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Introduction

We investigate the following k-Hessian equation (1 < k < n):

{sk(D%) = ok(A) = b(x)f(—u) inQ, an
u=20 on 0%,
and
{ Sk (D%u) = op () = b(x)f(u) in Q, iz
u=+o0 on 0%,
where A = (A1, A2, -+, \p) are the eigenvalues of the Hessian

matrix D%u and

k(N = Z T

1<ip<-<ik<n

is the kth elementary symmetric function of A. For completeness,
we also set og(A) =1 and ok (A) =0 for k > n.
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To work in the realm of elliptic operators, we have to restrict
the class of functions and domains.

u € C?(Q) is called a k-admissible function if for any x € Q,
A(D?u(x)) belongs to the cone given by

Mk={AeR":0j(X)>0,j=1,--- ,k}.

[k is an open, convex, symmetric cone with vertex at the origin,

and
Mol DIM={AeR": \q,---, )\, >0}
We have Son (X
Z?kA(,-)>O in [, Vi
and

Ui/k()\) is a concave function in [g.
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Let
S(Ty) ={A: AeS™" X\A) €Ik},
where S"*" denotes the set of n x n real symmetric matrices.
S(I'k) is an open convex cone with vertex at the origin in matrix
spaces. The properties of o described above guarantee that

<85"> >0 VAeS()
8aij nxn

and
S;/k is concave in S(Ik).

Moreover, for any 1 </ < k,

<65’) >0 VAeS(.
aaij nxn

0S1(A)
Ba,-j 5
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For an open bounded subset 2 C R"” with boundary of class
C? and for every x € 99, we denote by

p(x) = (pr(x), -+ s pn-1(x))

the principal curvatures of 99 (relative to the interior normal).
Q is said to be /-convex (1 </ < n—1) if 02, regarded as a
hypersurface in R”, is /-convex, that is, for every x € 012,

oi(p(x)) >0 with j=1,2,--- /.
Respectively, Q is called strictly /-convex if
oi(p(x)) >0 with j=1,2,--- 1.

Note that oo(p(x)) =1 > 0 for any x € 9Q2. We say that
every bounded domain Q with boundary of class C? is 0-convex.
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Definition 1. A function u € C(Q) is said to be a viscosity
subsolution (supersolution) of (0.1) if whenever xp € Q, A is an
open neighborhood of xg, 1 € C?(A) is k-admissible and u — v
has a local maximum (minimum) at xp, then

Sk(D*9(x0)) = b(x0)f(=1(x0)) (< b(x0)F(—(x0)))-

A function u € C(2) is said to be a viscosity solution if it is both a
viscosity subsolution and a viscosity supersolution.

Definition 1’. A function u € C(Q) is said to be a viscosity
subsolution (supersolution) of (0.2) if whenever xp € Q, A is an
open neighborhood of xg, 1 € C?(A) is k-admissible and u — v
has a local maximum (minimum) at xp, then

Sk(D*9(x0)) = b(x0)f(¥(x0)) (< b(x0)f(¥(x0))).

A function u € C(2) is said to be a viscosity solution if it is both a
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Existence of solutions

Theorem 1: Let 2 C R” be a bounded and strictly
(k — 1)-convex domain with 9Q € C31. Suppose that
f € CY(0,00) is positive and nonincreasing, and that b € C1'}(Q)
is positive in . Then (0.1) admits a unique viscosity solution

ue C(Q).

Remark. The main interest here is that of Hessian equations
with singular right-hand sides. Note that it may happen that

f(s) > o0 as s —0.

The existence of solutions of Hessian equations with regular
right-hand sides has been considered in many papers, c.f.:

[1] K.S. Chou, X.J. Wang, A variational theory of the Hessian
equation, Comm. Pure Appl. Math. 54 (2001) 1029-1064.
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Related results

[2] N.S. Trudinger, On the Dirichlet problem for Hessian
equations, Acta Math. 175 (1995) 151-164.

Lemma 1. Assume that Q is bounded, strictly (k-1)-convex
and 9Q € C31. Let b(x) € CH1(Q) be positive in Q. Then the
following equation

Sk(D?u) = b(x) inQ,
u=20 on 0%,

admits a k-admissible solution u € C,if(Q) N C(Q) for some
0<p<l.
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Related results

[3] B. Guan, The Dirichlet problem for a class of fully
nonlinear elliptic equations, Comm. Partial Differential Equations
19 (1994) 399-416.

[4] Y.Y. Li, Some existence results for fully nonlinear elliptic
equations of Monge-Ampeére type, Comm. Pure Appl. Math. 43
(1990) 233-271.

