Symmetric minimal surfaces in S^3 as global constrained Willmore minimizer in S^n

Peng Wang

Fujian Normal University

几何分析与非线性偏微分方程研讨会,
HIT, May 3, 2019
1 Introduction

2 Minimal surface in S^n and its spectrum properties
 - Minimal surfaces in S^n and first eigenvalue problem
 - Clifford torus
 - Lawson’s minimal surfaces $\xi_{m,k}$

3 On Willmore conjecture for higher genus surfaces
 - Symmetric minimal surfaces as constrained Willmore minimizer
 - Li-Yau’s conformal area and related results
 - Idea of proof
Willmore functional and Willmore surfaces

- For a closed surface $y : M \to S^n$, the Willmore energy is defined by

$$W(y) := \int_M (|\vec{H}|^2 + 1)dM.$$

- Willmore conjecture (1965): If $M^2 = T^2$, then $W(y) \geq 2\pi^2$, “=” \iff iff f is conformally congruent to the Clifford torus.

- Kusner-Willmore conjecture (1989): If $\text{genus}(M^2) = m \geq 1$, then $W(y) \geq \text{Area}(\xi_{m,1})$, with equality iff y is conformally congruent to $\xi_{m,1}$.

Here $\xi_{m,1}$ is one of simplest Lawson embedded minimal surface with genus m and $\text{Area}(\xi_{m,1}) < 8\pi$.

- $\xi_{1,1} =$ Clifford torus.
Willmore functional and Willmore surfaces

- For a closed surface $y : M \to S^n$, the Willmore energy is defined by
 \[
 W(y) := \int_M (|\vec{H}|^2 + 1)dM.
 \]

- Willmore conjecture (1965): If $M^2 = T^2$, then $W(y) \geq 2\pi^2$, “=” ⇔ iff f is conformally congruent to the Clifford torus.

- Kusner-Willmore conjecture (1989): If $\text{genus}(M^2) = m \geq 1$, then $W(y) \geq \text{Area}(\xi_{m,1})$, with equality iff y is conformally congruent to $\xi_{m,1}$. Here $\xi_{m,1}$ is one of simplest Lawson embedded minimal surface with genus m and $\text{Area}(\xi_{m,1}) < 8\pi$.

- $\xi_{1,1} =$ Clifford torus.
Willmore functional and Willmore surfaces

For a closed surface $y : M \to S^n$, the Willmore energy is defined by

$$W(y) := \int_M (|\vec{H}|^2 + 1)dM.$$

Willmore conjecture (1965): If $M^2 = T^2$, then $W(y) \geq 2\pi^2$, “=” \iff f is conformally congruent to the Clifford torus.

Kusner-Willmore conjecture (1989): If $\text{genus}(M^2) = m \geq 1$, then

$$W(y) \geq \text{Area}(\xi_{m,1}),$$

with equality iff y is conformally congruent to $\xi_{m,1}$.

Here $\xi_{m,1}$ is one of simplest Lawson embedded minimal surface with genus m and $\text{Area}(\xi_{m,1}) < 8\pi$.

$\xi_{1,1} =$ Clifford torus.
Willmore functional and Willmore surfaces

- For a closed surface $y : M \to S^n$, the Willmore energy is defined by
 \[
 W(y) := \int_M (|\vec{H}|^2 + 1)\,dM.
 \]

- Willmore conjecture (1965): If $M^2 = T^2$, then $W(y) \geq 2\pi^2$, """ ⇔ iff f is conformally congruent to the Clifford torus.

- Kusner-Willmore conjecture (1989): If $\text{genus}(M^2) = m \geq 1$, then $W(y) \geq \text{Area}(\xi_{m,1})$, with equality iff y is conformally congruent to $\xi_{m,1}$.
 Here $\xi_{m,1}$ is one of simplest Lawson embedded minimal surface with genus m and $\text{Area}(\xi_{m,1}) < 8\pi$.

- $\xi_{1,1} =$ Clifford torus.
Willmore conjecture in S^n

- **Theorem** (Marques & Neves, 2012) If $\text{genus}(M^2) \geq 1$ and $n = 3$, then $W(y) \geq 2\pi^2$, with equality iff y is conformally congruent to the Clifford torus.

