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Introduction

(Mn, ω) – a compact Kähler manifold of complex dimension n
without boundary (closed);

χ – a smooth closed real (1, 1) form in Γk
ω.

Γk
ω is the set of all the real (1, 1) forms whose eigenvalue sets with

respect to ω belong to k-positive cone in Rn.
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Introduction

We study the parabolic equations

∂u
∂t = log χ

k
u ∧ ωn−k

χlu ∧ ωn−l − logψ, (1)

where ψ ∈ C∞(M), 0 ≤ l < k ≤ n and

χu := χ+

√
−1

2
∂∂̄u. (2)

To be nondegenerate elliptic, we seek the admissible solution u
such that χu ∈ Γk

ω . Thus, we need to assume Ψ > 0.
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Introduction

The study of the parabolic flows is motivated by complex equations

χk
u ∧ ωn−k = ψχl

u ∧ ωn−l, χu ∈ Γk
ω. (3)

When ψ is constant, it must be c defined by

c :=

∫
M χk ∧ ωn−k∫
M χl ∧ ωn−l . (4)

This is an extension of complex Monge-Ampère equation [Cao,
1985] and complex Monge-Ampère type equation [Sun, 2015].
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Introduction
Complex Monge-Ampère Equation

In 1978, Yau proved the Calabi conjecture by solving the
complex Monge-Ampère equations on closed Kähler manifolds.

In 1985, Cao reproduced the result by parabolic flow method.
In 1987 and 2010, Cherrier, Tosatti and Weinkove
independently solved the equation on closed Hermitian
manifolds under the balanced condition.
Later in 2010, Tosatti and Weinkove successfully removed the
balanced condition and extended the result to general
Hermitian manifolds.
In 2011, Gill gave a parabolic proof for the result.
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Introduction
Donaldson’s problem

When χ, ω are both Kähler and ψ is a constant:

ψ =

∫
M χn∫

M χn−k ∧ ωk .

In 2004, Chen used the parabolic flow to study the equation,
i.e. J-flow.

In 2006, Weinkove solved the equation by J-flow.
In 2008, Song and Weinkove proved a necessary and sufficient
condition for solvability, i.e. the cone condition.
In 2011, Fang, Lai and Ma extended the cone condition and
the solvability to all 1 ≤ k < n .
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Condition

Subsolution condition is too strong for closed manifolds!

We study a priori estimates and the convergence under the cone
condition, that is,

there is a real-valued C2 function u satisfying χu ∈ Γk
ω and

kχk−1
u ∧ ωn−k > lψχl−1

u ∧ ωn−l.
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Condition

For convenience, we adopt an equivalent definition of u due to
Székelyhidi, which is called C-subsolution.

We say that a C2 function u is a C-subsolution if χu ∈ Γk
ω, and at

each point x ∈ M, the set{
χ̃ ∈ Γk

ω

∣∣∣ χ̃k ∧ ωn−k ≤ ψχ̃l ∧ ωn−l and χ̃− χu ≥ 0
}

(5)

is bounded.

8 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Main Result

Main Result
Let (Mn, ω) be a closed Kähler manifold of complex dimension n
and χ a smooth closed real (1, 1) form in Γk

ω. Suppose that there
is a C-subsolution u and ψ ≥ c for all x ∈ M. Then there exists a
long time solution u. Moreover, the normalization û of u is C∞

convergent to a smooth function û∞ where û is defined later.
Consequently, there is a unique real number b such that the pair
(û∞, b) solves

χk
u ∧ ωn−k

χlu ∧ ωn−l = ebψ. (6)
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J-functional

It is easy to see that for general ψ, the solution u is probably
divergent. It is necessary to find an appropriate normalization. We
adapt the general J-functionals [Chen, 2000; Fang-Lai-Ma, 2011].
Let H be the space

H := {u ∈ C∞(M) | χu ∈ Γk
ω}. (7)

For any curve v(s) ∈ H, we define the funtional Jl by

Jl(u) =
∫ 1

0

∫
M

∂v
∂sχ

l
v ∧ ωn−lds, (8)

where v(s) is an arbitrary path in H connecting 0 and u.

Those functionals are independent from choices of the path.
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J-functionals

Along the solution flow u(x, t), we have

d
dtJl(u) =

∫
M

(
log χ

k
u ∧ ωn−k

χlu ∧ ωn−l − logψ
)
χl

u ∧ ωn−l

≤ log c
∫

M
χl

u ∧ ωn−l −
∫

M
logψχl

u ∧ ωn−l

≤ 0.