Lemma 2. Assume that Q is bounded, strictly (k-1)-convex
and 9Q € C*!. Let f € C1(0, 00) be positive and nonincreasing,
and b(x) € CH1(Q) be positive in Q. For any constant ¢ < 0, if

{sk(DZU) = b(x)f(—u) inQ,

u=c on 02,

has a subsolution, then it admits a solution u € C/icﬁ(Q) N C(Q)
for some 0 < B < 1.
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The comparison principle

Lemma 3. (The comparison principle.) Let Q be a
bounded domain in R"”. Suppose that g(x,n) is positive and
continuously differentiable, and is nondecreasing only with respect
ton. If u,v € C(Q) are respectively viscosity subsolution and
supersolution of

Sk(Dzu) - g(X7 U)
and u < v on 952, then we have
u<v inf€.

Moreover, the conclusion is still true if v € C(Q2) and v(x) — o
as x — 0f0.

J.ILE. Urbas, On the existence of nonclassical solutions for two
classes of fully nonlinear elliptic equations, Indiana Univ. Math. J.
39 (1990) 355-382.

Dongsheng Li Xi'an Jiaotong University



. . S . . Existence of solutions
Hessian equations with singular right-hand sides . .
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Proof of Theorem 1.

By Lemma 1, let w € C27(Q) N C(Q) (0 < 8 < 1) be the
solution of

Sk(D?w) = b(x) inQ,
w=0 on 0.
Define
v(x) = —n(=w(x)) inQ,

where 7 is given by

1
t= dr.
0/ F(r)'/k
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Boundary asymptotic behavior

Proof of Theorem 1.

Then we see that

1(0) = 0, 7/(8) = F(n(£)* and () = L F(B)E /47 (1))

vij =1 (=w)wj — 0" (—w)w;w;.
It follows that
D?v > 1/(—w)D?w.

Therefore v is k-admissible and

Sk(D?v) = (1 (~w))*Si(D*w) = (0 (=w))*b(x) = b(x)f(~v) in Q.
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Proof of Theorem 1.

Let 1
Qj:{XEQ:!(X)<_j}

for j=1,2,---. Then Q; is strictly (k — 1)-convex since w is
k-admissible.

Consider

Sk(D?u) = b(x)f(—u) in Q;,
1 2.1
u=—- on 99);. (21)
J
We have shown v is its k-admissible subsolution. Then by Lemma
2, it has a k-admissible solution u;.
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Proof of Theorem 1.

By Lemma 3,

I<
[N
£

in Qj.

Since
uij=v < ujy1 on 9%,
by lemma 3 again,

up < ujyr in ;.
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Proof of Theorem 1.

Let
v=aw in .

Then V is a supersolution of (2.1) if a > 0 is sufficiently small.

Actually, let L,, = max{—w(x) : x € Q} and « small enough
such that
ok < f(al,) and of < £(1).

Therefore v satisfies

o (MD2(¥))) = a¥b(x) < b(x)f(alLy) < b(x)f(—7) in €.
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Boundary asymptotic behavior

Proof of Theorem 1.

Note that
n(t)
t for 0 <n(t) <1.
F(n(t))"/*
Thus s s
1
n (s) < < for 0 <s< 1.
W= HoT = T
We see that
1 1 «
— -1
V=aw = —« -)> —= > —— on 0f
1 (J) YT /
By Lemma 3,
up <V in ;.
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Proof of Theorem 1.

For each x € (2, choose jp so that x € €. For any j > jo,
v < uj < Ujt1 <V in QJ'O'
Let
u(x) = lim uj(x).

Jj—o0

Moreover, b(x)f(—uj(x)) € L°(£;). For any j > jo + 1, by

uj € CP(Qo+1) with 0 < 8 < 1 and

||uj||C5(§j ) S C(n) k7 minzv nlaxV, Qjoa b7 f)
0 J0 Qp
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Proof of Theorem 1.

Hence u € C(Q2). Note that

<u<vVv inQQ.

I<

This implies that u € C(Q).

By the uniform convergence of {u;} on compact subset of Q,
we have u is a viscosity solution of (1.1).

