Finite Morse index solutions of Allen-Cahn equation

Kelei Wang

(based on joint work with Changfeng Gui and Juncheng Wei)

Wuhan University, China

wangkelei@whu.edu.cn

Harbin, 3 May 2019

The stability condition

Consider a functional

 $\mathcal{F}(u, \nabla u).$

< 一型

э

Consider a functional

 $\mathcal{F}(u, \nabla u).$

We say u is a critical point if the first variation vanishes: given a family u^t for $t \in (-\varepsilon, \varepsilon)$ with $u^0 = u$,

$$rac{d}{dt}\mathcal{F}(u^t,
abla u^t)|_{t=0}=0.$$

Consider a functional

$$\mathcal{F}(u, \nabla u).$$

We say u is a critical point if the first variation vanishes: given a family u^t for $t \in (-\varepsilon, \varepsilon)$ with $u^0 = u$,

$$\frac{d}{dt}\mathcal{F}(u^t,\nabla u^t)|_{t=0}=0.$$

The second variation formula

$$\mathcal{Q}(\varphi) := rac{d^2}{dt^2} \mathcal{F}(u^t,
abla u^t)|_{t=0}, \quad arphi := rac{du^t}{dt}|_{t=0}.$$

Morse index = dim of the negative space for $\mathcal{Q}.$ A solution is stable if its Morse index is 0.

If u is a critical point defined on the entire space \mathbb{R}^n , its Morse index is defined to be

sup dim{X : finite dim subspace of $C_0^{\infty}(\mathbb{R}^n)$ with $\mathcal{Q} \mid_X < 0$ }.

If u is a critical point defined on the entire space \mathbb{R}^n , its Morse index is defined to be

sup dim{X : finite dim subspace of $C_0^{\infty}(\mathbb{R}^n)$ with $\mathcal{Q} \mid_X < 0$ }.

Finite Morse index \implies stable outside a compact set, i.e. there exists a compact set K such that, for any $\varphi \in C_0^{\infty}(\mathbb{R}^n \setminus K)$,

 $\mathcal{Q}(\varphi) \geq 0.$

• Minimal hypersurfaces

Stability:
$$\int_{\Sigma} |\nabla \varphi|^2 - |A|^2 \varphi^2 \ge 0.$$

Image: A matrix

æ

Three models

• Minimal hypersurfaces

Stability:
$$\int_{\Sigma} |\nabla \varphi|^2 - |A|^2 \varphi^2 \ge 0.$$

• Allen-Cahn equation: $-\Delta u = u - u^3$

Stability:
$$\int_{\mathbb{R}^n} |\nabla \varphi|^2 + (3u^2 - 1) \varphi^2 \ge 0.$$

• Minimal hypersurfaces

Stability:
$$\int_{\Sigma} |\nabla \varphi|^2 - |A|^2 \varphi^2 \ge 0.$$

• Allen-Cahn equation: $-\Delta u = u - u^3$

Stability:
$$\int_{\mathbb{R}^n} |
abla arphi|^2 + \left(3u^2 - 1\right) arphi^2 \geq 0.$$

• Toda system: $\Delta f_k = e^{-\sqrt{2}(f_k - f_{k-1})} - e^{-\sqrt{2}(f_{k+1} - f_k)}$

Stability:
$$\sum_{k} \int_{\mathbb{R}^n} |\nabla \varphi_k|^2 - \sqrt{2} e^{-\sqrt{2}(f_k - f_{k-1})} (\varphi_k - \varphi_{k-1})^2 \ge 0.$$

Minimal hypersurfaces with finite Morse index

• Minimal surfaces in \mathbb{R}^3 with finite Morse index have finitely many ends (Fishcer-Colbrie, Gulliver in 1980s).

Minimal hypersurfaces with finite Morse index

- Minimal surfaces in ℝ³ with finite Morse index have finitely many ends (Fishcer-Colbrie, Gulliver in 1980s).
- Minimal hypersurfaces with finite Morse index in high dimensional Euclidean spaces also have finitely many ends, but only in the topological sense. (H.-D. Cao-Y. Shen-S. Zhu '97, P. Li-J. Wang '02).