(9)

Let
û = u − Jl(u)∫

M χl ∧ ωn−l . (10)

By (9), we know that ∂tû ≥ ∂tu.
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L∞ estimate

We claim that

inf
M
(û − u)(x, t) > −2 sup

M×{0}
|∂tu| − C0, (11)

where C0 ≥ 0 is to be determined later. Otherwise, there must be
time t0 > 1 such that

inf
M
(û−u)(x, t0) = inf

M×[0,t0]
(û−u)(x, t) = −2 sup

M×{0}
|∂tu|−C0. (12)

12 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

L∞ estimate

Let v = û − u − ϵ+ ϵ|z|2 − ϵ(t − t0)− infM(û − u)(x, t0) for some
small ϵ > 0.
We may assume that ϵ < λ. It is easy to see that when t = t0 − 1

v = û − u + ϵ|z|2 − inf
M
(û − u)(x, t0) ≥ 0, (13)

and when |z|2 = 1, t ≤ t0

v = û − u − ϵ(t − t0)− inf
M
(û − u)(x, t0) ≥ 0. (14)

Moreover,

inf
M×[t0−1,t0]

v = inf
M×{t0}

v = v(x0, t0) = −ϵ. (15)

ϵ is chosen small enough, we obtain an bound |uīj| < C in Γ−v.
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L∞ estimate

By Alexandroff-Bakelman-Pucci maximum principle, we have

ϵ ≤ C
[∫

Γ−v∩{v<0}
−∂tv det(D2

xv)dxdt
] 1

2n+1

≤ C
[∫

Γ−v∩{v<0}
−∂tv22n(det(vīj))

2dxdt
] 1

2n+1

.

(16)

Because of the boundedness of uīj and ∂tu, it follows that

ϵ ≤ C |Γ−v ∩ {v < 0}|
1

2n+1 . (17)
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L∞ estimate

So

ϵ2n+1 ≤ C
∣∣∣∣M × [t0 − 1, t0] ∩

{
û < inf

M
(û − u)(x, t0)

}∣∣∣∣
≤ C

∫ t0

t0−1

||û−(x, t)||L1

| infM(û − u)(x, t0)|
dt

≤ C
∫ t0

t0−1

||û(x, t)− supM û(x, t)||L1

| infM(û − u)(x, t0)|
dt

(18)
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C2 estimate

C2 estimate
There exists a constant C depending on supM×[0,T) |û| such that
for any t′ ∈ [0,T),

sup
M

|∂∂̄u| ≤ C
(

sup
M×[0,t′]

|∇u|2 + 1

)
, (19)

at any time t ∈ [0, t′].
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C2 estimate
Following the work of [Hou-Ma-Wu, 2010], we define

H(x, ξ) = log
(∑

i,j
Xījξ

iξ̄j
)
+ φ(|∇u|2) + ρ(û − u) (20)

where

φ(s) = −1

2
log
(
1− s

2K
)
, for 0 ≤ s ≤ K − 1,

ρ(t) = −A log
(
1 +

t
2L
)
, for − L + 1 ≤ t ≤ L − 1,

(21)

with
K := sup

M×[0,t′]
|∇u|2 + sup |∇u|2 + 1,

L := sup
M×[0,T)

|û|+ sup
M

|u|+ 1,

A := 3L(C0 + 1)

and C0 is to be specified.
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C2 estimate

Lemma

There is a constant θ > 0 such that we have either∑
i

Fīi(uīi − uīi) ≤ F(χu)− logΨ− θ
(
1 +

∑
i

Fīi
)
, (22)

or
Fj̄j ≥ θ

(
1 +

∑
i

Fīi
)
, ∀j = 1, · · · , n. (23)
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C2 estimate

Without loss of generality, we may assume that X11̄ ≥ · · · ≥ Xnn̄.
Thus

Fnn̄ ≥ · · · ≥ F11̄. (24)

If λ > 0 is small enough, χ− λω and u still satisfy the definition of
C-subsolution.
Since M is compact, there are uniform constants N > 0 and σ > 0
such that

F(χ′) > logΨ+ σ, (25)

where

χ′ = χu − λg +


N

0
. . .

0


n×n

. (26)
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C2 estimate

Direct calculation shows that∑
i

Fīi(uīi − uīi) =
∑

i
FīiXīi −

∑
i

Fīiχ′
īi + NF11̄ − λ

∑
i

Fīi

≤F(χu)− F(χ′) + NF11̄ − λ
∑

i
Fīi

≤F(χu)− logΨ− σ − λ
∑

i
Fīi + NF11̄.

(27)

If
min{σ, λ}

2

(
1 +

∑
i

Fīi
)
≥ NF11̄, (28)

we obtain (22); otherwise, inequality (23) has to be true.
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C2 estimate

Moreover, when (22) holds true, we have∑
i

Fīi(uīi − uīi) ≤ F(χu)− logΨ− θ
(
1 +

∑
i

Fīi
)

= ∂tu − θ
(
1 +

∑
i

Fīi
)

≤ ∂tû − θ
(
1 +

∑
i

Fīi
)
.

(29)

When (23) holds true, we use the fact that

sup |∂tû| ≤ 2 sup
M

|∂tu(x, 0)| (30)
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