By Lemma 3, the solution is unique.
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Boundary asymptotic behavior

To investigate the boundary behavior of solutions of (1.1), we
need more assumptions on

b and

the curvature of the boundary.
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Assumptions on f

(f1) f € C1(0,00), f(s) >0, f(s) = co as s — 0, and is
nonincreasing on (0, c0);
(f2) There exists Cr > 0 such that

_ ’ r dr
SmH(s)/H(T) —_¢,
0
where H(7) = ((k 4+ 1)F(7))Y*+1) and

a
F(r)= [ f(s)ds V0 <7 < a. For convenience, we define ¢ by

w(t)d
T
0

where ¢(a) = a. Actually, the existence of ¢ is obvious since % is

nondecreasing and integrable on [0, al.
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Assumptions on b

(b1) b€ CYY(Q) is positive in Q;

(b2) There exist a positive and nondecreasing function B
m(t) € C(0,8) (for some dp > 0), and two positive constants b
and b such that

b(x) _ b(x) —
= [ A _— =
B 1 6G) = e’ ()

d(x)— d(x)—0

where d(x) = dist(x, 99), and there exists Cp,, € [0, 00) such that
/
lim <M(t)> = Caps
t—0+ \ m(t)

t
where M(t) = [ m(s)ds < oo for any 0 < t < do.
0

Dongsheng Li Xi'an Jiaotong University
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Curvatures of the boundary

where
p(x) = (p1(X), p2(X), - -+, pn-1(X))

are the principal curvatures of 02 at x. Observe that
0<lp < Lp< +oo since Q is bounded and strictly (k — 1)-convex.

The boundary estimates of the solution of (1.1) are related to
Lo and /0.
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Theorem 2.

Theorem 2: Let Q C R” be a bounded and strictly (k — 1)-convex
domain with 9Q € C3!. Suppose that f satisfies (f;) and (f2),
and b satisfies (by) and (bp). If

Cr>1— Cn, (2.2)

then the viscosity solution u of (1.1) satisfies

—u(x)

and IimsupL(X) <1, (23)

FE I M0 T TP M)

where ¢ is defined by (1.3),

£ = Q T b -
> \a-cla-cy)/) '° \ba-¢ra-cn)))
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Example 1

(i) b=1and f(s) =s 7, v > 1. Choose m(t) =1 and then
M(t)=t and Cp=1.
We obtain Cr = 7= > 1 — Gy, ((2.2)holds)

T k+y
k+1 N\ 1/(k+7)
I
1/(k+1) _ 1/(k+1)
§= (L10> and &= <%> . Hence
1 < lim inf —u(x)

X 1/(k+

and
_ —u(x)
lim sup <1
xeQ (k4~)kt1 1/(k+7) -
5% () () D/ )
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Example 2

(ii) b= d(x)**+1) o >0, near 9Q and f(s) =s7, v > 1.
In this case, choose m(t) = t*, and we obtain

toz—i—l 1
We still have Cr = k+7
k+1 1/(k+7)
o(t) = ( (k+’)/) + k) t(k+1)/(k+~/)’
(v =1)(k+1)

2= (Lo((j = )—(Va; i)a)ylﬂ and £ = </o((7a—+ 11)—(1; —1)a)>klﬂ'
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Example 2

If v > a(k+1)+1, then G¢ > 1 — Cp. ((2.2) holds)

Therefore, by (1.6), the solution of (1.1) satisfies

1 < liminf g

x 1/(k+7)
d(ggo < Lo(y—ak—gjf/))(l+4l-l)k(a+1)k ) d(x)(k+1)(at1)/(k+7)

and

lim sup —u(x) <1

x k+1 1/(k+7) =
d(ggo (/o(v—ak—iti;Zk+1)k(a+1)k) d(x) (kD et 1)/(kt)
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Some related results

M.G. Crandall, P.H. Rabinowitz, L. Tartar, On a Dirichlet
problem with a singular nonlinearity, Comm. Partial Differential
Equations 2 (1977) 193-222.

The existence of classical solution of Poisson equations and
the boundary behavior of the solution with f only satisfying (f1)
and b = 1. They showed that the unique solution u satisfies

ap(d(x)) < —u(x) < ep(d(x)) in Qq,
where ¢; and ¢, are two positive constants,
Q, ={x € Q:d(x) <a} for some o > 0, and p satisfies
—p"(s) = f(p(s)) for0<s<a,
p(0) =0,
p(s) >0 for0<s<a.
This is actually the generalization of Hopf lemma for singular
elliptic equations.
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Some related results

A.C. Lazer, P.J. McKenna, On singular boundary value
problems for the Monge-Ampére operator, J. Math. Anal. Appl.
197 (1996) 341-362.

Generalize the results to Monge-Ampére equations with

f(s)=s"7,7>1 and a positive b € C*>°(£2). They showed that
there exist two positive constants k; and k» such that

kid(x)mr < —u(x) < kod(x)™ in Q.

A. Mohammed, Existence and estimates of solutions to a
singular Dirichlet problem for the Monge-Ampére equation, J.
Math. Anal. Appl. 340 (2008) 1226-1234.