Bernstein problem

• **Graph version:** If *n* ≤ 7, any entire solution to the minimal surface equation must be linear:

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right)=0,\quad\text{in }\mathbb{R}^n$$

Bernstein problem

• **Graph version:** If *n* ≤ 7, any entire solution to the minimal surface equation must be linear:

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right)=0,\quad \text{in } \mathbb{R}^n$$

 Minimizer version: If n ≤ 7, any hypersurface with minimizing area in ℝⁿ must be a hyperplane.

$${\sf Area}\left(\Sigma\cap B_R
ight)\leq {\sf Area}\left(\widetilde{\Sigma}\cap B_R
ight), \quad {\sf if} \ \ \Sigma=\widetilde{\Sigma} \ {\sf outside} B_R.$$

Bernstein problem

 Graph version: If n ≤ 7, any entire solution to the minimal surface equation must be linear:

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right)=0,\quad\text{in }\mathbb{R}^n$$

 Minimizer version: If n ≤ 7, any hypersurface with minimizing area in ℝⁿ must be a hyperplane.

$${\sf Area}\left(\Sigma\cap B_R
ight)\leq {\sf Area}\left(\widetilde{\Sigma}\cap B_R
ight), \quad {\sf if} \ \ \Sigma=\widetilde{\Sigma} \ {\sf outside} B_R.$$

 Stable version: If n ≤ 7, any stable minimal hypersurface in ℝⁿ must be a hyperplane. (n = 3 by do Carmo and Peng, Fischer-Colbrie and Schoen, Pogorolev around 1980.)

Kelei Wang (Wuhan Univ.)

Graph version: Let u ∈ C²(ℝⁿ) be a solution of the Allen-Cahn equation, such that ∂u/∂x_n > 0 in ℝⁿ. Is it true that u is one dimensional if n ≤ 8?
 Ghoussoub-Gui, Ambrosio-Cabre, Savin, Del Pino-Kowalczyk-Wei etc.

- Graph version: Let $u \in C^2(\mathbb{R}^n)$ be a solution of the Allen-Cahn equation, such that $\frac{\partial u}{\partial x_n} > 0$ in \mathbb{R}^n . Is it true that u is one dimensional if $n \leq 8$? Ghoussoub-Gui, Ambrosio-Cabre, Savin, Del Pino-Kowalczyk-Wei etc.
- Minimizer version: A minimizing solution of (AC) in ℝⁿ is one dimensional if n ≤ 7 (Savin '09).

- Graph version: Let $u \in C^2(\mathbb{R}^n)$ be a solution of the Allen-Cahn equation, such that $\frac{\partial u}{\partial x_n} > 0$ in \mathbb{R}^n . Is it true that u is one dimensional if $n \leq 8$? Ghoussoub-Gui, Ambrosio-Cabre, Savin, Del Pino-Kowalczyk-Wei etc.
- Minimizer version: A minimizing solution of (AC) in ℝⁿ is one dimensional if n ≤ 7 (Savin '09).
- **Stable version:** A stable solution of (AC) in \mathbb{R}^n is 1D if $n \leq 7$.

- Graph version: Let $u \in C^2(\mathbb{R}^n)$ be a solution of the Allen-Cahn equation, such that $\frac{\partial u}{\partial x_n} > 0$ in \mathbb{R}^n . Is it true that u is one dimensional if $n \leq 8$? Ghoussoub-Gui, Ambrosio-Cabre, Savin, Del Pino-Kowalczyk-Wei etc.
- Minimizer version: A minimizing solution of (AC) in ℝⁿ is one dimensional if n ≤ 7 (Savin '09).
- **Stable version:** A stable solution of (AC) in \mathbb{R}^n is 1D if $n \leq 7$.

Stable De Giorgi is only known for n = 2: quadratic area growth or parabolicity.

Theorem (W.-Wei '17)

A finite Morse index solution of the Allen-Cahn equation in \mathbb{R}^2 has finitely many ends.

Solutions with finitely many ends

u looks like the 1D solution along each end. \leftarrow Refined asymptotics, exponential convergence (Gui '08, Del Pino-Kowalczyk-Pacard '13).