Let $T^2(a, b) = \mathbb{R}^2/\Lambda$, with $\Lambda = 2\pi \mathbb{Z} + 2\pi(a + bi)\mathbb{Z}$, $a^2 + b^2 \geq 1$ and $0 \leq a \leq 1/2$, $0 < b$.

- **Theorem** (Li-Yau, 1982) If y is a conformal immersion from $T^2(a, b)$ to S^n with $b \leq 1$, then $W(y) \geq 2\pi^2$.

- **Theorem** (Montiel-Ros, 1986) If y is a conformal immersion from $T^2(a, b)$ to S^n with $(a - 1/2)^2 + (b - 1)^2 \leq 1/4$, then $W(y) \geq 2\pi^2$.

Peng Wang (Fujian Normal University) Symmetric minimal surfaces in S^3 as global constrained Willmore minimizer in S^n
Theorem (Marques & Neves, 2012) If \(\text{genus}(M^2) \geq 1 \) and \(n = 3 \), then \(W(y) \geq 2\pi^2 \), with equality iff \(y \) is conformally congruent to the Clifford torus.

Let \(T^2(a, b) = \mathbb{R}^2/\Lambda \), with \(\Lambda = 2\pi\mathbb{Z} + 2\pi(a + bi)\mathbb{Z}, \, a^2 + b^2 \geq 1 \) and \(0 \leq a \leq 1/2, \, 0 < b \).

Theorem (Li-Yau, 1982) If \(y \) is a conformal immersion from \(T^2(a, b) \) to \(S^n \) with \(b \leq 1 \), then \(W(y) \geq 2\pi^2 \).

Theorem (Montiel-Ros, 1986) If \(y \) is a conformal immersion from \(T^2(a, b) \) to \(S^n \) with \((a - 1/2)^2 + (b - 1)^2 \leq 1/4 \), then \(W(y) \geq 2\pi^2 \).
Willmore conjecture in S^n

- **Theorem** (Marques & Neves, 2012) If $\text{genus}(M^2) \geq 1$ and $n = 3$, then $W(y) \geq 2\pi^2$, with equality iff y is conformally congruent to the Clifford torus.

Let $T^2(a, b) = \mathbb{R}^2/\Lambda$, with $\Lambda = 2\pi\mathbb{Z} + 2\pi(a + bi)\mathbb{Z}$, $a^2 + b^2 \geq 1$ and $0 \leq a \leq 1/2$, $0 < b$.

- **Theorem** (Li-Yau, 1982) If y is a conformal immersion from $T^2(a, b)$ to S^n with $b \leq 1$, then $W(y) \geq 2\pi^2$.

- **Theorem** (Montiel-Ros, 1986) If y is a conformal immersion from $T^2(a, b)$ to S^n with $(a - 1/2)^2 + (b - 1)^2 \leq 1/4$, then $W(y) \geq 2\pi^2$.
Li-Yau and Montiel-Ros’s proof on Willmore conjecture for tori in S^n with given conformal structures.

![Diagram of symmetric minimal surfaces in S^3 as global constrained Willmore minimizer in S^n](image)
Let M be a closed Riemann surface with a conformal metric. The eigenvalues of Δ_M are discrete and are tending to $+\infty$:

$$\text{Spec}(\Delta_M) = \{0, \lambda_1, \cdots , \}$$

and $0 < \lambda_1 \leq \lambda_2 \leq \cdots$

λ_1 the first (non-zero) eigenvalue of Δ_M.

The surface $y : M \to S^n$ is minimal if and only if

$$\Delta_M y = -2y,$$

i.e., the coordinate functions $y_j, j = 1, \cdots , n + 1$, are eigenfunctions of Δ_M with eigenvalue $\lambda = 2$.

y is called immersed by the first eigenfunctions (of the Laplacian) if \{y_j\} are eigenfunctions of λ_1, i.e., $\lambda_1 = 2$.

Minimal surfaces in S^n and first eigenvalue of Laplacian

- Let M be a closed Riemann surface with a conformal metric. The eigenvalues of Δ_M are discrete and are tending to $+\infty$:

 $$\text{Spec}(\Delta_M) = \{0, \lambda_1, \cdots, \} \quad \text{and} \quad 0 < \lambda_1 \leq \lambda_2 \leq \cdots$$

 λ_1 the first (non-zero) eigenvalue of Δ_M.