Generalize to f only satisfying (f1) and the result: there are
two positive constants C; and C such that

Gp(d(x)) < —u(x) < Gp(d(x)) in Qa,

where ¢ is defined by (1.3) with k being replaced by n.
Dongsheng Li Xi'an Jiaotong University
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Some related results

L and S.S. Ma, Boundary behavior of solutions of
Monge-Ampere equations with singular righthand sides, J. Math.
Anal. Appl. 454 (2017) 79-93.

H.Y.Sun and M.Q.Feng, Boundary behavior of k-convex
solutions for singular k-Hessian equations, Nonlinear Anal. 176
(2018), 141-156.

C. Loewner, L. Nirenberg, Partial differential equations
invariant under conformal or projective transformations, in:
Contributions to Analysis (A Collection of Papers Dedicated to
Lipman Bers), Academic Press, New York, 1974, pp. 245-274.

S.Y. Cheng, S.T. Yau, On the regularity of the
Monge-Amp'ere equation det(9%u/0xidxj) = F(x,u), Comm.
Pure Appl. Math. 30 (1977) 41.68.

M. Ghergu, V. Radulescu, Singular Elliptic Problems:
Bifurcation and Asymptotic Analysis, in: Oxford Lecture Series in

\Wi Aol o ] 27 T L (|-, -4, BIPN
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Proof of Theorem 2.

We will prove Theorem 2 by the comparison principle. The
key is to construct supersolution and subsolution.

The functions —p(EM(d(x))) and —p(EM(d(x))) in (1.6),
are “quasi-supersolution” and “quasi-subsolution” respectively.

That is, after perturbing § and £ to §€ and &_,

—p(§_M(d(x))) and —p(€.M(d(x))) are supersolution and
subsolution near the boundary respectively.
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Two Lemmas

We need the asymptotic estimate of functions in (f2) and (bz)
as t — 0. The following two lemmas describe those asymptotic
behaviors. As for their proofs, Karamata regular variation theory
was used. Karamata regular variation theory is a tool to describe
the precise rate of functions tending to zero or infinity.

J. Karamata, Sur un mode de croissance réguliére. Théoremes
fondamentaux, Bull. Soc. Math. France. 61(1933)55-62.

Lemma 4. Let m and M be the functions given by (by).

Then
M(t)
t—0t m B
and
M (t)m'(t)

lim 2 g .
50t m2 (1) m

Dongsheng Li Xi'an Jiaotong University
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Two Lemmas

Lemma 5. Assume that f satisfies (f1) and (f2), and ¢
satisfies (1.3). Then we have

(1) 9(0) =0, p(t) >0, ¢/(£) = ((k+ 1)F(p(£))) 7T,

@"(t) = — ((k + 1)F((t))) KD £(o(2));

©'(t) 1.

ip) lim :
(2) fim oty =~

(i3) If (1.5) holds,

. t
B SEm) ~°

for £ € [c1, 0] with 0 < ¢ < .
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Properties of distance function

Let d(x) = dist(x,0Q) = inf |x —y|. Forany § >0, we
yEeIN

define
Qs ={xeQ:0<d(x) <}

If 9Q € C?, there exists 61 > 0 such that
d € C3(Qy).

Let X € 99 be such that dist(x,0Q) = |x — x| and
pi(X)(i =1,---,n—1) be the principal curvatures of Q2 at X.
Then, in terms of a principal coordinate system at X, we have

{ Dd(x) = (0,0, - ,1),

5 T —p1(%) —pn—1(X) (2.4)
D?d(x) = diag [M(;)pm,--- ()P ) -

Dongsheng Li Xi'an Jiaotong University
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Supersolution

Lemma 6. For any 0 < e < b/2, let

1/(k+1)
£ = b —2¢
= ((1 +e)Lo(1 — (1 - Cm))> ’

where b, Cp,, Lo and Cr are given by (bz), and (f2) respectively.
Then for sufficiently small . > 0, the following function

Ue(x) = —p(§_M(d(x)))
is k-admissible in 25 and satisfies
Sk(D?T. (x)) < b(x)f (—@= (x)) in Qs.,

where ¢, M and Q;_ are given by (b2) and (f2) respectively.
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Subsolution

Lemma 7. For any ¢ > 0, let

_ 1/(k+1)
£ — b+ 2e
; ((1 — (I G (1 - Cm))> |

where b, Cy,, Iy and Cr are given by (by), and (f2) respectively.
Then for sufficiently small §. > 0, the following function

is k-admissible in €25_ and satisfies
Sk(D?u (x)) > b(x)f (~u. (x)) in Qs.,

where ¢, M and Q;. are given by (bz) and (fy) respectively.