Example: Pizza solutions

э

Example: Toda solutions

Del Pino-Kowalczyk-Pacard-Wei '10: $\{u = 0\}$ is close to the graph of Toda solutions:

 $f_k''(x) = e^{-\sqrt{2}[f_k(x) - f_{k-1}(x)]} - e^{-\sqrt{2}[f_{k+1}(x) - f_k(x)]}, \quad x \in \mathbb{R}, \quad 1 \le k \le Q.$

Example: solutions with many ends

Kowalczyk-Y. Liu-Pacard-Wei '15:

A finiteness result for nodal domains

Let u_e be the directional derivative in *e*-direction, which satisfies the linearized equation

$$\Delta u_e = W''(u)u_e.$$

Lemma

If the Morse index is N, the number of connected components of $\{u_e \neq 0\}$ is at most 2N.

A finiteness result for nodal domains

Let u_e be the directional derivative in *e*-direction, which satisfies the linearized equation

$$\Delta u_e = W''(u)u_e.$$

Lemma

If the Morse index is N, the number of connected components of $\{u_e \neq 0\}$ is at most 2N.

• Liouville theorem for the degenerate equation

$$\operatorname{div}\left(arphi^2
abla rac{u_{e}}{arphi}
ight) = 0.$$

 Similar to Courant's nodal domain theorem: entire space? n = 2 ⇒ log cut-off functions, Ambrosio-Cabré '03...

Transferring finiteness information

If each end of $\{u = 0\}$ has an asymptotic direction at infinity, finiteness of nodal domains of u_e can be transformed into finiteness of ends.

Theorem (W.-Wei '17)

Let u be a finite Morse index solution of the Allen-Cahn equation in \mathbb{R}^2 . For all x large,

$$|A(x)|^2 := \frac{|\nabla^2 u(x)|^2 - |\nabla|\nabla u(x)||^2}{|\nabla u(x)|^2} \le \frac{C}{|x|^2}.$$

э

Theorem (W.-Wei '17)

Let u be a finite Morse index solution of the Allen-Cahn equation in \mathbb{R}^2 . For all x large,

$$|A(x)|^2 := rac{|
abla^2 u(x)|^2 - |
abla |
abla u(x)|^2}{|
abla u(x)|^2} \le rac{C}{|x|^2}.$$

Theorem (Schoen '83)

Given a three dimensional manifold M (with some curvature bounds). Let Σ be a stable immersed minimal surface in a ball $B_R(p) \subset M$ with $\partial \Sigma \subset \partial B_R(p)$. Then

$$\sup_{B_{R/2}(p)\cap\Sigma}|A_{\Sigma}|^2\leq\frac{C}{R^2}.$$

Stability
$$\Leftrightarrow \int |\nabla \varphi|^2 |\nabla u|^2 \ge \int \varphi^2 \left[|\nabla^2 u|^2 - |\nabla |\nabla u||^2 \right].$$

• $|\nabla u|^2 dx$ corresponds to the area measure of minimal surfaces.

$$\mathsf{Stability} \Leftrightarrow \int |\nabla \varphi|^2 |\nabla u|^2 \geq \int \varphi^2 \left[|\nabla^2 u|^2 - |\nabla |\nabla u||^2 \right].$$

|∇u|²dx corresponds to the area measure of minimal surfaces.
If |∇u| ≠ 0,

$$\frac{|\nabla^2 u|^2 - |\nabla|\nabla u||^2}{|\nabla u|^2} = |\mathcal{A}|^2 + |\nabla_{\mathcal{T}} \log |\nabla u||^2,$$

where A is the second fundamental form of level sets $\{u = const.\}$ and ∇_T is the tangential derivatives along these level sets.

Stability
$$\Leftrightarrow \int |\nabla \varphi|^2 |\nabla u|^2 \ge \int \varphi^2 \left[|\nabla^2 u|^2 - |\nabla |\nabla u||^2 \right].$$

|∇u|²dx corresponds to the area measure of minimal surfaces.
If |∇u| ≠ 0,

$$\frac{|\nabla^2 u|^2 - |\nabla|\nabla u||^2}{|\nabla u|^2} = |A|^2 + |\nabla_T \log |\nabla u||^2,$$

where A is the second fundamental form of level sets $\{u = const.\}$ and ∇_T is the tangential derivatives along these level sets.

• Simons inequality for this curvature term? Not found yet. Seems to be a common difficulty in semilinear problems.

• Stability outside $B_R(0) \iff$ Finite Morse index.