- The surface $y : M \to S^n$ is minimal if and only if

 $$\Delta_M y = -2y,$$

 i.e., the coordinate functions $y_j, j = 1, \cdots, n + 1$, are eigenfunctions of Δ_M with eigenvalue $\lambda = 2$.

- y is called immersed by the first eigenfunctions (of the Laplacian) if $\{y_j\}$ are eigenfunctions of λ_1, i.e., $\lambda_1 = 2$.
Let M be a closed Riemann surface with a conformal metric. The eigenvalues of Δ_M are discrete and are tending to $+\infty$:

$$\text{Spec}(\Delta_M) = \{0, \lambda_1, \cdots, \} \text{ and } 0 < \lambda_1 \leq \lambda_2 \leq \cdots$$

λ_1 the first (non-zero) eigenvalue of Δ_M.

The surface $y : M \to S^n$ is minimal if and only if

$$\Delta_M y = -2y,$$

i.e., the coordinate functions $y_j, j = 1, \cdots, n + 1$, are eigenfunctions of Δ_M with eigenvalue $\lambda = 2$.

y is called immersed by the first eigenfunctions (of the Laplacian) if $\{y_j\}$ are eigenfunctions of λ_1, i.e., $\lambda_1 = 2$.
Clifford torus

- $S^3 \subset \mathbb{C}^2 = \mathbb{R}^4$. $T^2 \subset U(2)$ actions on S^3. The orbits of T^2 with maximal area—Clifford torus.

- $\text{Index}(T^2) = 5$ in S^3.
- $\text{Index}(T^2) = 1 + (n + 1) = n + 2$ in S^n.
Clifford torus

- \(S^3 \subset \mathbb{C}^2 = \mathbb{R}^4 \). \(T^2 \subset U(2) \) actions on \(S^3 \). The orbits of \(T^2 \) with maximal area—Clifford torus.

- \(\text{Index}(T^2) = 5 \) in \(S^3 \).
- \(\text{Index}(T^2) = 1 + (n + 1) = n + 2 \) in \(S^n \).
Clifford torus

- $S^3 \subset \mathbb{C}^2 = \mathbb{R}^4$. $T^2 \subset U(2)$ actions on S^3. The orbits of T^2 with maximal area—Clifford torus.

- $\text{Index}(T^2) = 5$ in S^3.

- $\text{Index}(T^2) = 1 + (n + 1) = n + 2$ in S^n.

\[
x = \cos(v)(\cos(u) + z^2), \quad y = \sin(v)(\cos(u) + z^2), \quad z = \sin(u)
\]
Clifford torus

- $S^3 \subset \mathbb{C}^2 = \mathbb{R}^4$. $T^2 \subset U(2)$ actions on S^3. The orbits of T^2 with maximal area—Clifford torus.

- $Index(T^2) = 5$ in S^3.

- $Index(T^2) = 1 + (n + 1) = n + 2$ in S^n.
Clifford torus–2

- \(y = \frac{1}{\sqrt{2}}(\cos u, \sin u, \cos v, \sin v), \)
- \(Ay = \)
 \[
 \left(\cos \frac{u+v}{2} \cos \frac{u-v}{2}, \sin \frac{u+v}{2} \sin \frac{u-v}{2}, \cos \frac{u+v}{2} \sin \frac{u-v}{2}, \sin \frac{u+v}{2} \cos \frac{u-v}{2} \right).
 \]
Clifford torus–2

- \[y = \frac{1}{\sqrt{2}}(\cos u, \sin u, \cos v, \sin v), \]
- \[Ay = \]
 \[(\cos \frac{u+v}{2} \cos \frac{u-v}{2}, \sin \frac{u+v}{2} \sin \frac{u-v}{2}, \cos \frac{u+v}{2} \sin \frac{u-v}{2}, \sin \frac{u+v}{2} \cos \frac{u-v}{2}). \]
Lawson’s minimal surfaces $\xi_{m,k}$