Dongsheng Li Xi'an Jiaotong University
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Proof of Lemma 6

Step 1. Show that @, is a k-admissible function in €;5_ with
sufficiently small 6. > 0. That is, for 1 < j < k,

Si(D*T.) >0 in Qs.. (2.5)

By direct computation,

(8 (X)) = (—(EM(d(X))))as =
&, €0 (&M(d () m2(d () + ¢ (£M(d (x))) ' (d(x))] dads
£, ¢ (M () m(d () das.
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Proof of Lemma 6

Using (2.4) and Lemma 5 (i1), we derive that for 1 <j < k,

=— [é?so" (§5M(d(x))> m? (d(x)) +& ¢ (§€M(d(x))> mf(d(x))}
m d(x))) f i1 <1 T =

< (£ (£M(d ()
+ (£ (&M@ 0)) m(d D)) o (=825 )
= & miT1(d(x))F(p(¢_ M(d(x ))))((kﬂ)F(@ (g M(d (x ))>)>u K
[(1_ M(d()) m(d() ((k+1)F(<P(£EIVI(d(x )))WH))
mA(d() M(d (X)>f( (€ M(d())))

. _ HI\r) .. Pn—
X 0j—1 (1fd(x)p1(><)7 7 1-d( )p”*l(X)

4 M(d(x) ((k—&-l)F(@({sM(d(X)))))k/(kH)0.( p1(%)
m(d(x)) ¢ _M(d(x))f(p(¢.M(d(x)) 7

—~

X pn—1(X)
—d(x)p1(x)’ ?» 1—d(x)pn—:
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Proof of Lemma 6

By Lemma 4,
o MEC) L M) (de)
Fhma) = T T e

By Lemma 5 (/1) and (i2),

p(M(d(x)))
M(d(x)) = / ((k + 1)E(r) "M gy

0
and
(D F (M) 1
ea M(d(x)f(p(M(d(x)))) Cr
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Proof of Lemma 6

Therefore,

M (d (x)) m' (d (x)) ((k+1)/:( (5 (d (%) ))k/(k—i-l)
m? (d (x)) §€I\/I(d(x)) (5 (@ )))>

for sufficiently small J. > 0.
For 1 <j < k —1, since Q being strictly (k — 1)-convex,

p1(X) pn—1(X) >

o — >0 in Qs
J<1—d(X)p1(X) 1 —d(x)pn-1(x)
as 0. > 0 being sufficiently small. Furthermore,

p1(X) Pn-1(x) > : :
okl ——————=, ", — is bounded in Q..
‘ <1 — d(x)p(x) 1 —d(x)pn-1(X) ’
Therefore (2.5) holds.

1— >0 in s
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Proof of Lemma 6

Step 2. Prove supersolution. By (by),
(b= )m*1(d(x)) < b(x) in s,
for sufficiently small 6. > 0, we see that "supersolution” is an easy
consequence of
Sk(D?T. (x)) < (b —¢) MK (d (x)) f (—T: (x)) in Q5. (2.6)
By above calculations,
Sk(D?T: (x)) = (b — &) M+ (d (x)) f (—Te (x))
= M mM L (d(x)f(p(€.M(d(x))))
x [(1_ M(I())m' (d(x)) (k+1>F(so(é M(9()))))"" k“)
(

m?(d(x)) M(d(x))f (p(€_M(d(x))))

X Ok-1 (1—d(x)p1(Y)’ ’ 1—d(x)5nk-+11(?>

- M(d(0) (U DF(o(e M(d0)))) ’U( n® L pea®
m(d(x)) ¢ M(d(x))f(#(£.M(d(x)))) k \T=d(x)p1(x)’ ? 1—d(x)pn—
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Proof of Lemma 6

We only need to prove

ghtl| (1 — M(d(x))m’(d(x)) ((k-‘rl)F(Lp(éEM(d(x)))))k/(kJrl)
S¢ m2(d(x)) ésM(d(X))f(So(ésM(d(x))))

p1(x Pn— (?)
X Ok_1 <W"" ’m

M@0 (D F(o(e M) (e i
m(d()) "€ MdC))F(p(e,Md(x))) K \T=dCp() """ 2 T=d()pn-
—(b—¢€) <0 in Qs

(2.7)
for sufficiently small §. > 0.
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Proof of Lemma 6

By definition of €.
EA+e)Lo(l - GH1—Cn))] —(b—¢) = —=.
It follows that

k+1
&

_ M(d())m'(d(x)) (€ k+1>F(w(£ M(d(x)))))""*
(1+¢)Lo <1 m2(d(x)) M{d()f (¢ (5 (d(x»))

+ M) ((FDF (e M(d()) ))” e o (= i
m(d(x)) ¢ _M(d(x))f((£.M(d(x)))) 1-d(x)p1(x)’ ? 1—d(x)pn—

—(b—¢) <0 in Qs

for sufficiently small 6. > 0.
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Proof of Lemma 6

Furthermore,
p1(x) pr-1(X) :
i (T T ) < A+ n 9

Combining above inequalities, we obtain (2.7). Therefore we
have (2.6).