Image: Image:

- Stability outside $B_R(0) \iff$ Finite Morse index.
- Assume $\exists x_k \in B_R(0)^c$ such that $|A(x_k)||x_k| \ge k$.

- Stability outside $B_R(0) \iff$ Finite Morse index.
- Assume $\exists x_k \in B_R(0)^c$ such that $|A(x_k)||x_k| \ge k$.
- Find y_k satisfying

$$|A(y_k)| \ge |A(x_k)|, \qquad |A(y_k)||y_k| \ge k,$$

 $|A(x)| \le 2|A(y_k)|, \quad \forall x \in B_{k|A(y_k)|^{-1}}(y_k).$

- ∢ 🗇 እ

- Stability outside $B_R(0) \iff$ Finite Morse index.
- Assume $\exists x_k \in B_R(0)^c$ such that $|A(x_k)||x_k| \ge k$.
- Find y_k satisfying

$$|A(y_k)| \ge |A(x_k)|, \qquad |A(y_k)||y_k| \ge k,$$

 $|A(x)| \le 2|A(y_k)|, \quad \forall x \in B_{k|A(y_k)|^{-1}}(y_k).$

• Let $\varepsilon_k := |A(y_k)|$ and define $u_k(x) := u(y_k + \varepsilon_k^{-1}x)$. $|y_k| \to +\infty$ and $\varepsilon_k \to 0 \iff$ Locally close to 1D solution, by stable De Giorgi for n = 2.

- Stability outside $B_R(0) \iff$ Finite Morse index.
- Assume $\exists x_k \in B_R(0)^c$ such that $|A(x_k)||x_k| \ge k$.
- Find *y_k* satisfying

$$|A(y_k)| \ge |A(x_k)|, \qquad |A(y_k)||y_k| \ge k,$$

 $|A(x)| \le 2|A(y_k)|, \quad \forall x \in B_{k|A(y_k)|^{-1}}(y_k).$

• Let $\varepsilon_k := |A(y_k)|$ and define $u_k(x) := u(y_k + \varepsilon_k^{-1}x)$. $|y_k| \to +\infty$ and $\varepsilon_k \to 0 \iff$ Locally close to 1D solution, by stable De Giorgi for n = 2.

• In $B_k(0)$, u_k is a stable solution of (AC) with parameter ε_k .

- Stability outside $B_R(0) \iff$ Finite Morse index.
- Assume $\exists x_k \in B_R(0)^c$ such that $|A(x_k)||x_k| \ge k$.
- Find *y_k* satisfying

$$|A(y_k)| \ge |A(x_k)|, \qquad |A(y_k)||y_k| \ge k,$$

 $|A(x)| \le 2|A(y_k)|, \quad \forall x \in B_{k|A(y_k)|^{-1}}(y_k).$

- Let $\varepsilon_k := |A(y_k)|$ and define $u_k(x) := u(y_k + \varepsilon_k^{-1}x)$. $|y_k| \to +\infty$ and $\varepsilon_k \to 0 \iff$ Locally close to 1D solution, by stable De Giorgi for n = 2.
- In $B_k(0)$, u_k is a stable solution of (AC) with parameter ε_k .
- The curvature of $\{u_{\varepsilon_k} = 0\}$ is uniformly bounded, and it equals 1 at the origin.

Theorem (W.-Wei '18)

Let u_{ε} be a sequence of stable solutions to (AC) such that $\{u_{\varepsilon} = 0\}$ are uniformly $C^{1,\beta}$ for some $\beta \in (0,1)$. If $n \leq 10$, then $\{u_{\varepsilon} = 0\}$ are uniformly bounded in $C^{2,\alpha}$ for any $\alpha \in (0,1)$. Moreover, the mean curvature is of the order $O(\varepsilon^{\alpha})$.

Theorem (W.-Wei '18)

Let u_{ε} be a sequence of stable solutions to (AC) such that $\{u_{\varepsilon} = 0\}$ are uniformly $C^{1,\beta}$ for some $\beta \in (0,1)$. If $n \leq 10$, then $\{u_{\varepsilon} = 0\}$ are uniformly bounded in $C^{2,\alpha}$ for any $\alpha \in (0,1)$. Moreover, the mean curvature is of the order $O(\varepsilon^{\alpha})$.