- Lawson’s minimal surfaces $\xi_{m,k}$: By reflections w.r.t. geodesics for a solution of Plateau problem.
Symmetric minimal surfaces in S^3 as global constrained Willmore minimizer in S^n.
Lawson $\xi_{2,2}$ minimal surfaces (By Nick Schmitt)

https://www.math.uni-tuebingen.de/user/nick/lawson22/

Left: Standard view, cut away by a geodesic 2-sphere.
Right: One of the 9 isometric Plateau solutions which compose the surface. The Plateau solution is the minimal surface bounded by four edges of a geodesic tetrahedron which tiles S^3.
Lawson $\xi_{2,2}$ minimal surface (By Nick Schmitt)

https://www.math.uni-tuebingen.de/user/nick/lawson22/
Lawson $\xi_{g,1}$ minimal surfaces (By Nick Schmitt)

https://www.math.uni-tuebingen.de/user/nick/lawson/lawson.html
Lawson’s minimal surfaces $\xi_{m,k}$

- Karcher-Pinkall-Sterling’s examples: By reflections w.r.t. great spheres for a solution of Plateau problem.

- Karcher-Pinkall-Sterling, Choe-Soret: The Lawson minimal surfaces $\xi_{m,k}$ are also symmetric w.r.t. some reflections.
Lawson’s minimal surfaces $\xi_{m,k}$

- Karcher-Pinkall-Sterling’s examples: By reflections w.r.t. great spheres for a solution of Plateau problem.
- Karcher-Pinkall-Sterling, Choe-Soret: The Lawson minimal surfaces $\xi_{m,k}$ are also symmetric w.r.t. some reflections.
Theorem (Kusner-W, 2018). Let \(\phi : M \to S^3 \) be one of the conformal embedded minimal surfaces constructed by Lawson and by Karcher–Pinkall–Sterling. Then for any branched conformal immersion \(\tilde{\phi} : M \to S^n, \ n \geq 3, \)

\[
W(\tilde{\phi}) \geq W(\phi) = A(\phi).
\]

Moreover, “=” \(\iff \tilde{\phi} \) is conformally equivalent to \(\phi \).
Li-Yau’s conformal area

Let $\phi : M^2 \rightarrow S^n$ be a conformal branched immersion. $Conf(S^n)$ is the conformal group of S^n.

- The conformal area of ϕ

$$A_C(n, \phi) := \sup_{T \in Conf(S^n)} A(T \circ \phi).$$

Here $A(T \circ \phi)$ denotes the area of $T \circ \phi$.

- The n–conformal area of M

$$A_C(n, M) := \inf_{\phi} A_C(n, \phi),$$

where ϕ runs over all conformal branched immersions.

- The conformal area of M is

$$A_C(M) := \inf_{n \geq 2} A_C(n, M) = \lim_{n \rightarrow \infty} A_C(n, M).$$
Li-Yau’s conformal area

Let $\phi : M^2 \to S^n$ be a conformal branched immersion. $Conf(S^n)$ is the conformal group of S^n.

- The **conformal area of** ϕ

 \[A_C(n, \phi) := \sup_{T \in Conf(S^n)} A(T \circ \phi). \]

 Here $A(T \circ \phi)$ denotes the area of $T \circ \phi$.

- The **$n-$conformal area of** M

 \[A_C(n, M) := \inf_{\phi} A_C(n, \phi), \]

 where ϕ runs over all conformal branched immersions.

- The **conformal area of** M is

 \[A_C(M) := \inf_{n \geq 2} A_C(n, M) = \lim_{n \to \infty} A_C(n, M). \]
Li-Yau’s conformal area

Let $\phi : M^2 \to S^n$ be a conformal branched immersion. $Conf(S^n)$ is the conformal group of S^n.

- The conformal area of ϕ

$$A_C(n, \phi) := \sup_{T \in Conf(S^n)} A(T \circ \phi).$$

Here $A(T \circ \phi)$ denotes the area of $T \circ \phi$.

- The n–conformal area of M

$$A_C(n, M) := \inf_{\phi} A_C(n, \phi),$$

where ϕ runs over all conformal branched immersions.