We prove Lemma 7 by a similar way.
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Proof of Theorem 2

Step (i). We prove the first inequality of (2.3).

Let v € C?(Q) to be the k-admissible solution of
Sk(D?v) =1 in Q with v =0 on 9Q.

Since Av > 0in Q, we have v < 0 in €. There exists a
negative constant c such that

cd(x) < v(x) on Q.
Then we have, for sufficiently large T,

u+Tv<u. onAN={xeQ:d(x)=0}

and
u+ Tv=1u.=0 on 0.
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Proof of Theorem 2

It is clear that

D?u+ TD?v € S(T'x) in Q.
Using the concavity of Si/k on S(Tx),
S (302 ™)) 2 552 0P+ 55/ K(TDR) 2 3 51/4(D) i
Therefore,
Sk(D?(u+Tv)) > Si(D?u) = b(x)f(—u) > b(x)f(—(u+Tv)) in Q.
By Lemma 3,
u+ Tv <0 = —p(§_M(d(x))) in Qs..
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Proof of Theorem 2

Divide both sides by —p(§_M(d(x))) and then
cTd(x) < u
—p(§ . M(d(x))) — —p(§ M(d(x)))

Since, by Lemma 5 (i3),

1—

in Q(;E.

[im L =0
B SEME)
we obtain )
L= R e M)

Let € — 0 and then we conclude

1 <liminf 20y

xc0  —p(EM(d(x)))

d(x)—0

Dongsheng Li Xi'an Jiaotong University
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Proof of Theorem 2

Step (ii). We turn to prove the second inequality of (2.3).
For sufficiently large T >0, u, + Tv < u in 5_. That is,
—p(E.M(d(x))) + Tv < u inQs..
Divide both sides by —p(£.M(d(x))) and then

— 4 <1+ ETd(X) in Q(;E.
—p(€-M(d(x))) —p(E-M(d(x)))
It follows that
| u(x) <1
im sup — <
269, ¥ §-M(d(x)))

Let £ — 0 and we obtain

lim sup u(x)
X€E

o —p(EM(d(x)))
d(x)—0
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Recall (1.2)

Sk(D?u) = ok(N) = b(x)f(u) in Q,

(1.2)
u=-+0oo on 0f2.
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Assumptions on f and b.

(f1) f € C1(0,00), f(s) > 0, and is nondecreasing in (0, 0);
(f2) The function

is well defined for any s > 0, where H(7) = ((k + 1)F(T))1/(k+l)
and F(7) = [ f(s)ds. For convenience, we define by ¢ the inverse
0

of ®, i.e., p satisfies

o

dr
/H(T)_t VO<t<a,
o(t)

(b1) b€ CYY(Q) is positive in Q.
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Existence of large solutions

Theorem 3: Let Q C R" be a bounded and strictly
(k — 1)-convex domain with 9Q € C31. Suppose that f satisfies
(f1) and (f2), and that b satisfies (by). Then problem (1.1) admits
a viscosity solution u € C(Q).

Some related results:

P. Salani, Boundary blow-up problems for Hessian equations,
Manus. Math. 96 (1998) 281-294.

A. Colesanti, P. Salani, E. Francini, Convexity and asymptotic
estimates for large solutions of Hessian equations, Differential
Integral Equations 13 (2000) 1459-1472.

Y. Huang, Boundary asymptotical behavior of large solutions
to Hessian equations, Pacific J. Math. 244 (2010) 85-98.

H.Y. Jian, Hessian equations with infinite Dirichlet boundary
value, Indiana Univ. Math. J. 55 (2006) 1045-1062.
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Proof of Theorem 3

We use the method of proving Theorem 1.
Let w (w < 0) is the admissible solution of

Sk(D?w) = b(x)  inQ,
w=0 on 012.

Then w € C3#(Q) with 0 < B < 1.
(f2) implies that

1
V(s) _s/f(T)l/de

is well defined. Let v be the inverse of W, i.e., 1 satisfies

(e o]

1
t= ——dT.
/ f(T)l/k

¥(t)
Dongsheng Li Xi'an Jiaotong University
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Proof of Theorem 3

Define

and j=1,2,---,
Qj ={xeQ:h(x)<,j}

Note that h = oo on 0f2.
Consider

Sk(D?u) = b(x)f(u) in €,

u=yj on 0%);.
Since h is a k-admissible subsolution, we have, by Lemma 2, it has
k-admissible solution wu;.

