Existence and uniqueness:
Theorem (J-Xiong '12)
Let 11 be a locally finite Borel measure s.t. the support of (i — 1)

is bounded. Then for every c ¢ R,b € R", A € M, «, s.t.
A > 0,det A =1, there exists a unique convex solution of

detV2u=p inR"

1
lim |u(x) = (5x"Ax+ b-x+c)| = 0.

|x|—=+o0 2

Remark: If du = f(x)dx for some f € C(R") satisfying supp(f —1)
is bounded and infgs f > 0, then this was proved in Caffarelli-Li.



Brandolini, Nitsch, Salani and Trombetti extended Serrin's over
derterminate result to ox(V2u): whenever Q is a bounded smooth
domain, and v is the outer normal of 9%, if u € C?(Q) is a
solution of

ok(V2u) = (Z) in Q,

u=20 on 092,
ou/ov =1 on 00
with k =1,2 --- | n, then after some translation Q has to the unit

2
—1
ball and u = =L,



We show that
Theorem (J-Xiong '12)
Let Q be a bounded smooth domain in R" with n > 2. If there
exists a locally convex function u € CY(R"\ Q) N C3(R"\ Q)
satisfying
detV?u=1 inR"\Q,
u=0 on0Q,
Ju/ov =0 on 09,

where v is the unit outer normal of 02, then 0 has to be an
ellipsoid.



We show that
Theorem (J-Xiong '12)
Let Q be a bounded smooth domain in R" with n > 2. If there
exists a locally convex function u € CY(R"\ Q) N C3(R"\ Q)
satisfying
detV?u=1 inR"\Q,
u=0 on0Q,

Ju/ov =0 on 09,
where v is the unit outer normal of 02, then 0 has to be an
ellipsoid.

Remark: Not much is know for Serrin's problem in exterior
domains (even assuming quadratic growth at infinity).



Degenerated Monge-Ampere equation

det V2u(xq, x2) = |x1|® in R2.
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The equation
det V2u(x1, x2) = |x1|* in R?

appears, for instance, as a blowup limiting equation of
det V2u(x1, %) = (x2 4+ x2)*2 in B (1)
in Daskalopoulos-Savin in the study of the Weyl problem with
nonnegative Gauss curvature.
They showed that the solution of (1) near 0 is either
» radial (~ |x|>T2), or

» nonradial (~ c1|x1|>T® + c2|x2|? + h.o.t.).



Theorem (J-Xiong '12)

Let u be a convex generalized solution of
det V2u(x1, x2) = |x1|* in R?

with o« > —1. Then there exist some constants a > 0, b and a
linear function ¢(x1, x2) such that

a ab?
u(x, x2) = ( |X1‘2+a+7

1
2 2
— +b. +—x5+¢ .
2)( 1) X1 X1 X2 2aX2 (X]_, X2)
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Regularity:
We needed to show that every solution of

det V2u(x1, x2) = |x1|* in R?

is strictly convex, so that u € C,})’f(Rz) and is smooth away from
{Xl = 0}

However, we have examples showing that it is not the case for
local equations with o« > 0:

det V2u(x1, x2) = |x1|* in By.

(Write u(x) = ‘lez%a w(x2) and solve for w).



Define T : R? — R? by
T(X17X2) = (levxzu(x)) =. (plaPZ)'

T is injective. The partial Legendre transform u*(p) is

u*(p) = xoVy,u(x) — u(x).
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Define T : R? — R? by
T(x1,x2) = (x1, Vipu(x)) =t (p1, p2)-
T is injective. The partial Legendre transform u*(p) is
u*(p) = xoVy,u(x) — u(x).

Then
» u* is concave w.r.t. p; and convex w.r.t. po;
> () =u;

> ujy + |p [z, = 0in T(R?).



Step 1: Prove
T(R?) = R?.

Hence
* : 2
ujy + |p1|®u5, =0 in R%.



Step 1: Prove
T(R?) = R?.

Hence
2
ujy + |p1|®u5, =0 in R%.

Let v =u3, > 0. Then

vi1 + |p1/%va2 = 0 in R



Step 2: The equation
vi1 + |p1|*va2 =0 in R?

satisfies the Harnack inequality, and thus v = u3, has to be a
constant.



Step 2: The equation
vi1 + |p1|*va2 =0 in R?

satisfies the Harnack inequality, and thus v = u3, has to be a
constant. So

* — * — (073 * * *
Uy = a,uyy = —alp1|®, uj1p = Ui = 0,ui, = b.
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Proof of Harnack for
vii + |p1|%ve2 =0, a > —1.

Let
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Proof of Harnack for
vii + |p1|%ve2 =0, a > —1.

Let
d(x1,x) = \x1|2+°‘ +X22 in R?.

Then

1/2 \/ 2+Oé 1+O[‘X1|a/2 0
V2

det V2¢ +2)(a + 1)]x1|°‘

)

Note: |x1]|% is Ao if @ > —1.



Let

= (747 4).

Then

B = (V20)/2. A (V2)V/? — ( (2+0z)0(1+a) g ) -0

if > —1.



Let

g
Abae) = < 3 )

Then

B = (V20)/2. A (V2)V/? — ( (2+0z)0(1+a) g ) -0

if « > —1.Therefore, we can apply Caffarelli-Gutiérrez's Harnack
inequality for linearized Monge-Ampére equations to

Vi1 + ‘pl‘aV22 = Tr(AV2V) =0, a>-1.
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Proof of T(R?) = R? (recall T(x1,x2) = (x1, Vxu(x))).

We prove it by contradiction. Suppose that there exists X; s.t.

lim (X1, x) =0 < 0.
X —>00

Then

lim wa(x1,x2) = 3 for every x; € R.
Xp—>r00

We assume 3 = 1. Therefore,

T(R?) = (—00,00) X (Bo,1) for some — oo < fBy < 1.
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Recall
T(x1,x) = (x1, Vi u(x)) =: (p1, p2)-
T(R?) = (—00,00) X (fg,1) for some — oo < By < 1.

Since T is one-to-one and u3(p1, p2) = x2, we have

lim u5(p1, p2) = 0.
po—1—

Use continuity and monotonicity of u3, we have

lim uy(p1,p2) = +oo ¥V p1 € R.
(P1,p2)—(P1,1)

Use comparison principle and the equation of u; to show that this
is impossible.



THANK YOQU!