- The conformal area of M is

$$A_C(M) := \inf_{n \geq 2} A_C(n, M) = \lim_{n \to \infty} A_C(n, M).$$
Theorem (Li-Yau, 1982) Let $\phi : M \to S^n$ be a branched conformal immersion from a closed Riemann surface. Then

1. The $n-$conformal area satisfies

$$A_C(n, M) \geq \frac{1}{2} \lambda_1(M) A(M). \quad (2.1)$$

Here $A(M)$ is the area of M and $\lambda_1(M)$ is the first (non-zero) eigenvalue of the Laplacian of the metric ds^2.

2. "\(=\)" $\iff \exists$ a minimal immersion $\psi : M \to S^{\tilde{n}}$ immersed by the first eigenfunctions, & $A_C(M) = A_C(n, M) = A(\psi)$.

3. The Willmore energy of ϕ

$$W(\phi) = \int_M (H^2 + 1) dM \geq A_C(n, M) \geq A_C(M). \quad (2.2)$$

"\(=\)" $\iff \phi$ is conformally congruent to a minimal immersion in S^n.
Theorem (Li-Yau,1982) Let $\phi : M \to S^n$ be a branched conformal immersion from a closed Riemann surface. Then

1. The n–conformal area satisfies

$$A_C(n, M) \geq \frac{1}{2} \lambda_1(M) A(M). \quad (2.1)$$

Here $A(M)$ is the area of M and $\lambda_1(M)$ is the first (non-zero) eigenvalue of the Laplacian of the metric ds^2.

2. “$=$” \iff \exists a minimal immersion $\psi : M \to S^{\tilde{n}}$ immersed by the first eigenfunctions, & $A_C(M) = A_C(n, M) = A(\psi)$.

3. The Willmore energy of ϕ

$$W(\phi) = \int_M (H^2 + 1) dM \geq A_C(n, M) \geq A_C(M). \quad (2.2)$$

“$=$” \iff ϕ is conformally congruent to a minimal immersion in S^n.
Theorem (Li-Yau, 1982) Let $\phi : M \rightarrow S^n$ be a branched conformal immersion from a closed Riemann surface. Then

1. The n–conformal area satisfies

$$A_C(n, M) \geq \frac{1}{2} \lambda_1(M) A(M).$$

(2.1)

Here $A(M)$ is the area of M and $\lambda_1(M)$ is the first (non-zero) eigenvalue of the Laplacian of the metric ds^2.

2. “$=$” $\iff \exists$ a minimal immersion $\psi : M \rightarrow S^{\tilde{n}}$ immersed by the first eigenfunctions, & $A_C(M) = A_C(n, M) = A(\psi)$.

3. The Willmore energy of ϕ

$$W(\phi) = \int_M (H^2 + 1) dM \geq A_C(n, M) \geq A_C(M).$$

(2.2)

“$=$” $\iff \phi$ is conformally congruent to a minimal immersion in S^n.
Theorem (Montiel & Ros, 1986; Hirsch & Mäder-Baumdicker, 2017): Let \(\phi : M \to S^n \) be a minimal surface such that \(A_C(n, M) = A(\phi) \). If there exists another conformal minimal immersion \(\hat{\phi} : M \to S^{\tilde{n}} \) which is immersed by the first eigenfunctions. Then \(\phi \) is isometric to \(\hat{\phi} \). In particular, \(\phi \) is also immersed by the first eigenfunctions.
Theorem (Choe & Soret, 2009): Let \(\phi : M \to S^3 \) be one of the embedded minimal surfaces constructed by Lawson and by Karcher–Pinkall–Sterling. Then \(\lambda_1(\phi) = 2 \).

Theorem (Kusner-W, 2018): Let \(\phi : M \to S^3 \) be one of the embedded minimal surfaces constructed by Lawson and by Karcher–Pinkall–Sterling. Then \(\dim E_{\lambda_1}(\phi) = 4 \).
Theorem (Choe & Soret, 2009): Let \(\phi : M \to S^3 \) be one of the embedded minimal surfaces constructed by Lawson and by Karcher–Pinkall–Sterling. Then \(\lambda_1(\phi) = 2 \).

Theorem (Kusner-W, 2018): Let \(\phi : M \to S^3 \) be one of the embedded minimal surfaces constructed by Lawson and by Karcher–Pinkall–Sterling. Then \(\dim E_{\lambda_1}(\phi) = 4 \).
Idea of proof–2

- Let G be the finite group generated by reflections of ϕ among the symmetric hyper-spheres γ_j.