It is clear
uj < Uit1 In Qj.
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Construction supersolution

Lemma 8. Let Q2 C R” be a bounded and strictly
(k — 1)-convex domain with 9Q € C31. Suppose that f satisfies
(f1) and (f2), and that b € CH1(Q) is positive. Then there exists a

h € C%(Q), h(x) — o< as d(x) — 0, such that for any
k-admissible function u € C2(Q) N C(Q) satisfying

Si(D?u) = b(x)f(u) inQ,

we have

A. Mohammed, On the existence of solutions to the
Monge-Ampere equation with infinite boundary values, Proc.
Amer. Math. Soc. 135 (2007) 141-149.
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Proof of Theorem 3

For each xp € Q, let Br(xg) CC Q with 0 < R < d(xg). Then
there exists a positive integer jo so that Br(xo) C £2j,. Since

be Cl’l(BR(XO)) ii positive, by Lemma 8, there exists a

hr € C?3(Br(x0)), hr(x) — oo as dist(x, dBr(xp)) — 0, such that
for all j > jo,

uj < ER in BR(X()).
It follows that
lim uj(x0) = u(xo).
-[*)OO
We also have
lujll o Br0ay) < €
Then v e C(Q).

Moreover, u = 0o on 92 since h < u in Q and h = co on 99.
That is, u is the viscosity solution.
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Further assumptions on f and b

(f3) There exists C¢ > 0 such that

o0

Jim, HI(S)/ Hd(:) = ¢

S
where H(7) is defined in (f2).
(b2) There exist a positive and nondecreasing function
m(t) € C1(0,80) (for some dp > 0), and two positive constants b
and b such that

b=Ilminf ————— b(X) <limsup——————
2T N mAI(d(x) T e’ mAI(d(x))
d(x)—0 d(x)—0

Moreover, there exists C,, € [0, 00) such that

/
. (M(x)
lim [ —= ) = G,
t—0t m(t)
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Theorem 4

Theorem 4: Let 2 C R” be a bounded and strictly
(k — 1)-convex domain with 9Q € C31. Suppose that f satisfies
(f1), (f2) and (f3), and that b satisfies (by) and (by). If

Cr>1—Cp, (3.1)

then every viscosity solution u of (1.1) satisfies

_ u(x) od limsu u(x)
= 'i%g ) B A G0

d(x)—0
where

f—( : ) _< : )
T \LA-G1-G))) T b= G -G))

Dongsheng Li Xi'an Jiaotong University
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Remark

If b satisfies (by) and (b2), and f satisfies (f1), (f2) and (f3),
then0< G, <1and G > 1.

Hence (3.1) holds if Gf > 1, or Cf =1 and C,, > 0.
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Example 1

Set b= d(x)*k*tD), 0 < a < 400, near N and f(s) = s7,
v > k. Choose m(t) = t* and then

t0¢+1 1
and C,, =

M(t) = —
(1) a+1 a+1

We also have Cr = '77%,1( > 1. We need v > k. Then

1K)
(0 = (KD O+ DY nyin
0= e '
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Example 1

By Theorem 4,

D )”‘”” - (201 )W'
= Lo(v+ 1+ ak + «) b(v+ 1+ ak+ )

i < i et i

i </o(7+ak+<(ﬁc;r_12§’k<j11)k(a+1)k>1/ T8 )~ D4 1) (k)

and

lim sup u()

758, (toleeke e ) T

<1.
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Example 2

Set b = d(x)*k*1), 0 < a < 400, near 92 and F(s) = €*,
s > Sy for some large Sp. Choose m(t) = t“. We have Cr =1,

o(t)=kIn(k+1)—(k+1)Int,

1/(k+1) 1/(k+1)
§:<a+1> and £:<a+l> .
Lo IO

By Theorem 4,

u(x)

1 < liminf
= %’30 kin(k + 1)(a+1) +In — (k + 1)(a + 1) Ind(x)
and
) u(x)
| <1
e kin(k + 1)(a+1) +InLo — (k+ 1)(a +1)Ind(x) =
d(x)—0
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Some related results

For k = 1, Laplace equation.

L. Bieberbach, Au = e und die automorphen Funktionen,
Math. Ann. 77 (1916) 173-212.

C. Bandle, M. Marcus, Large solutions of semilinear elliptic
equations: existence, uniqueness and asymptotic behaviour, J.
Anal. Math. 58 (1992) 9-24.

C. Bandle, M. Marcus, Asymptotic behaviour of solutions and
their derivatives, for semilinear elliptic problems with blowup on
the boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire 12
(1995) 155-171.