Chodosh-Mantoulidis '18 has obtained the same result in dimension 3, which was used in their study of min-max minimal surfaces in three manifolds (Multiplicity one conjecture of Marques-Neves, existence of infinitely many minimal surfaces in generic case).

Clustering interfaces

There could be more and more connected components of $\{u_{\varepsilon} = 0\}$, which can collapse to the same limit. \implies clustering interfaces.

Curvature bound on $\{u_{\varepsilon} = 0\} \Longrightarrow \{u_{\varepsilon} = 0\}$ locally represented by graphs $\cup_k \Gamma_{k,\varepsilon}$, where

$$\Gamma_{k,\varepsilon} = \{ x_2 = f_{k,\varepsilon}(x_1) \}, \quad \cdots < f_{k-1,\varepsilon} < f_{k,\varepsilon} < f_{k+1,\varepsilon} < \cdots .$$

The cardinality of index set could go to infinity.

Curvature bound on $\{u_{\varepsilon} = 0\} \Longrightarrow \{u_{\varepsilon} = 0\}$ locally represented by graphs $\cup_k \Gamma_{k,\varepsilon}$, where

$$\Gamma_{k,\varepsilon} = \{x_2 = f_{k,\varepsilon}(x_1)\}, \quad \cdots < f_{k-1,\varepsilon} < f_{k,\varepsilon} < f_{k+1,\varepsilon} < \cdots.$$

The cardinality of index set could go to infinity.

Interaction between different interfaces has the form

$$\operatorname{div}\left(\frac{\nabla f_{k,\varepsilon}}{\sqrt{1+|\nabla f_{k,\varepsilon}|^2}}\right) = \frac{A}{\varepsilon}\left[e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k,\varepsilon}-f_{k-1,\varepsilon}\right)} - e^{-\frac{\sqrt{2}}{\varepsilon}\left(f_{k+1,\varepsilon}-f_{k,\varepsilon}\right)}\right] + h.o.t.$$

Infinite dimensional Lyapunov-Schmidt reduction of Del Pino, Kowalczyk, Wei and their collaborators.

Interaction between transition layers

Approximate solution: near Γ_k ,

21 / 29

Obstruction to $C^{2,\alpha}$ estimates of $f_{k,\varepsilon}$

$$\Delta f_{k,\varepsilon} = \frac{A}{\varepsilon} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k,\varepsilon} - f_{k-1,\varepsilon} \right)} - \frac{A}{\varepsilon} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k+1,\varepsilon} - f_{k,\varepsilon} \right)}.$$
$$f_{k+1,\varepsilon} - f_{k,\varepsilon} \ge \frac{\sqrt{2} \left(1 + \alpha \right)}{2} \varepsilon |\log \varepsilon| - C\varepsilon \Longrightarrow f_{k,\varepsilon} \in C^{2,\alpha}.$$

Obstruction to $C^{2,\alpha}$ estimates of $f_{k,\varepsilon}$

$$\Delta f_{k,\varepsilon} = \frac{A}{\varepsilon} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k,\varepsilon} - f_{k-1,\varepsilon}\right)} - \frac{A}{\varepsilon} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k+1,\varepsilon} - f_{k,\varepsilon}\right)}.$$
$$f_{k+1,\varepsilon} - f_{k,\varepsilon} \ge \frac{\sqrt{2} \left(1 + \alpha\right)}{2} \varepsilon |\log \varepsilon| - C\varepsilon \Longrightarrow f_{k,\varepsilon} \in C^{2,\alpha}.$$

On the other hand, if

$$f_{k+1,\varepsilon} - f_{k,\varepsilon} \leq \frac{\sqrt{2}}{2} \varepsilon |\log \varepsilon| + C \varepsilon,$$

define the blow up sequence

$$\widetilde{f}_{k,arepsilon}(x):=rac{1}{arepsilon}f_{k,arepsilon}\left(arepsilon^{rac{1}{2}}x
ight)-rac{\sqrt{2}lpha}{2}|\logarepsilon|.$$

They converge to an entire solution of the Toda system

$$\Delta f_k = e^{-\sqrt{2}(f_k - f_{k-1})} - e^{-\sqrt{2}(f_{k+1} - f_k)}, \quad \text{in } \mathbb{R}^{n-1}$$