- If f is the first eigenfunction of ϕ, then f is G–symmetric, i.e.

 $$\gamma_j \circ f = f.$$

- If f is G–symmetric and orthogonal to the coordinate functions ϕ_j, then $f \equiv 0$.

Idea of proof–2

- Let G be the finite group generated by reflections of ϕ among the symmetric hyper-spheres γ_j.
- If f is the first eigenfunction of ϕ, then f is G–symmetric, i.e.
 \[\gamma_j \circ f = f. \]
- If f is G–symmetric and orthogonal to the coordinate functions ϕ_j, then $f \equiv 0$.
Idea of proof–2

- Let G be the finite group generated by reflections of ϕ among the symmetric hyper-spheres γ_j.
- If f is the first eigenfunction of ϕ, then f is G–symmetric, i.e.
 \[
 \gamma_j \circ f = f.
 \]
- If f is G–symmetric and orthogonal to the coordinate functions ϕ_j, then $f \equiv 0$.
The tori case

- **Theorem (Montiel-Ros, 1986).** Let $\phi : T^2(a, b) \rightarrow S^n, n \geq 5$, be a branched conformal immersion with $(a - \frac{1}{2})^2 + (b - 1)^2 \leq \frac{1}{4}$. Then $W(\phi) \geq 2\pi^2$.

- **Theorem (Bryant, 2015).** If $(a - \frac{1}{2})^2 + b^2 \leq \frac{9}{4}$, then

$$AC(T^2(a, b)) = \frac{4\pi^2}{b^2 + a^2 - a + 1}.$$

- **Theorem (Kusner-W, 2018).** In the above case, $W(\phi) = 2\pi^2$ if and only if ϕ is conformally equivalent to the Clifford torus in S^3.
The tori case

- **Theorem (Montiel-Ros, 1986).** Let $\phi : T^2(a, b) \to S^n$, $n \geq 5$, be a branched conformal immersion with $(a - \frac{1}{2})^2 + (b - 1)^2 \leq \frac{1}{4}$. Then $W(\phi) \geq 2\pi^2$.

- **Theorem (Bryant, 2015).** If $(a - \frac{1}{2})^2 + b^2 \leq \frac{9}{4}$, then

 $$AC(T^2(a, b)) = \frac{4\pi^2}{b^2 + a^2 - a + 1}.$$

- **Theorem (Kusner-W, 2018).** In the above case, $W(\phi) = 2\pi^2$ if and only if ϕ is conformally equivalent to the Clifford torus in S^3.
The tori case

- **Theorem (Montiel-Ros, 1986).** Let $\phi : T^2(a, b) \to S^n$, $n \geq 5$, be a branched conformal immersion with $(a - \frac{1}{2})^2 + (b - 1)^2 \leq \frac{1}{4}$. Then $W(\phi) \geq 2\pi^2$.

- **Theorem (Bryant, 2015).** If $(a - \frac{1}{2})^2 + b^2 \leq \frac{9}{4}$, then

 $$A_C(T^2(a, b)) = \frac{4\pi^2}{b^2 + a^2 - a + 1}.$$

- **Theorem (Kusner-W, 2018).** In the above case, $W(\phi) = 2\pi^2$ if and only if ϕ is conformally equivalent to the Clifford torus in S^3.
Symmetric minimal surfaces in S^3 as global constrained Willmore minimizers.
Let $T^2 = \mathbb{C}/\Lambda$ with Λ generated by 1 and $\tau = a + ib$, with $0 \leq a \leq 1/2$, $b \geq \sqrt{1-a^2}$. Then

$$f_\tau(u, v) = \left(r_1 e^{i \frac{2\pi v}{b}}, r_2 e^{i 2\pi (u - \frac{va}{b})}, r_3 e^{i 2\pi (u - \frac{v(1-a)}{b})} \right).$$ \hspace{1cm} (3.1)$$

with $r_1 = \sqrt{\frac{b^2 + a^2 - a}{b^2 + a^2 - a + 1}}$, $r_2 = \sqrt{\frac{1-a}{b^2 + a^2 - a + 1}}$, $r_3 = \sqrt{\frac{a}{b^2 + a^2 - a + 1}}$.

Thank you for your attention!