F. Cirstea, V. R3dulescu, Asymptotics for the blow-up
boundary solution of the logistic equation with absorption, C. R.
Math. Acad. Sci. Paris 336 (2003) 231-236.

J. Garcia-Melian, Nondegeneracy and uniqueness for boundary
blow-up elliptic problems, J. Differential Equations 223 (2006)
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Some related results

For k = n, the Monge-Ampere equation.

F.C. Cirstea, C. Trombetti, On the Monge-Ampére equation
with boundary blow-up: existence, uniqueness and asymptotics,
Calc. Var. Partial Differential Equations 31 (2008) 167-186.

B. Guan, H.Y. Jian, The Monge-Ampére equation with
infinite boundary value, Pacific J. Math. 216 (2004) 77-94.

A.C. Lazer, P.J. McKenna, On singular boundary value
problems for the Monge-Ampére operator, J. Math. Anal. Appl.
197 (1996) 341-362.

C. Loewner, L. Nirenberg, Partial differential equations
invariant under conformal or projective transformations, in:
Contributions to Analysis (A Collection of Papers Dedicated to
Lipman Bers), Academic Press, New York, 1974: 245-272.

A. Mohammed, On the existence of solutions to the
Monge-Ampere equation with infinite boundary values, Proc.

AW \ B o L Q0 4 40
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Some related results

For general k-Hessian equation.

P. Salani, Boundary blow-up problems for Hessian equations,
Manus. Math. 96 (1998) 281-294.

Y. Huang, Boundary asymptotical behavior of large solutions
to Hessian equations, Pacific J. Math. 244 (2010) 85-98.
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Two Lemmas

Lemma 9. Let m and M be the functions given by (bz).

Then
M(0) = tILrg+ M(t) =0,
M(t) _
t—0t W -
and
M (t)m'(t)

lim 2T g .
50t m2 (1) m
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Two Lemmas

Lemma 10. Assume that f satisfies (f1), (f2) and (f3). Then

we have
(i1) @(t) >0, p(0) = lim ©(t) = 4o0,
t—0t
@' (t) = — ((k + 1)F () D),
and ¢"(t) = ((k + 1)F(e(t))) R/ £(o(1);
N =) e (KD F(e(0) D
(2) im et = im =—wtem) — &'

(3) ¢ € NRVZy_¢,, i.e., for each £ > 0,
p(Et) _ -G,

m
t—0t (1)
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Proof of Theorem 4

For any £ > 0, we choose . > 0 small enough such that
m(t) satisfies (by) for 0 < t < J;

(a1)

(a2) d(x) € C*(Q2s.); _

(a3) (b—e)m*1(d(x)) < b(x) < (b+e)m T (d(x)) in Qas,;
(ag) Forany 0 <j < k-1,

%7 . ’1_;(")0%> > 0 in Qp5.. Recall that p;(X)

(/ =1,2,---,n— 1) denote the principal curvatures of 9 at X,
where X € 0 satisfies d(x) = |x — X]|;

(as)
(1—e)lo < ok1 <1_f(1x()x,31(x)a e 1—(71"5)29_)1(@) < (1+¢)Loin
Qos.;

(ap) Uk(lcf(lx()xp)l(x)’ e 71(1”(")0;%) is bounded in Q5. .
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Proof of Theorem 4

Fix 0 < ¢ < b/2 and we choose

1/(k+1)
£ = b —2¢
> <(1+5)Lo(1 -Gl cm))> |

— b+ 2¢ s
“Slacae-ga-cy)

and
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Proof of Theorem 4

Choose 0 < 0 < 6.

Define
di(x) =d(x) —o, da(x)=d(x)+0o
and
T:(x) = p(§_M(c1(x))) in Q25 \ Lo,
u.(x)

P(E-M(da(x))) in Qo5
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Proof of Theorem 4

Step 1. 7. is k-admissible and
Sk(D?. (x)) < b(x)F (3. (x)) in Q5. \ Oy
as d. being sufficiently small.
Step 2. u, is k-admissible and

Sk(D?u, (x)) 2 b(x)f (uz (x)) in Qa5.—o

as 0. being sufficiently small.
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Proof of Theorem 4.

Step 3. Let T > 0 sufficiently large and 0 < 0 < d.. Then
u<b.+T onA ={xeQ:d(x)=25}

and
u <u+T onAy={xe€Q:d(x)=2)—0c}.

We observe that

u<u.+T =00 onN3={xe€Q:d(x) =0}

and

u. <u+T =00 on 0f.
By Lemma 3,

u <u+T inQ _,.
and

u <u+T inQs _,.
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Thank you!

Xi'an Jiaoton

niversity
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