• If u_{ε} is stable, $(f_{k,\varepsilon})$ satisfies a stability condition:

$$\sum_{k} \int |\nabla \eta_{k}|^{2} \geq \frac{\sqrt{2}A}{\varepsilon^{2}} \sum_{k} \int (\eta_{k} - \eta_{k-1})^{2} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k,\varepsilon} - f_{k-1,\varepsilon}\right)} - h.o.t..$$

• If u_{ε} is stable, $(f_{k,\varepsilon})$ satisfies a stability condition:

$$\sum_{k} \int |\nabla \eta_{k}|^{2} \geq \frac{\sqrt{2}A}{\varepsilon^{2}} \sum_{k} \int (\eta_{k} - \eta_{k-1})^{2} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k,\varepsilon} - f_{k-1,\varepsilon}\right)} - h.o.t..$$

• Uniform $C^{2,\alpha}$ estimates of clustering interfaces for stable solutions of (AC)

• If u_{ε} is stable, $(f_{k,\varepsilon})$ satisfies a stability condition:

$$\sum_{k} \int |\nabla \eta_{k}|^{2} \geq \frac{\sqrt{2}A}{\varepsilon^{2}} \sum_{k} \int (\eta_{k} - \eta_{k-1})^{2} e^{-\frac{\sqrt{2}}{\varepsilon} \left(f_{k,\varepsilon} - f_{k-1,\varepsilon}\right)} - h.o.t..$$

• Uniform $C^{2,\alpha}$ estimates of clustering interfaces for stable solutions of (AC)

 \Leftarrow Non-existence of entire stable solutions of Toda system.

Liouville theorems for Toda system

$$\Delta f_k = e^{-\sqrt{2}(f_k - f_{k-1})} - e^{-\sqrt{2}(f_{k+1} - f_k)}$$

Toda system if $k = 1, \dots, Q$, Toda lattice if k runs over \mathbb{Z} .

Theorem (W. '19)

• If n < 10, there does not exist entire stable solution of Toda lattice in \mathbb{R}^n .

$$\Delta f_k = e^{-\sqrt{2}(f_k - f_{k-1})} - e^{-\sqrt{2}(f_{k+1} - f_k)}$$

Toda system if $k = 1, \dots, Q$, Toda lattice if k runs over \mathbb{Z} .

Theorem (W. '19)

- If n < 10, there does not exist entire stable solution of Toda lattice in \mathbb{R}^n .
- If 1 ≤ n < 4Q (Q − 1) + 2, there is no entire stable solution of Q-component Toda system in ℝⁿ.

$$\Delta f_k = e^{-\sqrt{2}(f_k - f_{k-1})} - e^{-\sqrt{2}(f_{k+1} - f_k)}$$

Toda system if $k = 1, \dots, Q$, Toda lattice if k runs over \mathbb{Z} .

Theorem (W. '19)

- If n < 10, there does not exist entire stable solution of Toda lattice in \mathbb{R}^n .
- If 1 ≤ n < 4Q (Q − 1) + 2, there is no entire stable solution of Q-component Toda system in ℝⁿ.
- If 3 ≤ n ≤ 9, there is no solution of Toda lattice in ℝⁿ, which is stable outside a compact set.

$$\Delta f_k = e^{-\sqrt{2}(f_k - f_{k-1})} - e^{-\sqrt{2}(f_{k+1} - f_k)}$$

Toda system if $k = 1, \dots, Q$, Toda lattice if k runs over \mathbb{Z} .

Theorem (W. '19)

- If n < 10, there does not exist entire stable solution of Toda lattice in \mathbb{R}^n .
- If 1 ≤ n < 4Q (Q − 1) + 2, there is no entire stable solution of Q-component Toda system in ℝⁿ.
- If 3 ≤ n ≤ 9, there is no solution of Toda lattice in ℝⁿ, which is stable outside a compact set.
- If 3 ≤ n < N_Q, there is no finite Morse index solution of Q-component Toda system in ℝⁿ.

Theorem (W. '19)

For any n, there exists a universal constant η such that, if (f_k) is a stable solution to the Toda lattice

$$\Delta f_k = e^{-\sqrt{2}(f_k - f_{k-1})} - e^{-\sqrt{2}(f_{k+1} - f_k)}$$
 in $B_1 \subset \mathbb{R}^n$,

then

$$\int_{B_1} e^{-\sqrt{2}(f_k - f_{k-1})} \leq \eta(n) \implies \sup_{B_{1/2}} e^{-\sqrt{2}(f_k - f_{k-1})} \leq \frac{1}{2}$$

э

Theorem (W. '19)

For any n, there exists a universal constant η such that, if (f_k) is a stable solution to the Toda lattice

$$\Delta f_k = e^{-\sqrt{2}(f_k - f_{k-1})} - e^{-\sqrt{2}(f_{k+1} - f_k)}$$
 in $B_1 \subset \mathbb{R}^n$,

then

$$\int_{B_1} e^{-\sqrt{2}(f_k - f_{k-1})} \leq \eta(n) \implies \sup_{B_{1/2}} e^{-\sqrt{2}(f_k - f_{k-1})} \leq \frac{1}{2}$$

Applying this ε -regularity to suitable rescalings of Toda system constructed from (AC), gives a decay estimate on $e^{-\frac{\sqrt{2}}{\varepsilon}(f_{k,\varepsilon}-f_{k-1,\varepsilon})}$ in shrinking balls, leading finally to

$$e^{-rac{\sqrt{2}}{arepsilon}(f_{k,arepsilon}-f_{k-1,arepsilon})}\lesssimarepsilon^{1+lpha}, \quad ext{ in the interior.}$$

All results on Toda system are based on corresponding results on the Liouville equation

$$-\Delta u = e^u$$
, in \mathbb{R}^n .

- Farina '07: There does not exist stable entire solution if $n \leq 9$;
- Dancer-Farina '09: There does not exist finite Morse index entire solution if 3 ≤ n ≤ 9;
- W. '12: ε -regularity for stable solutions of Liouville equation.

Denote points in \mathbb{R}^{n+1} by (x_1, \dots, x_n, z) and let $r := \sqrt{x_1^2 + \dots + x_n^2}$. A function u is axially symmetric if $u(x_1, \dots, x_n, z) = u(r, z)$.

Theorem (Gui-Wei-W. '19)

If $3 \le n \le 9$, any axially symmetric solution of (AC) in \mathbb{R}^{n+1} , which is stable outside a cylinder C_R , depends only on z, i.e. it is a 1D solution in the z-direction.

An axially symmetric solution of (AC) in \mathbb{R}^3 with finite Morse index has finitely many ends and quadratic energy growth

$$\int_{B_R(x)} \left[\frac{1}{2} |\nabla u|^2 + W(u) \right] \le CR^2.$$
(1)

An axially symmetric solution of (AC) in \mathbb{R}^3 with finite Morse index has finitely many ends and quadratic energy growth

$$\int_{B_R(x)} \left[\frac{1}{2} |\nabla u|^2 + W(u) \right] \le CR^2.$$
(1)

Theorem (Gui-Wei-W. '19)

Suppose u is an axially symmetric solution of (AC) in \mathbb{R}^3 .

• If it is stable, it depends only on $z \iff$ the solution has one end.

An axially symmetric solution of (AC) in \mathbb{R}^3 with finite Morse index has finitely many ends and quadratic energy growth

$$\int_{B_R(x)} \left[\frac{1}{2} |\nabla u|^2 + W(u) \right] \le CR^2.$$
(1)

Theorem (Gui-Wei-W. '19)

Suppose u is an axially symmetric solution of (AC) in \mathbb{R}^3 .

- If it is stable, it depends only on $z \iff$ the solution has one end.
- If its Morse index equals 1, it has exactly two ends.

An axially symmetric solution of (AC) in \mathbb{R}^3 with finite Morse index has finitely many ends and quadratic energy growth

$$\int_{B_R(x)} \left[\frac{1}{2} |\nabla u|^2 + W(u) \right] \le CR^2.$$
(1)

Theorem (Gui-Wei-W. '19)

Suppose u is an axially symmetric solution of (AC) in \mathbb{R}^3 .

- If it is stable, it depends only on $z \iff$ the solution has one end.
- If its Morse index equals 1, it has exactly two ends.

The structure and moduli space of two-end solutions in \mathbb{R}^3 have been studied in detail by Gui-Liu-Wei '17 \implies Catenoid or Liouville equation.

Thanks for your attention!